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In 1991, a prescient editorial in Nature by Harvard’s
Walter Gilbert, PhD, (“Towards a paradigm shift
in biology”) included these observations on the

utility and impact of computing: 
“The new paradigm now emerging is that all the

‘genes’ will be known (in the sense of being resident in
databases available electronically), and that the starting
point of any biological investigator will be theoretical. ...
We must hook our individual computers in the world-
wide network that gives us access to daily changes in the
database. ... The programs that display
and analyze the material for us must be
improved—and we must learn how to
use them more effectively.” 

Today, Gilbert’s paradigm shift at
the interface of biology and computa-
tion is essentially complete: Genomic
data allow researches to start their
investigations through a theoretical
approach—an analysis of sequence
databases; computer literacy is an essential part of the
biologist’s toolkit; data resources are available anywhere
anytime; and software for biologists is becoming more
widely available and useable. 

Another emerging idea for biology is third party open
access and standards (such as the open development
efforts that extended Linux) to establish annotation for
the vast amounts of data emerging. No single group will
ever be able to annotate the data arising from the ever
accelerating pace of genome sequencing, let alone that
from metagenomics (Venter et al., 2004). Subsequent
automated re-annotation following advances in biologi-
cal understanding must be a feature of knowledge man-
agement. Similarly, the development of sophisticated
computational methods for predicting function is need-
ed to refine experiments in functional genomics and
make explicit the information flowing from high
throughput sequencing (Friedberg et al., 2006).

An exclamation mark for the introduction of compu-
tational approaches to biology has recently appeared: the
2005 report on the frontier at the interface, which sum-
marizes a study of the National Research Council
(Catalyzing Inquiry at the Interface of Computing and

Biology). While the field has grown so much in the past
decade that no study could be inclusive, the NRC report
is a comprehensive review of the history and current sta-
tus of the field. The report, pointing also to the future,
was conducted independent of the interests of individ-
ual agencies and subdisciplines, and should build sup-
port for research on the frontier. 

Catalyzing Inquiry documents the paradigm shift
through reviewing the accomplishments, opportunities
and challenges at the interface; provides further sup-

port for the commitment envisioned by Gilbert for
advancing software for quantitative biological
research, such as the efforts of the National Centers for
Biomedical Computation and the computing-based
NIH Research Resources; and points to the importance
of programs for bioinformatics education for extending
the impact of computing. 

In 1998, Stanford professor Michael Levitt, PhD,
reflected that “computing has changed biology forever,
even if most biologists don’t know it yet.” Today, per-
haps, they do.  ■■
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From theEditor
f r o m  t h e  e d i t o r

BY JOHN C. WOOLEY, PhD

An exclamation mark for the introduction
of computational approaches to biology
has recently appeared:  the 2005 report

on the frontier at the interface.

DETAILS

John C. Wooley, PhD, is Associate Vice Chancellor of
Research at the University of California, San Diego and
Senior Fellow of the San Diego Supercomputer Center. 
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Simulated Buckyballs
Bind to DNA

Recent research illustrates a night-
mare scenario for nanotechnology: sim-
ulated particles called buckyballs eager-
ly glomming onto nearby DNA. The
study, published in Biophysical Journal
in December 2005, has been widely
read as a warning against the use of
such materials for drug delivery, or any
other purpose that could release them
into the environment.

“If [buckyballs] can get into the cell,
and into the nucleus, then they look
like they have a significant impact on
the DNA,” says co-author Peter

Cummings, PhD, professor of chemical
engineering at Vanderbilt University in
Nashville, Tennessee, and director of
the Nanomaterials Theory Institute at
Oak Ridge National Laboratory.

But because buckyballs’ ability to
enter the cell nucleus is by no means
certain, Cummings emphasizes it’s too
early to suggest that buckyballs are
unsafe. “This [simulation] is showing a
possibility of what buckyballs could
do,” Cummings says. “Now it’s worth
investigating to find out if they can
actually get into the cell and if they can
do this kind of damage.”

Buckyballs—also known as buck-
minsterfullerenes—are hollow, soccer-

ball-shaped carbon molecules that,
researchers believe, have the potential
to transmit electricity or deliver drugs
to targets inside the human body.
Safety concerns were raised by a 2004
experiment that detected buckyballs
accumulating in the brain tissue of fish.
This finding prompted Cummings’
group to investigate buckyballs’ behav-
ior inside cells.

Cummings and collaborators at Oak
Ridge National Laboratory ran com-
puter simulations of buckyballs placed
in saline solution near a short strand of
DNA. Within two nanoseconds, the
buckyballs either stuck to the free end
of the DNA or lodged into the minor

www.biomedicalcomputationreview.org
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Simulated buckyballs start near a DNA strand (left) and quickly
bind to hydrophobic sections of the genetic material (above). The
twisted DNA-buckyball compound remains stable for the rest of
the simulation. Courtesy of Xiongce Zhao, Oak Ridge National
Laboratory. 

According to the model calculations,
buckyballs form a strong bond with
DNA—comparable to the strength 
of a drug attaching to a receptor 
and four times the binding 
energy of one buckyball 
to another buckyball.



before sounding the alarm.
“This paper adds little to

the debate over what might
happen in the physiological
milieu,” comments Martin
Chaplin, PhD, an expert in
water clustering at London
South Bank University in the
United Kingdom. The initial
distance may be small enough
that a dehydrating transition
drew the buckyballs to the
DNA, Chaplin says. He also
questions representing a buck-
yball in solution exhibiting no
electric charges.

To address these concerns,
Cummings is using x-ray diffrac-
tion to study actual buckyballs
and DNA. He plans to run
another simulation incorporat-
ing the same fluid that he uses in
the experiment.
—Hannah Hickey

Where Proteins 
Go To Work

Joe works in a factory; Jane works in
a hospital; protein X works in the Golgi
apparatus. Just as one might guess a
worker’s job by knowing where he or
she is employed, biologists can guess a
protein’s function by knowing where it
does its job—whether in or near the
cell membrane, the endoplasmic retic-
ulum or the Golgi apparatus—some of
the important job sites inside a cell. 

Determining thousands of proteins’
correct cellular addresses is a daunting
task. But a new yeast model takes a pret-
ty good stab at predicting which proteins
will wind up in 18 possible destinations
inside this single-celled organism. The
model is described in the November
2005 issue of PLoS Computational Biology. 

“The trafficking and localization of
proteins are very fundamental questions
in biology,” says Michael Hallett, PhD, a
professor at the McGill Centre for
Bioinformatics at McGill University in
Montreal. But the places where 30 to 50
percent of all cellular proteins settle down
to do their tasks are unknown. To get a
better handle on this question, Hallett
and his colleagues and graduate students
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groove between the two strands.
Single-stranded DNA tended to wrap
around the buckyballs, dramatically
changing the DNA’s shape. On con-
fronting a damaged piece of DNA, the
buckyball wedged itself into the gap
created by the tear.

These scenarios suggest that
nanoscale materials such as buckyballs
could interfere with DNA replication,
transcription and repair. Such disruptions
might cause long-term damage, including
heritable mutations and cancer.

Scientists had predicted buckyballs
would be harmless because they are
hydrophobic, or water-hating. The
nanoparticles were expected to bind to
one another and “clump out” of solu-
tion. But it appears that inside a cell’s
nucleus, buckyballs tend to latch onto
hydrophobic sections of DNA mole-
cules, rather than onto one another.

According to the model calcula-
tions, buckyballs form a strong bond
with DNA (in the range -27 to -42
kcal/mol). This is comparable to the
strength of a drug attaching to a recep-
tor and four times the binding energy of
one buckyball to another buckyball.

Cummings and other scientists
caution, however, that these results
must be verified in experiments

Hallett and colleagues used protein-protein interactions to help predict the location of yeast
proteins in the cell. Here the proteins of the secretory pathway (B) and endoplasmic reticu-
lum (C) are colored according to their location; lines represent interactions.  

“People have 
done a lot of 
analysis using 

protein subcellular
localization 
to predict 

protein-protein
interactions. 

This work turns
that around to

good effect,” says 
Mark Gerstein.
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at McGill created the Protein Subcellular
Localization Tool 2, or PSLT2. 

PSLT2 is composed of three modules
that predict where a protein will go.
The motif module makes predictions
based on the presence of particular
sequences of amino acids that suggest a
protein’s function—a good indication
of where it belongs in the cell. The tar-
geting module relies on sequences that
act like a known zip code, indicating
where the protein should end up—such

as mitochondrial targeting peptides and
transmembrane domains. And the
interaction module concerns itself with
the protein’s likely comrades—the
other proteins it associates with when
doing its task. If protein A always inter-
acts with protein B, and B has a known
location in the cell, then A must be
active in that vicinity as well. 

Each module can individually pre-
dict the localization of a protein using
Bayesian methods. The combination of
the three modules improves the predic-
tion when proteins lack motif and
interaction data or traffic through mul-
tiple compartments. 

For the entire yeast genome, the
new tool predicts in which of nine
compartments a protein is located with
at least 72 percent accuracy. These
compartments are mostly organelles
but also include the cytosol and cell
membrane. PSLT2 also predicts pro-
teins’ sub-compartmentalization—
whether they are inside the compart-

ment, in its membrane, or associated
with its surface. The model places the
proteins into 18 sub-compartments cor-
rectly 83 percent of the time. 

The ability to determine sub-com-
partments is new to this model. “When
we use classical techniques for finding
the localization of a protein [in, for
example, the endoplasmic reticulum
(ER)], we can’t use them to tell if a pro-
tein is in the ER membrane, in the
cytosol, or on the periphery,” Hallett

says. “We need a computational
method to pin down where the protein
is in the organelle.”  

The computational model’s predic-
tions compared well with databases
from two high-throughput laboratory
experiments, but they didn’t always
agree; Hallett and colleagues suggest
that the model and two databases
should be used in parallel as checks on
each other. 

According to Mark Gerstein, PhD,
an associate professor of biomedical
informatics at Yale, the paper goes
beyond what has been
done before. “In par-
ticular,” he says, “peo-
ple have done a lot of
analysis using protein
subcellular localization
to predict protein-pro-
tein interactions. This
work turns that around
to good effect.”
—Linley Erin Hall

The Six Faces of E. Coli
Biologists’ favorite bacterium grows

almost anywhere—from the human gut
to the pounding surf. But E. coli’s
remarkable adaptability apparently
stems from being predictable rather than
accommodating. In a recent computer
simulation, thousands of environments
provoked only a handful of shifts in the
microbe’s physiology. The work was
published in Proceedings of the National
Academy of Sciences in December 2005. 

“A network comprised of thou-
sands of molecules, in response to a
myriad of inputs, takes on relatively
few overall responses,” says senior
author Bernhard Palsson, PhD, pro-
fessor of bioengineering at the
University of California, San Diego.
The systems biology study of E. coli
metabolism might help scientists
understand how cells function and
adapt to different environments. 

To simulate E. coli’s environment,
Palsson and his colleagues first drew up
a list of nutrients that could meet the

A map of possible states for E. coli metabolism. The axes rep-
resent the Hamming distance—a mathematical comparison of
the output from different simulations. The closer two points,
the more similar are those results. The ovals show the termi-
nal electron acceptor for different types of respiration:
NO2/NO3 for anaerobic; O2 for aerobic; and fumarate or
DMSO or TMAO for anaerobic fermentation. Courtesy of
Christian Barrett, UCSD.

NewsBytes

“A network comprised of thousands of molecules, 
in response to a myriad of inputs, takes on relatively 

few overall responses,” says Bernhard Palsson.
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microbe’s needs—carbon, nitrogen,
sulfur, etc. From this, they generated an
exhaustive list of media that could sup-
port its growth. Then they wrote math-
ematical algorithms—based on 1,010
genes—for each step in E. coli’s well-
understood metabolic process. 

Combining the different inputs
with these mathematical algorithms,
they “grew” E. coli in 108,728 hypo-
thetical simulated Petri dishes, of
which 15,580 nurtured bacteria
growth. Each of these in silico cultures
produced a simulated gene expression
profile, which researchers visualized in
3-D using a statistical tool known as
principal component analysis. 

The 3-D space was mostly empty:
physiological outcomes appeared as
thirteen clusters organized into six
groups. Cells based their metabolic
decisions largely on two factors: the
availability of glucose as an energy
source; and the identity of the terminal
electron receptor(s)—the molecules
that dictate whether the cell carries out
aerobic respiration, anaerobic respira-
tion, or fermentation. These responses
are reasonably similar to laboratory
experiments, Palsson says, but he was
surprised by the limited scope of all
possible responses. 

The researchers chose to study E.
coli because it has the best-character-
ized DNA on the planet, but the tech-
nique could apply to other organisms.
For example, ecologists might map
microbial communities in an ounce of
soil to see how hundreds of microbes’
metabolisms interact. And engineers
might use the technique to design
whole bacterial ecosystems for useful
tasks, such as eating toxic waste. 

According to Costas Maranas,
PhD, professor of chemical engineering
at Pennsylvania State University, the
study will help “to flesh out dominant
organizing principles for complex sys-
tems.” In addition, he says, “One could
look at whether the dominant behav-
iors that they have elucidated will hold
under different kinds of perturbations,
[such as] genetic perturbations.” 

But the larger question of how all
the complexity in the E. coli genome

results in only a few metabolic activi-
ties, Palsson says, “is something that we
still have to study, and understand.”
—Hannah Hickey

A Powerful Model 
of Relaxation

When a heart beats, millions of mus-
cle cells contract in unison to pump
blood to the body; then they relax,
allowing the heart to refill. Though sci-
entists have carefully characterized the
mechanisms that govern contraction,
they are less certain about the dynamics
of relaxation. But a new mathematical
model of calcium ion concentration in
cardiac muscle—published in March
2006 in Biophysical Journal—has resolved
at least one controversy. 

“There’s been a lot of emphasis on
contraction, because it’s the first thing
you measure experimentally,” says

Nicolas Smith, PhD, senior lecturer in
the Bioengineering Institute and
Department of Engineering Science at
the University of Auckland in New
Zealand. “But it’s just as important that
the heart relaxes. We wanted to be very
clear that we were characterizing the
relaxation properties just as well as the
contraction properties in this model.” 

Here’s what a heartbeat looks like
from within a cell: An electric signal
spurs the release of calcium ions, which
bind to motor proteins and activate
contraction; then, the calcium ions are
pumped away, and the cell relaxes. The
rise in calcium clearly governs contrac-
tion, but scientists still debate the key
trigger for relaxation. Some have sug-
gested that relaxation depends more
heavily on mechanical factors (when

the cell reaches a critical length or ten-
sion), rather than on biochemical fac-
tors (a drop in calcium levels).

Smith and his colleagues combed the
literature and found decades worth of
experimental data (from humans, chick-
ens, rats, mice, ferrets, rabbits, cows and
cats) on calcium concentration and
binding, as well as cell velocity, length,
and tension during a heart beat. They
combined these diverse data into a series
of mathematical equations that simulate
cellular contraction and relaxation.
Then they simulated the tension
changes in the beat of a heart cell—and
found that their predictions closely
approximated tension changes measured
in the lab (data that had not been used
to build the model). 

Their simulation also showed that
cell relaxation depends predominantly
on the drop in calcium levels. “In some

ways this is less exciting than more eso-
teric ideas of length dependence and
tension dependence, because it’s actu-
ally quite simple. But it does clear up a
lot of the debate,” Smith says.

Smith and his colleagues are extend-
ing their model to study life-threaten-
ing biochemical changes that arise dur-
ing ischemic heart disease (where oxy-
gen is not getting to the heart). In
ischemia, heart tissue becomes acidic,
which wreaks havoc on calcium signal-
ing. An unchecked overload of calcium
will cause the heart to perpetually con-
tract—a deadly deficiency of relaxation. 

The model is limited to the cellu-
lar level, Smith notes, as modeling at
the molecular or atomic scale would
take too much computing power. But,
he adds, “Because of the way we for-

“Often models get published that are very
limited in scope, because authors are only
interested in fitting their particular dataset.
But these authors tried to match a diverse

set of data,” says John Jeremy Rice.
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mulated it, it would be absolutely
clear how we would interface with a
much more detailed protein model.”
The model can also be embedded into
tissue-level and whole-heart models
of contraction.

“This paper is unique because the
authors searched the literature pretty
extensively to come up with the esti-
mates for different muscle responses,”
comments John Jeremy Rice, PhD, a
researcher in the Functional Genomics
and Systems Biology Group at IBM’s T.J.
Watson Research Center in New York.
“Often models get published that are
very limited in scope, because authors

are only interested in fitting their partic-
ular dataset. But these authors tried to
match a diverse set of data.”
—Kristin Cobb

Noisy Genes
Genetically identical cells or organ-

isms grown in identical environments
will differ phenotypically, because—even
with a common script—gene expression
is inherently variable, or noisy.

Such noise is counter-intuitive to
many molecular biologists, who would
expect gene regulation—the process that
shapes all life—to run as precisely as a
Swiss watch, says Jeff Hasty, PhD, pro-

fessor of bioengineer-
ing at the University of
California, San Diego.

Hasty and his col-
leagues are trying to
expose the biological
origins of this variabili-
ty. In the December 22,
2005 issue of Nature,
they report their latest
finding in yeast cells.
Using a  combined

experimental and com-
putational approach,
they found that vari-
ability in gene expres-
sion is largely due to
cells being in slightly
different phases of
growth and division.  

Variability in gene
expression can be
intrinsic or extrinsic.
Intrinsic noise arises
within a single gene,
because the biochemi-
cal reactions involved
in transcription and
translation—such as

chromatin unwinding, nucleoside
binding, and mRNA degradation—are
stochastic (random) in nature.
Extrinsic noise affects multiple genes
within one or more cells, for example
fluctuations in environmental condi-
tions or in a cell’s global transcription
or translation machinery. 

“If you could classify the noise into
these two different types, it gives you a
handle on what might be causing the
noise,” Hasty explains.   

His team engineered yeast cells with
one to five copies of the gene for an eas-
ily quantified green fluorescence protein
(GFP), and its promoter. As expected,
the cells with five copies lit up five times
as brightly on average as the cells with
one copy. More interestingly, fluctua-
tions in the signals of the different
strains were almost completely correlat-
ed, whether there were five gene copies
or one, suggesting that extrinsic sources
of variability dominate—which agrees
with findings from other groups, in dif-
ferent experimental systems.

Hasty’s team then tried to pinpoint the
biological sources of this extrinsic vari-

ability with computer simulation. Early
models that included fancy terms for com-
mon transcription or environmental fac-
tors, “didn’t fit quite right,” Hasty says.
Then they tried something more obvious.
They started with the one source of
(extrinsic) variability that has to be there:
the oscillation in gene expression that
arises naturally during the cell cycle.

They built a completely deterministic
(non-random) mathematical model of
population dynamics coupled with gene
expression. In their model, virtual yeast
cells, in slightly different phases, grow at a
fixed rate to a particular size, and then bud
off smaller daughter cells; cells in different
stages of the cell cycle produce differing

NewsBytes

Identical twins never look exactly alike, despite hav-
ing identical genotypes. Hasty and his colleagues at
UCSD are trying to tease out the biological origins of
this kind of “noise.”

Variability in gene expression 
is largely due to cells being 
in slightly different phases 

of growth and division.
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amounts of GFP. This model predicted
variation in fluorescence production sim-
ilar to their experimental data. It also pre-
dicted a “noise floor”—a lower limit for
variation, which was verified in tests of
other highly expressed yeast genes.

“It turned out to be a much sim-
pler answer than we were thinking,”
Hasty says.

A few added “bells and whistles”
improved the model fit—for example,
adding random variation in the time to
division and the size of the daughter
cells—but the core of the model was
still mostly deterministic variation.

“Here’s another piece that expands
our understanding of the factors that
contribute to variability in gene
expression,” says Jim Collins, PhD,
professor of biomedical engineering at
Boston University. “This sets us up
nicely as a community to begin to
understand how the cell actually deals
with this variability.”
—Kristin Cobb 

Smoking Addiction
Explained

To non-smokers, the nasty-smelling
habit is inexplicable. But now neuro-
computational researchers have devel-
oped a hypothetical model to explain
how nicotine produces addictive behav-
ior. The first computational model of
nicotine addiction is described in the

January 24, 2006, issue of the Proceedings
of the National Academy of Sciences.

“We wanted to tease out different
parts of addiction,” says lead author
Boris Gutkin, PhD, a research scien-
tist at the Pasteur Institute in Paris,
France. “The goal is to put behavioral
and neural information together and to
see how the behavioral effects are pro-
duced by the neural effects.”

A few things about
nicotine addiction
were already known.
First, nicotine stim-
ulates specific recep-
tors on neurons that
produce dopamine, causing them
to produce more of this key neurotrans-
mitter for motivation, reward and
learning. Second, dopamine modifies
learning in the circuits that are respon-
sible for making choices. And third,
nicotine results in addictive behavior.
A wealth of behavioral data, including
experiments in which rats are trained
to self-administer nicotine, indicates
that once a rat (or human) starts the
habit, it will choose to continue. It will
even learn to navigate complex mazes
or press levers to obtain nicotine.

The model developed by Gutkin and
his colleagues examines how a hypo-
thetical animal “behaves” when given
two choices: to smoke or not to smoke.
“We found that simulation of both the
biophysical effects of nicotine at the
neuronal level and the subsequent
effect on learning reproduced certain
aspects of the behavioral data.” 

In the biophysical part of the
model, the researchers developed a
simple kinetic scheme for how a pop-
ulation of neuronal receptors would
react to nicotine on three different
time scales: short-term stimulation of
nicotinic receptors, leading to a burst

in the dopamine signal; medium-term
production of more receptors, which
further increases the dopamine signal;
and long-term opponency, a process
that attempts to bring the system back
into balance by decreasing the
amount of dopamine. 

Combining these dopamine changes
with a module that gave smokers a
choice after each smoking session, the

researchers asked,
essentially, will
this smoker choose

to smoke again. They
found that—especially

after the second session—the
model smoker consistently keeps smok-
ing. The researchers suggest that the
dopamine message (“nicotine is
rewarding”) gets locked in neurally—
and becomes hard to unlearn. Smokers
continue to seek out nicotine even
when the opponent process reduces the
amount of dopamine in the system and
the pleasure goes out of smoking.
Moreover, when nicotine is withdrawn
from a smoker, the researchers say, the
dopamine-lowering opponent process
is still in effect. As a result, dopamine
levels drop below normal, and it’s hard
to find pleasure in anything. 

The researchers were most
pleased by the observation that
nicotine sensitizes the system to the
dopamine response. That is, the
response to the second dose of nico-
tine is bigger than to the first, and
has a significant effect on the choic-
es made (to smoke or not smoke),
whereas the first dose did not—pre-
sumably because of the learning
effect on the decision maker.
Likewise, a smoker who quits and
starts again does not start from zero,
but learns t o  s e l f - a d m i n i s t e r
nicotine faster the second time

around. “So this was an effect we got
for free,” says Gutkin. “We did not
set out to a priori capture this
effect, but found it inherent in the
behavior of the model.”

“Gotten-for-free” effects are the stuff
that makes us modelers especially
happy,” says Gutkin, “they are our
intellectual lolly-pops.”
—Linley Erin Hall  ■■

Nicotine causes the neural circuits that control behavioral
choice to change in a way that locks in smoking-related

behaviors—making them difficult to unlearn.
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biomedical

computing?

THE

Factor:
Female

Is the 

gender gap 

in computer

science 

carrying 

over to 

biomedical

computing?

T
he field of computer science has seen some wild ups and downs
over the last twenty years. And the roller-coaster ride has been
reflected in the fluctuating numbers of undergraduate computer
science majors nationwide. Yet, throughout that time, the per-
centage of female computer science majors followed a steady,

downhill trend—from 37 per-
cent in 1985 to around 28 per-
cent today (NSF). The drop
stands in stark contrast to the
rising proportion of women in
other science and engineering
disciplines. For example,
women’s representation in biol-
ogy and medicine has soared in
the past decade, surpassing 50
percent in undergraduate biolo-
gy in 1996 and in medicine in
2004—despite the male-domi-
nation of medicine just a gener-
ation ago (NSF; Association of
American Medical Colleges).   

Image designed by Stanford computer 
science students Chris Chan and Greg Cuellar.

BY KRISTIN COBB PhD
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So what happens when biomedi-
cine intersects with computer 
science? Many believe that bio-

medical computing has the potential to
draw women into computing. It offers
an antidote to computer science’s
image problem: whereas pure comput-
ing is stereotyped as machine-oriented,
solitary, and “geeky,” biomedical com-
puting is seen as human-centered,
team-oriented and socially relevant. 

But the early evidence shows a mixed
picture. Biomedical Computation Review
surveyed several universities with pro-
grams in biomedical informatics—
Columbia, Harvard, the Massachusetts
Institute of Technology, Stanford, the
University of California, Los Angeles,
and the University of Michigan—and
found that, so far, just 24 percent of
graduate students in these programs
have been women. That’s closer to
women’s representation in computer sci-
ence than in biology. 

Because biomedical computing has
thus far drawn from students with com-
putational backgrounds, the deficit in
females pursuing computer science as
undergraduates may create a bottle-
neck. But a lack of women entering the

field is only half the problem. Across all
scientific disciplines, including biology
and medicine, the numbers of women
shrink as you go up the academic ladder.
This “leaky pipeline” phenomenon is
worse in the more technical fields.
Biomedical computing is no exception:
Women make up just 13.8 percent of
tenure-track faculty in biomedical
informatics and computational biology
at the surveyed institutions. 

Biomedical Computation Review
spoke to women in computing, bio-
medical computing, sociology, and edu-
cation about why so few women go into
computing; why they leave; and what
biomedical computing can do to avoid
the gender gap of computer science. 

Their message: Biomedical com-
puting holds the promise of drawing
more women into computing, but this
influx may not happen spontaneously.
Moreover, biology and medicine are
becoming ever more computational. If
women don’t have the computer
savvy or the influence, they may be
left out. More than being an injustice,
they say, this would be a huge loss of
talent and perspective for both bio-
medical computing and biomedicine.  

{But what
about 

biomedical
computation?
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PRECOLLEGE:
NATURE OR NURTURE?

The gender gap in computer science
starts early. Though equal numbers of
men and women enter college with
prior computer experience (UCLA
Higher Education Research Institute),
and young women are using computers
at an incredible pace, only 14.8 percent
of those taking the computer science
AP exam in 2005 were women.
Compare that to 46.3 percent for cal-

culus (College Board AP Program).
Boys develop a “magnetic attrac-

tion” to computers at an early age,
observe Jane Margolis, EdD, and
Allan Fisher, PhD, in Unlocking the
Clubhouse: Women in Computer Science
(MIT Press, 2002). In their 1995 to
2000 interviews of 46 male and 51
female computer science majors at
Carnegie Mellon University, three-
quarters of the men—but only one-
quarter of the women—fit the profile
of someone who spent much of their
youth consumed with computers. 

“We found that while girls were not
frightened of the computer or disinter-
ested, there was a difference in how
involved they got with computing,”
says Margolis, a researcher at the
UCLA Graduate School of Education.

Some people attribute this disparity
to innate gender differences: Women
are nurturing and human-focused; men
are analytical and object-focused; so,
computers appeal more to men.

But socialization is working to a
greater degree than we realize, argues
Maria Charles, PhD, professor of soci-
ology at the University of California,
San Diego. “Both men and women
believe in these fundamental gender
differences. Independent of their truth,
these beliefs can be very powerful in
affecting people’s choices.” 

In her study of 21 countries, she
found that the male-to-female ratio

in computer science (in college)
varies widely: from 1.79 (in Turkey)
to 6.42 (in the Czech Republic).
This variation is better explained by
societal and cultural norms than
genetics. Similarly, the under-repre-
sentation of minority men in com-
puter science cannot be explained by
innate gender differences.

Margolis also found that socializa-
tion plays a major role. In her inter-
views, 40 percent of the male students

reported being given a computer early
in life, compared with only 17 percent
of the female students. “When parents
place computers in boys’ bedrooms and
spend more time nurturing their sons’
computing interests than their daugh-
ters’, are they responding to innate dif-
ference in the children’s level of inter-
est? Or are their assumptions about the

children’s interests playing out as self-
fulfilling prophecies?” Margolis asks in
Unlocking the Clubhouse.

Suzanna Lewis, MS, of the
University of California, Berkeley,
recalls the early influence of her four
older brothers: “I think by the time I
came along, I didn’t get treated any dif-
ferently. Boys were who I played with.
So it never occurred to me that being
female meant that much.” She later
designed control systems for steel mills

and shipyards for a decade (which she
likens to working on “a big tinker toy
set”), before moving to bioinformatics. 

Grace Peng, PhD, grew up with
math exercises over dinner. “I have a
Chinese background. And so engineer-
ing was not thought of as something
very strange for a woman,” she says.
When she was 10 years old, she attend-

“We found that while girls were not frightened of the 
computer or disinterested, there was a difference in how

involved they got with computing,” says Margolis.

JANE MARGOLIS, EdD:
researcher at the
University of California,
Los Angeles, Graduate
School of Education 
Only seven percent of
Carnegie Mellon
University’s computer 
science students were
women in 1995, when
Margolis and Fisher 
began extensive 
interviews to find out
why. The research and
ensuing action culminated
in a book (Unlocking the
Clubhouse: Women in
Computing. MIT Press,
2002) and left CMU’s
entering class in 
computer science at 
42 percent women 
in the fall of 2000. 

THE

Factor:
Female
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BIOMEDICAL
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Statistics from: Women, Minorities, and Persons with Disabilities in Science and Engineering:
2004, National Science Foundation (NSF). Data are from 2001. Notes: the chart includes only
professors at 4-year colleges and universities; the category “science and engineering over-
all” also includes psychology and social science; for professor levels in chemistry, all physical
sciences are included.

WOMEN IN BIOMEDICAL

ENGINEERING (PERCENTAGE)

WOMEN IN BIOMEDICAL

COMPUTING (PERCENTAGE)

Left: Statistics From: American Society for Engineering Education
(ASSE). Above: Data are from 2003. Data compiled in 2005 from:
Stanford, Harvard, MIT, UCLA, Columbia, and the University of
Michigan. Student data are limited to graduates and current stu-
dents of degree programs in biomedical informatics (n=429).
Faculty data are limited to tenure-track faculty in programs in bio-
medical informatics or computational biology (n=239).
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“I think that it is an inaccurate and
a repulsive kind of an image that keeps
terrific men and women away. Not just
women. Both,” she says.  

“I don’t find the computer science
world to be very socializing,” agrees
Mia Levy, MD, a first-year student in
the bioinformatics PhD program at

Stanford. She says this stereotype was
reinforced by her computer science
classes, where the assignments were
always to “create a computer game.”

“Having the month before gone
from the critical care unit to then sud-
denly programming Boggle, I was like,
‘My life seems very insignificant right
now in comparison to how important it
all seemed before,’” she says. 

Besides curriculum reform, broad-
ening admissions criteria for comput-
er science can also attract more
diverse candidates, Sanders says.
Requiring extensive computing
know-how for freshmen is crazy, she
says, and also irrelevant—since the

ed a program at the University of
Illinois, Urbana-Champaign aimed at
encouraging girls in computing—which
she says made her comfortable with
computers from an early age. She is now
program director in the Division of
Discovery Science and Technology at
the National Institute of Biomedical

Imaging and Bioengineering managing
programs related to computation and
engineering systems.

If socialization is playing a major role,
then early access and encouragement
may be keys to effecting change. For
example, foundations that donate com-
puters to schools should require schools
to demonstrate that girls are using the
computers as much as boys—who tend to
be more aggressive about grabbing them,
says Cherri Pancake, PhD, professor of
electrical engineering and computer sci-
ence at Oregon State University. Charles
also urges parents and educators to
downplay gender stereotypes and to
require more math and computer sci-
ence classes for everyone. 

Finally, whether nurture- or nature-
driven, girls tend to be less interested in
the computer games that appeal to boys
and more interested in how computing
can solve real problems. Thus, integrat-
ing computing into subjects outside of
the computer lab, such as biology, may
help draw more women into technolo-
gy before college.

COLLEGE:
“GEEK CULTURE”

Tying computing into compelling
problems—such as those in biology and
health—may also help discredit the
computer science stereotype of “this
geeky white guy sitting behind a termi-
nal, getting his suntan from the terminal
rays,” says Lucy Sanders, MS, CEO of
the National Center for Women and
Information Technology at the
University of Colorado, Boulder. She
formerly worked at Bell Labs for 24 years,
including as a chief technology officer. 

technology world changes so quickly. 
In response to Margolis’ study, the

computer science department at
Carnegie Mellon University changed
their admissions imperative to finding
thinkers and leaders—“and they got fab-
ulous thinkers and leaders,” Sanders says.
This admissions change, coupled with

curriculum change,
increased female repre-
sentation from 7 to 42
percent in just five
years. It also changed
the computer science
culture at Carnegie

Mellon for the better, Margolis says.
Biomedical computing could draw

from a large pool of thinkers and lead-
ers in biology and medicine if they keep
the technical barriers to entry low,
Sanders says. 

COLLEGE: 
THE CONFIDENCE GAP

Women often begin college with
less computing experience than their
male counterparts. “Boys have been
tinkering and experimenting and work-
ing at the computer since they were
very, very young; it becomes almost a
physical intelligence,” Margolis says.
This may intimidate women, and erode

Are parents’ assumptions about children’s 
interests playing out as self-fulfilling prophecies?

MARIA CHARLES, PhD 
(sociology); professor of
sociology, University of
California, San Diego; 
co-author of Occupational
Ghettos: The Worldwide
Segregation of Women and
Men (Stanford Press, 2004)
In an upcoming paper,
Maria Charles argues 
that abolishing gender
discrimination does not
increase women’s 
representation in 
technology because 
widely held beliefs 
about gender differences
(“women are more 
nurturing; men are more
analytical”) reinforce the
technology gender gap.

THE

Factor:
Female
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Integrating computing into subjects outside 
of the computer lab, such as biology, may help 

draw more women into technology before college.

GRACE PENG, PhD 
(biomedical engineering); 
program director at NIH/NIBIB
Grace Peng says her decision to 
move from electrical engineering
(which she studied as an undergraduate
at the University of Illinois, Urbana-
Champaign) to biomedical engineering
(which she studied in graduate school
at Northwestern University) may
unconsciously have been driven by her
desire for more human interaction and
impact. After several years on the 
faculty at Catholic University of
America and John Hopkins University,
she took a position at the NIH, where
she can “help people on a daily 
basis, in a different way than 
being in academia.”

CHERRI PANCAKE, PhD (computer
engineering); professor of electrical
engineering and computer science
at Oregon State University
Cherri Pancake worked as an 
ethnographer studying the Mayan
Indians in Latin America for more
than a decade. She later went back
for her PhD in computer engineering
(because “museum work required 
a second source of income”), and
was, in 1982, the first woman 
admitted to any graduate engineer-
ing program at Auburn University.
She now applies her anthropology
expertise to improve computer
usability for practicing clinicians, 
scientists, and engineers.

SUZANNA LEWIS, MS 
(engineering and biology);
director of bioinformatics,
Berkeley Drosophila
Genome Project; 
co-principal investigator 
of the National Center 
for Biomedical Ontology,
University of California,
Berkeley
As a student at the
University of Michigan,
Suzanna Lewis foresaw 
the overlap of biology 
and computer science long
before bioinformatics was
even a term—so she pursued
a dual degree in engineering
and biology. For a decade
afterwards, she focused only
on the engineering side
(designing control systems
for heavy industry), until the
Human Genome Project
lured her back into biology.  
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their confidence at a time when—stud-
ies show—women generally experience
a dip in confidence.

Indeed, Pancake found that women
were leaving the computer science
major at Oregon State University
because they believed they couldn’t
keep up—but, in fact, they were doing
just as well as the men. 

“What we believe from observing in

the classroom is just that men tend to
act more self-assured, not that they’re
any better prepared,” Pancake says.  

“It’s the imposter syndrome,” echoes
Francine Berman, PhD, director of the
San Diego Supercomputer Center.
“People of both genders feel like secret-
ly they don’t have what it takes, and
they’re just trying to make sure that no
one knows that. Women tend to take it

LUCY SANDERS, MS (computer 
science); CEO and co-founder of
National Center for Women and
Information Technology,
University of Colorado, Boulder 
After earning her MS in Computer
Science at the University of
Colorado, Boulder, Lucy Sanders
worked at Bell Labs for 24 years,
where she was a Bell Labs Fellow
and a Chief Technology Officer.
She says she never noticed the
gender ratio until she climbed the
technical ladder. “Up in the leader-
ship ranks on the technical side,
there are very few women that
are really making the choices
about invention.”

MIA LEVY, MD, PhD 
candidate in biomedical informatics,
Stanford University
Mia Levy studied bioengineering
as an undergraduate at the
University of Pennsylvania, 
where, she notes, “Fifty percent 
of my class was women, which
was certainly not the case for the
engineering school at large.” She
programmed for a start-up during
the dot-com boom (“when they
were hiring anybody who had
ever taken a computer science
course”), before entering medical
school at Rush University, in 
time to beat the bust. She is now
a fellow in medical oncology at
Stanford University and also 
a first-year PhD student in 
biomedical informatics.

THE

Factor:
Female
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more seriously and personally. They are
encouraged not to stick with it, because
they’re afraid it’s true. But it’s not true.”

Interestingly, Margolis found that
international women seem to better
resist this confidence trap; though
they often had no computing experi-
ence to start, they stuck out the rig-
orous program at Carnegie Mellon
University. International students
expressed the belief that if you work
hard, you will make it, but American
women too often succumbed to the
belief that intelligence is fixed—not
malleable—and either you have that

certain intelligence or you don’t.   
“There have been studies showing

that if you believe that intelligence is
fixed and innate, your confidence is
much lower than if you believe that,
with work, it’s malleable,” she says.  

Confidence and competence are not
always related, Sanders advises. Rather
than accepting confidence at face
value, she developed a trick: “Somebody
would say something like they just
knew it was true—which is common in
my discipline—and I would say: ‘oh,
why?’ I’d go through two or three
rounds of questions before I would

decide whether they knew
what they were talking about
or they didn’t.” 

Tinkering with computers
doesn’t make you a good
computer scientist, adds
Samantha Chui, a Stanford
University computer science
graduate who is now a first
year master’s student in bio-
medical informatics: “I feel
like there are two kinds of
people: the people who know
everything about the hard-
ware and can’t program, and
the people who know how to
program but don’t know how
to fix the computer. So I just
categorize myself as the latter,
and move on.” 

GRADUATE SCHOOL:
LEAKY PIPELINE

Women who enter graduate
programs in science are less
likely than their male counter-
parts to complete a PhD and
to move on to tenure-track
faculty positions, particularly
at top research institutions. A
year ago, Harvard University’s
outgoing president, Larry
Summer, PhD, ignited a
firestorm with his provocative
suggestion that innate differ-
ences in ability play a role. It’s
an idea uniformly rejected by
our panelists. They say women
are opting out because they
perceive the academic envi-
ronment to be unappealing
(more specifically: unwelcom-

Carnegie Mellon
University 

“got fabulous
thinkers and 

leaders” 
when they

changed their
admissions 

criteria, 
Sanders says.FRANCINE BERMAN, PhD 

(mathematics); director, 
San Diego Supercomputer Center
Francine Berman’s pioneering research
in grid computing led her to become
professor of computer science at the
University of California, San Diego, and
then Director of the San Diego
Supercomputer Center. She was named
one of the top women in technology by
Business Week magazine in 2004. She
says: “It’s been really interesting
because there are not a lot of women 
at my level in the community. There are
some differences in the way that you’re
perceived, but like any job, people get
used to you and what you have to
offer, and then they go beyond gender.”
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ing, harsh, individualistic,
combative, competitive, polit-
ical, secretive, and focused on
empire building) and incom-
patible with having a life or
raising a family.

These impressions are formed
early in graduate school and
they’re largely untrue, says
Semahat Demir, PhD, associate
professor of biomedical engi-
neering at the University of
Memphis and the University of
Tennessee. “When graduate stu-
dents see their faculty as role
models, they don’t get a good
feeling for how much the faculty
enjoy their jobs,” she says. “They
see the faculty working so many
plus hours. They see deadlines
and frustrations.” But, in fact,
she says, academia is very fulfill-
ing and offers a lot of flexibility
for balancing life and work. 

“Women faculty have to
talk to these women early and
show that you can get a bal-
ance,” she says. She advocates
mentoring to facilitate com-
munication between faculty
and students, and to help
women students develop soft
skills that are otherwise inade-
quately addressed in graduate
school, such as negotiation.

“I know for myself, if I’m in a
kill ‘em and eat ‘em environ-
ment, that doesn’t encourage me
to do my best work,” says
Berman, who has promoted a
more collaborative environment
at the San Diego Supercomputer
Center. Though she doesn’t
make a conscious effort to recruit
women, they make up half of her
senior management team.

Biomedical computing is
team-based and collaborative
by nature, which may help to
attract and retain women, our
panelists say. 

FACULTY: 
SECRET LIVES

After earning a science doc-
torate, women are more likely
to leave academia or to take a

SEMAHAT DEMIR, PhD 
(computer engineering); 
associate professor of 
biomedical engineering at
University of Memphis and
University of Tennessee; 
program director, 
National Science Foundation,
Biomedical Engineering and
Research to Aid Persons 
with Disabilities
Semahat Demir studied electrical
engineering as an undergraduate
at Istanbul Technical University,
and worked as a clinical engineer
in Turkey and Germany—where,
at the time, she was often “the
only female engineer in the 
workforce.”  She now advocates
peer mentoring for women in 
technical fields to give 
them a forum to discuss 
their experiences, build 
their confidence, and 
develop soft skills.

SAMANTHA CHUI, BS
(computer science); MS
candidate in biomedical
informatics at Stanford
University
Samantha Chui says the
stereotype of computer
science majors “spending
every night alone hacking
and talking in chat rooms
and gaming” applied to
only a minority of men at
Stanford, and that, in fact,
there was plenty of 
camaraderie and team-
work: “It could be social 
if you let it be.” As a first
year master’s student in
biomedical informatics,
she’s noticed a greater
diversity of students in
her classes, including
more women.

THE

Factor:
Female
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even when controlling for other fac-
tors, women faculty members received
less pay and less lab space than men—
findings that were replicated at other
elite institutions. 

Jeanette Schmidt, PhD, executive
director of Simbios at Stanford and for-
mer vice president of research and
development at InCyte Corporation,
says she never felt her capabilities
doubted as a graduate student in Israel.
But as an assistant professor at
Polytechnic University in New York,
she initially felt a subtle exclusion that
she attributed to being a woman.

The manifestations were often well-
meaning. For example, she was assigned
to teach a morning undergraduate
course rather than a more desirable
evening graduate course, because—she
was told—that way she could “be home
with her kids at night.” 

Biases creep into academia more
than industry, Lewis speculates. In
industry, you are judged by how you
affect the bottom line, she says. In aca-
demia, you are judged on something less
tangible—your ability to debate, per-
suade, and make yourself known. These

non-tenure track position—choices
often attributed to a conflict between
the biological clock and the tenure
clock. Among science and engineering
doctorates who are not working, 35
percent of women cite family responsi-
bilities as the reason, compared with
only 2 percent of men. Among
employed doctorate holders, 33 percent
of women versus just 17 percent of men
have never been married (NSF). 

“Professional life in general—and
high stakes professional life in particu-
lar—is not family friendly, for either
women or men. You’re incentivized for
working all the time and for choosing
your career over your family,” Berman
says. “Professional success encourages
you not to have a life. But everyone
does have a life, so they have secret
lives,” she says. 

Berman now makes a point of talk-
ing about her family, to show young
women that it is possible to have both a
family and a successful career in com-
puter science. Academia actually has a
lot of flexibility for parents, she says.
“Earlier in my career,” she says, “if I had
to go home to watch my daughter play
a fork in the school
play, I’d just say I had
an off campus com-
mitment. My husband
did the same.”  

FACULTY:
SUBTLE

EXCLUSION
Even when women

decide to pursue a
tenure-track academic
position, they may
face unconscious bias-
es in hiring, compen-
sation, and evaluation.
For example, studies
show that both men
and women will rate
an identical resume or
journal article lower
(on average) if they
are told that the sub-
ject or author is a
woman. A 1999 report
on the status  of
women in science at
MIT revealed that,

Biomedical 
computing is 

team-based and
collaborative by

nature, which may
help to attract and
retain women, our

panelists say.

TAMAR SCHLICK, PhD
(mathematics); professor
of chemistry, mathematics,
and computer science at
New York University;
director of the new PhD
program in computational
biology at NYU
Tamar Schlick says she
didn’t dwell on the fact
that she was one of the
few women in 
mathematics as an 
undergraduate (at 
Wayne State University 
in Michigan) or as a 
graduate student (at
NYU), but she did feel
that mathematics was 
a lonely discipline. She
says computational 
biology has a more 
team-oriented focus 
that appeals to women.
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lem,” Berman says. “If it was important
enough for everyone to address this prob-
lem, it would cease to be a problem.”

TWO RIVERS MERGING
Molecular biology and computing

were born in the same era and have
evolved side by side, like two rivers wind-
ing down a mountain in parallel, Lewis
reflects. The two rivers are now merging,
as computing becomes more and more
integral to biology, she says. And before
too long, it’s not going to be easy to dis-
tinguish between the two fields. 

Computing is becoming integral to
many other disciplines as well, which
is precisely what makes the gender gap
in computer science so worrisome. At
a time when too few American stu-
dents are going into technology to
keep up with the demand, we can’t
afford to lose half our talent pool. 

We also can’t afford to lose women’s
perspectives, Sanders says. “Technology
can’t be designed and invented by a
homogenous group of people because it
will be less than it should be.” 

Biomedical computing is poised to
open up computing and technology to
a larger audience, in particular women.
The field’s collaborative nature and its

connection to medicine (which
has been so successful in attract-
ing women) both portend a
bright future for women drawn
to this kind of work. The
women highlighted here are just
a few of the many who are
impacting the field by acting
as role models and mentors as
well as by influencing univer-
sity admissions and educa-
tional policies.

In 2003, 24 percent of the
biomedical computing PhD
students at the universities we
surveyed (see chart) were
women, compared with about
18 percent in computer sci-
ence programs nationwide that
year. These numbers suggest a
positive trend that, if it contin-
ues, will impact the future of
several disciplines: not only
biomedical computing, but
also biology, medicine, and
computer science.  ■■

kind of subjective criteria introduce a
soft bias that favors the dominant group,
a “deafness” as she describes it: “How
many times have you [as a woman] been
standing in a group and you say some-
thing and nobody recognizes it? And
then someone else who happens to be
male says the same thing, and everybody
says ‘Ah, what a great idea!’” 

Counteracting unconscious biases
requires a pro-active approach. By
actively recruiting women, MIT
increased from 22 to 34 women faculty
in the School of Science from 1994 to
1999 (previously, the faculty had stuck
fast at 8 percent women for more than
a decade). At Oregon State University,
Pancake says that sending targeted
recruitment letters to eligible women
and minorities has increased their pro-
portion of women engineering faculty
to the fourth highest in the country.

Biomedical computing needs to be
similarly pro-active in recruiting and
promoting women, our panelists stress.
And this impetus can’t just come from
women in the field.

“Typically you see a lot of the pro-
grams developed and executed by
women for women. But it’s not a
women’s problem, it’s everybody’s prob-

“...it’s not a
women’s 

problem, it’s 
everybody’s 
problem,” 

Berman says. 

JEANETTE SCHMIDT, PhD 
(computer science); executive
director, Simbios, 
Stanford University
Jeanette Schmidt had an early
interest in combining math and
biology, but “It was impossible
because all the courses conflicted.
It was like nobody had ever
thought of it.” So, she majored in
math, followed by a PhD in com-
puter science (Weizmann Institute
of Science in Israel). Later, as an
associate professor of computer
science at Polytechnic University 
in New York, she rekindled her
interest in biology, designing 
algorithms for biologists. She
eventually joined InCyte
Corporation, where she worked
for seven years, including as vice
president of bioinformatics
research and development. 

THE

Factor:
Female
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BY DANA MACKENZIETAKING BIOMEDICAL MODELING TO A NEW LEVEL

F
or centuries, mathematics has been an indispensable ally of the phys-
ical sciences and engineering. Planes fly and telephones work
because engineers know how to simplify physical systems into con-
venient mathematical models. But biologists and mathematicians

have had a harder time communicating. As the old joke says, when you
ask a mathematician to explain why a cow isn’t producing milk,
he’ll probably begin, “Consider a spherical cow…” 

However, attitudes are changing in both disci-
plines. With the advent of computational biolo-
gy, some biologists are shifting toward more quan-
titative models. And today’s vast computing power
means that mathematicians no longer have to simplify as much as
they used to. The days of the “spherical cow” are over. Bioengineers can
program an anatomically correct cow (or human) into their computers. The
organs can be made out of virtual cells that behave the same way real cells
do, and contain virtual proteins that interact like real proteins. Each biolog-
ical scale—organism, organ, tissue, cell, protein, DNA—has been success-
fully modeled in isolation. Now, biologists and mathematicians are
beginning to grapple with the problem of unifying all of these
layers into a single multi-scale model. 
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Multiscale

Among the most mature types of
multi-scale models are simulations of
the human heart. Accurate equations
that describe individual heart cells
have existed since the early 1960s.
They have greatly clarified how the
flow of ions through channels in cell
membranes causes heart cells to trans-
mit electric signals at precisely timed
intervals. Now the models are reaching
down to the molecular level, to explain
how gene expression or drugs cause
changes in the ion channels. At the
same time, they are reaching up to the
organ level, placing the cell
models in the context of
macroscopic physiology.

In ischemia, for example, a
local event—the blocking of
blood flow in a coronary
artery—creates organ-wide
consequences, as a whole
region of heart muscle is
deprived of oxygen. This in
turn affects the heart tissue at a
cellular level, by altering the
chemistry inside the cells. The
intracellular changes create an
arrhythmia, which propagates
back up to the whole-organ
level. This interplay between
the different physical laws at
different levels is what multi-
scale modeling is all about.

Even so, cardiac models are
not necessarily a blueprint for
other parts of biology. “We’re a
long way from generating the
principles by which multilevel
work should be done,” says
Denis Noble, PhD, professor
of cardiovascular physiology at
Oxford University, one of the
pioneers of cellular modeling
of the heart. Indeed, multi-
scale modeling is now at what
might be called its gestational
stage. Everybody knows it’s
important, but no one quite
knows how to do it. 

Nevertheless, money is
flowing. Last year, an intera-
gency NIH/NSF/ NASA/DOE
program funded 24 investiga-
tors, to the tune of $20 mil-
lion, to work on various proj-
ects in multi-scale modeling.

A journal, Multi-scale Modeling and
Simulation, launched in 2002 and pub-
lished its first articles in 2003. In
almost every part of biology—from
bacteria to humans, from the heart to
the brain—scientists want to uncover
the rules that organize nature’s com-
plexity. “You have to hope there are
underlying principles,” says James
Glazier, PhD, the director of the
Biocomplexity Institute at Indiana
University and organizer of eight bio-
complexity conferences. “If not, you’re
out of luck.”

The days 
of the 

“spherical cow”
are over. 

Computer models of the heart incorporate detailed experimental information, both at the level of
individual cells and at the level of anatomy. Here, a model developed by Peter Hunter’s team at the
University of Auckland portrays the changing orientation of the heart’s muscle fibers from the out-
side to the inside of the heart wall. The spiraling of the fibers is believed to affect the flow of elec-
tric signals through the heart. Courtesy of Peter Hunter, PhD, Bioengineering Institute, The
University of Auckland, New Zealand.
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ENGINEERING
THE CELL

In 2002, Yuri Lazebnik, PhD, of
Cold Spring Harbor Laboratory wrote
a much-discussed satirical article for
Cancer Cell called “Can a biologist fix
a radio?” Lazebnik’s answer was no. He
argued that the usual research method
of biologists—knock out one compo-
nent at a time, and see which ones stop
the cell from working—would not
enable them to figure out how a tran-
sistor radio works. Why, then, should
we expect to understand the workings
of a cell in this way? 

Last year, at the Biocomplexity 7
conference, Herb Sauro, PhD, turned
the question around. The assistant
professor of biochemical control sys-
tems at Keck Graduate Institute
asked: “Can an engineer fix a cell?”
His answer was a qualified yes.
“Engineers deal with complex systems
day in and day out,” Sauro says.
“Today’s computer systems have hun-
dreds of millions of components, a
level of complexity that is rapidly
approaching that found in biological
systems.” But, he says, engineers have
a secret that not all biologists have
learned: “Engineers modularize.”

It is still far from clear whether
nature modularizes. If so, it does so in
a very different way from human
engineers, because natural systems
are not rationally designed; they
arise through natura l  se lect ion.
Nevertheless, the final outcome may
be the same. A particular network
may offer a powerful selective advan-
tage precisely because it performs
some function in an optimal manner.

To the layman, the circuit diagram
of an AM radio looks incomprehensi-
ble. But the system becomes easier to
understand once you realize it has
three modules: a resonance detector, a
demodulator, and an amplifi-
er. From there, an engineer
can break the circuit diagram
down into smaller modules,
each with a specific function.
In this way, possibly passing
through many layers, the
engineer can tell how any
electronic device works.

A cell, like a radio or a
computer chip, contains many
components that interact
with each other in a dizzying-
ly complex network. Most
biologists, Sauro contends, are

The circuit diagram of an AM transistor radio (above) looks forbiddingly complex
until it’s overlain with functional modules. According to Herbert Sauro, the same can
be true of protein interactions. The MAP (in blue) kinase cascade at the bottom of
the protein interaction network (right) looks like a negative-feedback amplifier;
however, some of the other “widgets” in the network have functions that are still
unknown. Courtesy of Herbert Sauro.

Resonance
Detector

Demodulator

Amplifier

Detector

Pre-amplifier

Widget 1

Widget 2

Power
Amplifier

“We’re a long way
from generating
the principles by
which multilevel

work should 
be done,” says
Denis Noble.
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satisfied simply to list the components
(the proteome) and identify which
ones interact with each other (the
“interactome”). He says they should
also ask: What are the modules and
what do they do? 

As an example, Sauro cites the
mitogen-activated protein kinase
(MAPK) cascade, a complicated series
of protein-protein interactions that
senses conditions outside the cell and
initiates cell division. When the
MAPK cascade goes haywire, one pos-
sible result is cancer—which explains
why many biologists are interested in it.
It has a very distinctive and well-

understood structure: three staircase
steps with a feedback from the third
back to the first.

When Sauro showed the “circuit
diagram” of the MAPK cascade to engi-
neers, they immediately told him what
the circuit does. It’s a negative-feed-
back amplifier, a type of circuit invent-
ed in the 1920s to transmit transconti-
nental telephone calls. The purpose of
the feedback is to cancel out distortion,
amplifying only the true signal. Sauro
admits that it is “still just a hypothesis”
that it performs the same function in a
cell. However, if this is the optimal way
to amplify a signal without distortion,
it’s possible that, during the course of
evolution, nature may have stumbled
onto the same solution that human
engineers did. 

Adam Arkin, PhD, an assistant
professor of bioengineering and chem-
istry at the University of California,
Berkeley, is one researcher who is tak-
ing an engineering approach to the
study of cells. He has already compiled
a library of protein interaction path-
ways, organized by their possible func-
tions: switches, oscillators, amplifiers,
noise filters (such as the MAPK cas-
cade), and so on. Some of these are
very widespread. As far as biologists
know, the MAPK cascade is found in

all eukaryotes. Unlike electronic com-
ponents, Arkin says, biological mod-
ules have the ability to evolve and
adapt. One particular switch, called
the sin operon, is ubiquitous in bacteria
but plays flexible roles. Arkin has
showed that it can function as a grad-
ed switch, like a light dimmer; a
bistable switch, like a normal wall
switch; or a single pulse generator, like
the switch of a flashbulb. 

If it is true that nature modularizes,
it raises the possibility that humans can
actually design bacteria to perform cer-
tain functions. For larger organisms,
such as humans, modularity is impor-

tant because it simplifies multi-scale
modeling. “If you’ve identified a mod-
ule with a crisp function, then you can
substitute that whole network with a
single equation,” Sauro says. This kind
of substitution is what will make multi-
scale modeling possible. And such
models will generate hypotheses that
can be tested experimentally—one of
the most important ways that computa-
tional biology can contribute to biolog-
ical discovery.

THE HEART OF THE MATTER
Can an engineer repair a heart? The

answer, again, is a qualified yes. Every
day, defibrillation—a massive external
shock applied to the heart—saves the
lives of many people who would other-
wise die within minutes. When done
correctly and promptly, defibrillation
has a success rate well over 90 percent.
Ironically, though, scientists are not
quite certain why it works. It is certain-
ly a more violent and painful treatment
than necessary—although, as Noble
says, “In a condition where you other-
wise die, you put up with that.”

Multi-scale models have enabled
heart researchers to “see” much more
clearly into the fibrillating heart. The
models work on at least two scales.
They couple cellular properties, such as

the way a heart muscle cell reacts to
ionic currents, with equations from
physics that describe how electric cur-
rents propagate through conductors.
The anatomy of the heart plays an
important role, because heart muscle
does not conduct electricity equally in
every direction: the current flows pref-
erentially along muscle fibers.

The models show that fibrillation
starts with tachycardia. This may feel
like a “rapid heartbeat,” but it is not
really a heartbeat at all. A normal
heartbeat is a wave of electrical excita-
tion that progresses from the heart’s
pacemaker (the sinoatrial node) and

sweeps over the whole heart.
Ventricular tachycardia, on the other
hand, is a self-organizing spiral of elec-
trical activity that rotates around a
center, like a dog chasing its tail.
Opinions differ as to whether the cen-
ter is an anatomical defect, such as a
piece of scar tissue, or whether the
“rotor” can form anywhere. Either way,
the heart muscle cannot sustain it, and
the single spiral wave disintegrates into
many. That is the onset of fibrillation.

Defibrillation is a mystery. If the
heart were a uniform electrical conduc-
tor, the shock from the defibrillator
would have no way of penetrating the
interior of the muscle, and so the gadg-
et would never work. Evidently the
heart is not homogenous, but a debate
still rages over where to look for the
inhomogeneities. Some heart physiolo-
gists believe that the relevant features
are large-scale (the muscle fibers).
Others claim that the shock sets up a
voltage gradient across the gaps
between layers of cells (or “interlami-
nal clefts”). Either explanation, if it
could be proved by experiment, would
be a triumph for computational biolo-
gy’s ability to turn qualitative hypothe-
ses into quantitative, testable predic-
tions. The second hypothesis, which
proceeds from cells up to the organ

“Engineers have a secret that not all biologists have 
learned,” says Herb Sauro, “Engineers modularize.”

Multiscale
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level, is perhaps more in the spirit of
multi-scale reasoning, but in fact both
of them require multi-scale modeling to
work in a quantitative fashion.

Meanwhile, heart models are con-
tributing to scientists’ understanding of
other heart diseases as well. For exam-
ple, long QT syndrome is an irregular
heartbeat that can be caused either by
drugs or by genetic mutations that
affect the potassium channel. Often its
first symptom is sudden death of an
apparently healthy young person.
Many drugs affect potassium levels, and
it makes much more sense to test their
side effects first on a computer model
than on a live human. 

Simulations can also help identify
drugs with positive effects. Noble has
used them to study an anti-anginal
drug called ranolazine, which affects
two channels at once, the potassium
and sodium channels. So-called “mul-
tiple action drugs,” like ranolazine,
have a poor reputation, says Noble,
precisely because “our minds can’t
wrap themselves around them.”
Doctors prefer drugs with a single clear
effect. But in the case of ranolazine,

either action by itself would cause
arrhythmia. The combination avoids
arrhythmia as well as the undesirable
side effects of other anti-anginal drugs,
such as low blood pressure. In January
2006, the FDA approved ranolazine
for general use, making it the first new
anti-anginal drug in two decades.
While it is unclear to what extent the
computer models affected the FDA
decision, Noble says that such models
“can help a new drug application,
since understanding what is going on
is an important part of the regulatory
process. People feel happier with a
new compound as a possible drug the
more we understand why it acts the
way it does.” 

A PANOPLY OF PROJECTS
Last year, the Interagency Modeling

and Analysis Group (IMAG), a com-
bined effort of several government
agencies coordinated by Grace Peng of
the National Institute of Biomedical
Imaging and Bioengineering (NIBIB),
awarded 24 grants for multi-scale mod-
eling projects in biology. The grants
were funded by the individual agencies

(twelve by NIH, ten by NSF, and one
each by NASA and the Department of
Energy.) Although many of the projects
are just beginning, they illustrate the
wide diversity of applications envi-
sioned for multi-scale models. Here are
a few examples:

■ James Glazier, PhD, of Indiana
University, will study the processes of
limb formation and tissue regeneration.
He believes that people in the field
count too much on the amazing abilities
of stem cells. “The genomic determinists
think you’ll plunk a stem cell down in
the body, and it will spontaneously
regrow the tissue that should be there,”
Glazier says. “Maybe you’ll be lucky and
it will work that way. But I think that
you will have to give complex spa-
tiotemporal signals to those cells.” He
plans to develop a model of the feedback
between the molecular scale—the
instructions encoded by DNA—and the
large-scale forces that act on cells as a
limb grows and takes shape.

■ George Karniadakis, PhD, pro-
fessor of applied mathematics at Brown

Ventricular fibrillation is a complex three-dimensional phenomenon, but experimental methods can probe only the two dimensions of the
heart’s surface. Using computer simulations researchers can observe (left) a tornado-like “scroll wave” of electric activity spiraling around a fil-
ament that passes through the heart muscle (the colors reflect the wave’s time of arrival at the heart surface). At right, the wave front inside
this semi-transparent rendering of the heart is red and the filament is blue. Lab experiments can only image the places where the filament
reaches the heart surface (black dots). Courtesy of KHWJ ten Tusscher and AV Panfilov, Utrecht University, The Netherlands. 



24 BIOMEDICAL COMPUTATION REVIEW Spring 2006 www.biomedicalcomputationreview.com

called “dissipative particle
dynamics” or DPD, which has
been developed by polymer
physicists in Europe. DPD is a
typical “mesoscale” or inter-

mediate-scale mathematical
technique, which uses proba-
bilities rather than determinis-
tic equations, as classical phys-
ical models do. Ultimately,
Karniadakis would like to plug
this intermediate-scale model
into a large-scale model of the
body’s arterial tree. Last year,
he and a group of colleagues

University will model the flow of
platelets and the formation of blood
clots. Platelets ordinarily look like
smooth disks. But when they sense a
defect in the arterial wall, they pump

themselves up into sticky, spiny
spheres. “This kind of phenomenon
has never been modeled from first
principles, because it’s computational-
ly very complex,” says Karniadakis.
Mathematicians and engineers are not
used to working with flowing particles
that suddenly change their shape and
adhesiveness. However, Karniadakis is
planning to borrow a new method

A multi-scale model by George Karniadakis and Igor Pivkin aims to be the first to
predict clotting time from physical principles. A key ingredient in the model is “dis-
sipative particle dynamics,” a stochastic method designed to model the flow of
polymers through a fluid. In the simulation shown here, blue platelets are inactive,
green platelets are “triggered” and red platelets are activated. Note that some
blood continues to flow through the growing clot. Courtesy of Igor Pivkin and
George Karniadakis, Brown University.

Last year, the Interagency 
Modeling and Analysis Group 

awarded 24 grants for multi-scale
modeling projects in biology.

Platelets ordinarily travel through the bloodstream in a disk-
shaped, “inactive” form (a). Upon sensing a lesion in the artery
wall, they become “activated” and send out sticky pseudopods
(b). After adhering to the side of the artery wall, platelets
undergo one more change in morphology (c), flattening and
spreading out so that the pseudopods no longer protrude as
far. Courtesy of James White, University of Minnesota.

Multiscale
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used a grid of four supercomputers
(based in San Diego,  Urbana,
Pittsburgh, and Argonne) to prove the
basic proposition that you can simulate
blood flow in such a complicated set of
vessels as the human arterial tree. 

■ Robert Kunz, PhD, a physicist
at Pennsylvania State University, also
plans to apply modeling techniques
from outside biology. He is developing
a simulation of airflow in the human
lung inspired, in part, by software used

in the nuclear reactor industry. The
flow of coolant in a nuclear reactor is
too complicated to model in three
dimensions, so computer programs
represent the flow with a simplified,
one-dimensional model. But if an
accident occurs, such as a loss of
coolant, the programs immediately
switch over to a three-dimensional
model of the affected region, and inte-
grate the results seamlessly with the
one-dimensional model of the whole
reactor. Similarly, Kunz’s large-scale
lung model will use 3-dimensional

fluid dynamics to track the flow of air
through the wider bronchial passages.
However, in the sponge-like outer
layer of the lung, where the flow
becomes too complicated, his code
will switch over to a one-dimensional
approximation. In other words, it
won’t track the twists and turns of
every single air molecule, but it will
track the progress of an entire breath
of air toward its final destination, the
alveoli. The model could be used to
calculate the uptake of drugs such as
inhaled insulin (another drug newly
approved by the FDA), or to study
how lungs decrease in efficiency with
age. One of the other IMAG projects,
led by Ching-Hong Lin of the
University of Iowa, will also focus on
the human lung.

CHALLENGES AND PITFALLS
At present, the number of realistic

multi-scale models in biology is very
small. “In reality, it has been achieved
in only one organ system, the heart,”
says Peter Hunter, PhD, professor of
bioengineering at the University of
Auckland. “The lungs are getting
close. They have all the anatomy of
the airways, pulmonary vessels, and
gas exchange at the alveolar level,
and they are starting to look at the
smooth muscle.” 

Hunter is the co-chair of the
Physiome Project of the International
Union  o f  Phys i ca l  Sc ience s

A three-dimensional model of air flow through the lung enables Robert Kunz to predict oxy-
gen concentration (a) and the vorticity of air flow through the bronchi (b). However, only five
percent of the lung’s volume is contained in its largest bronchi, shown here; 95 percent is con-
tained its spongelike outer layer. This layer contains billions of bronchi, far too many to model
in complete anatomical detail. Kunz is working on a way to integrate the three-dimensional
model of the larger bronchi with a smaller-scale, one-dimensional model that describes the
terminal bronchi.  Courtesy of Robert Kunz, Pennsylvania State University.

Modelers have to learn to
walk before they can run.



26 BIOMEDICAL COMPUTATION REVIEW Spring 2006 www.biomedicalcomputationreview.com

tools to fit the different scales togeth-
er may be unfamiliar to biologists.
The IMAG program is having a
demonstrable effect by attracting
researchers like Karniadakis and
Kunz, who are bringing in new tech-
niques from physics. Stochastic dif-
ferential equations, for example, are
unlikely to come up in a biologist’s
mathematical training, but they are a
natural fit for biological multi-scale
models, because they address the elu-
sive mesoscale. This is the level
where there are too many compo-
nents (such as cells or molecules) to
simulate individually, but too few to
trust in the law of averages. At the
mesoscale, deviations from the aver-
age matter. “How elastic are arterial
walls?” Karniadakis says. “The answer
varies day by day, and across genders
and ethnic groups. Even if you know
the properties precisely, you need to
know how they vary.” But including
variation in a model is harder than it
sounds. It means abandoning the
comfortable deterministic models of
classical mathematics and using prob-
abilities. The elasticity of an arterial
wall is no longer a number but a dis-
tribution, a miniature bell-shaped
curve of possible values. 

Even cardiac models, which have
performed well with deterministic
equations, may need a dose of ran-
domness. “There’s a growing under-
standing that in some cases one has
to do stochastic differential equa-
tions,” says James Keener, PhD, a
mathematician at the University of
Utah. One such place is the modeling
of calcium flow, which he says is
“highly inhomogeneous” within the
cell. The classical models, which
treat the interior of the cell as a uni-
form fluid, may be getting the right
results for the wrong reasons. 

Keener’s comment suggests a final
word of caution about all mathemati-
cal models. Even the best-validated
model is not guaranteed to last forev-
er. It is always subject to correction, as
experimenters discover new phenom-
ena that weren’t included in the orig-
inal assumptions. “Models are never
right,” says Bassingthwaighte, “they’re
just not wrong yet.” ■■

Glazier feels stymied not only by the
lack of data, but the lack of desire to
acquire the right kind of data. Every
mathematical model incorporates meas-
ured parameters. These are like the
labels on the radio’s circuit diagram that
indicate the properties of a resistor or
transistor. Glazier itemizes a few that are
relevant to biology: “association and dis-
association constants, diffusion con-
stants, decay rates, cellular production
rates, ...” But biologists aren’t convinced
that it is worth the effort to measure

them. “Biology is still a
90 percent qualitative
discipline,” Glazier
says. “There’s a basic
bootstrapping prob-
lem. Until experi-
menters take modeling
seriously, you won’t
have people making
measurements to pin
down the parameters.
And without the right
parameters, the record
of predictions is not
very great.”

Another great chal-
lenge of multi-scale
modeling is that the
models at different
scales may involve dif-
ferent physical princi-
ples and different

assumptions. It will help to put the mod-
els on the same computing platform, as
Bassingthwaighte is doing, but other
fundamental questions need to be
addressed. For one thing, “We have no
sense of how error propagates from one
level to the next,” Arkin says. For
another, he asks, “Where are the
boundaries between fast and slow
reactions, or between deterministic
and stochastic models?” Physical sci-
entists have developed a very good
sense of where the boundaries should
be, and which details can be left out
when going from one scale to the
next. At present, biologists make
these decisions in an ad hoc fashion,
Arkin says. But perhaps Sauro’s modu-
lar approach, or switch-on-the-fly
software like Kunz’s, can make the
decisions more rationally based. 

In some cases, the mathematical

(www.physiome.org.nz), which runs a
website that archives mathematical
models of physiology. Currently the
site lists around 300 models, essential-
ly all of which work at a single scale.
That’s no big surprise, because model-
ers have to learn to walk before they
can run. The site is also, at this point,
only descriptive: visitors can see com-
puter code for the models but not
actually run them. However, James
Bassingthwaighte, PhD, a bioengi-
neer at the University of Washington,

is taking the next step by putting
working versions of the Physiome
Project models online. In theory, this
will make it much easier to mix and
match models at different scales.

However, there is more to multi-
scale modeling than picking from a
menu of single-scale models.
Another thing you need is a lot of
data. “Complex models have not
caught on in biology the way they
have caught on in, say, weather fore-
casting, because weather forecasters
have sensors everywhere,” says
Arkin. By contrast, much biomedical
research has to make do with few
sensors and intermittent data. Some
fields, on the other hand, are swim-
ming in data—genomics and pro-
teomics, for example—but do not
have enough models that can handle
that level of complexity.

For one thing, “We have no
sense of how error propagates

from one level to the next,”
Arkin says. For another, he asks,

“Where are the boundaries
between fast and slow 
reactions, or between 

deterministic and 
stochastic models?”

Multiscale
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Many tasks in biomedical data
analysis, such as kinematic
data collection, involve three-

dimensional motion analysis which
requires precise representation of an
object’s position and orientation.
Mathematical operations such as inter-
polation, averaging and curve fitting
are straightforward when applied to
translation, but are troublesome when
applied to rotation. Another descriptor
is necessary to carry out all these oper-
ations on rotations. 

Various approaches exist such as
rotation matrices, Euler angles, helical
(or screw) axis and quaternions, but
some have significant limitations. The

first three all have restrictions limiting
their usefulness for interpolating, aver-
aging and curve fitting. Rotation
matrices can drift numerically when
repetitively multiplying matrices,
resulting in undesired scaling or shear-
ing. Euler angles can be defined in 12
different ways and each will give a dif-
ferent answer. They are also subject to
gimbal lock, which is when two of the
rotational axes align and you lose the
ability to continue rotating freely.
Both of the above are subject to tum-
bling during interpolation, where the
object over-rotates while getting to the
final orientation. Helical axis descrip-
tions are handy for user interaction but

do not provide a unique way to
combine rotations into a single
desired rotation. Quaternions over-
come these difficulties 

Quaternions were discovered in 1843
by Sir William Hamilton after years of
searching for a natural algebra of 3-D
space. A quaternion is a complex four-
component unit vector containing a sin-
gle real component and three imagi-
nary-like parts q = <w, i j k>. As unit
vectors, quaternions always lie on the
surface of a hypersphere. This hyper-
sphere represents all possible rotations
and all the possible paths between
rotations. The shortest distance on
the sphere between two points (just

like the great circle airline routes)
rotates the object the minimum amount
to get to the final orientation. 

Quaternions follow the same math-
ematical rules as standard complex
numbers but in vector form. This
means operations such as multiplica-
tion, division, powers, exponentials, or
logarithms can be performed on quater-
nions. Not only that, interpolating and
averaging rotational data is more realis-
tic and more accurate. 

Two rotations can be combined sim-
ply by multiplying two quaternions
together. Averaging and curve fitting
rotations become simple vector opera-
tions. Most importantly, because

quaternions lie on a surface, interpola-
tions of 3-D rotations can be uniquely
defined. Rotation between two orienta-
tions can be performed with spherical 

linear interpolation on the surface of 
this sphere (red line). Cubic interpola-
tion on the sphere surface can repre-
sent smooth rotation through multiple 
orientations (yellow line). 

Quaternions provide notational con-
venience and also provide a deeper
mathematical foundation for 3-D rota-
tions. Quaternion mathematics expands
the possibilities of how we can represent
and manipulate rotations. In the lab, 3-D
kinematic data analysis and computer
motion simulation each require accurate
and straightforward methods for calcu-
lating rotational data. Quaternion
mathematics supply both. When analyz-
ing 3-D kinematics, quaternions provide
simple and accurate answers. 

For further reading on quaternions,
see: Shoemake, K. “Animating Rotation
with Quaternion Curves.” Computer
Graphics 19, 245-254, 1985. ■■

DETAILS

James Coburn, PhD, received his masters degree in mechanical engineering with
the Orthopedic Biomechanics Laboratory at Brown University, and is close to com-
pleting his PhD.  The research focus of the lab is musculoskeletal injury and repair
ranging from studying muscle injury and ligament mechanics, to in vivo joint kine-
matics.  Trey Crisco is an associate professor in orthopaedics and adjunct professor
in engineering.  He directs the Bioengineering Laboratory at Brown University.

Under TheHood
BY JAMES COBURN, MS, AND JJ TREY CRISCO, PhD

Representing Rotations
with Quaternions

u n d e r  t h e  h o o d

Quaternion mathematics expands the possibilities
of how we can represent and manipulate rotations.
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BY KRISTIN COBB, PhD

T
he Institute for Systems Biology (ISB) was found-
ed in Seattle, Washington, in 2000 by Leroy
Hood, MD, PhD, Alan Aderem, PhD, and Reudi

Aebersold, PhD. Five years later, they are pursuing the
frontiers of systems biology in an interdisciplinary, non-
academic enviroment with 170 staff members and a
65,000 square foot building.

Biomedical Computation Review spoke to Leroy Hood,
president of ISB. 

Q:How do you define 
systems biology?

A:Systems biology is the window by which biologi-
cal circuitry can be deciphered. If you broke a

radio into its parts, this would not give you insight into
how the radio works. Rather, you would have to develop
techniques for seeing how the parts connect together
into circuits and how these circuits interact to convert
radio waves into sound. Living organisms also operate by
virtue of networks that function together. You need sys-
tems approaches to define the networks and understand
how the networks interact to carry out biological func-
tions. You have to look at the whole system and see what
it’s doing as you tweak it in various ways. The old fash-
ioned approach of studying one gene and one protein at
a time is inadequate.

Q:What was the motivation for setting 
up the Institute for Systems Biology? 

A:The institute was set up to learn how to do sys-
tems approaches to biology. It was set up in a

cross-disciplinary environment because we are con-

vinced that biology needs to drive technology and
computation. None of the tools we have today are
adequate to the task. It’s critical that you not just
practice the biology but you invent the future with
the new technology.

Q:What was the rationale for 
moving outside of academia?

A:The bureaucracy of classic academia was get-
ting in the way. We needed to create the cross-

disciplinary environment, high-throughput facilities,
and computational infrastructure. We needed the
flexibility to negotiate strategic partnerships quickly
and effectively. We’ve been responsible in one way or
another for the spin-off of nine companies in five

years, and we’ve started a big K-12 science
program. Those are things we could not have
done at a university.

Q:Can you give an example of systems
biology at work in your lab?

A:The halobacterium project, led by
Nitin Baliga ,  is very interesting.

Halobacterium is a simple organism with
2400 genes and only about 125 transcription
factors. We perturb some of its most interest-
ing circuits and see what it does: it’s resistant
to radiation, so we give it radiation; it deals
with metals very well, so we give it large
doses of metals; it shifts how it makes its ATP
when oxygen is low, so we put it in a low-oxy-
gen environment. From these experiments,

The Institute for Systems Biology

f e a t u r e d  l a b
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Leroy Hood, MD, PhD, president of ISB. Courtesy: ISB

A lab meeting in one of the Institute’s many shared spaces that
encourages cross-disiplinary interactions. Courtesy: ISB
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we’ve gotten this first glimpse of the
interconnected networks that exist.
And we’ve been forced to develop
new computational approaches to
integrate these data. These tools will
all be extended up to the higher
organisms. The simpler organisms
drive—if not an understanding of the
higher organisms—the technology
that will enable us to understand them.

Q:What is some of the work that 
you’ve done in prostate cancer?

A:Up until recently, we’ve done very nice work to
show unequivocally that prostate cancer is a

genetically heterogeneous disease. Now we are taking
tumors and their normal counterpart tissue and look-
ing at DNA arrays to see how the patterns of gene
expression have changed. We’ve compared prostate
cancer tissue at an early stage, an intermediate stage,

a late stage, and a metastatic stage with normal tissue.
Really recently we’ve begun to delineate the prostate-
specific secreted molecules that we believe will con-
stitute molecular fingerprints for telling us the exact
state of the prostate: Is it normal? Is it inflamed? Is it
hypertrophied? If it has cancer, which of the four or
five types of cancer does it have? The idea is that the
blood is going to be a window into health and disease.

Q:How far along are we in being 
able to use molecular fingerprints 

in the blood to diagnose disease?

A:We are at the very beginning. That’s the vision.
The vision is that we can computationally make

predictions about the molecular fingerprints that will
exist for each of the different organs. We’ve now set up
a company (Homestead Clinical Corporation) that is
beginning to search for these molecular fingerprints. I
think within a year we’ll have three to five markers for
prostate cancer and three to five for ovarian cancer.
We’re also starting to do blood molecular fingerprint-
ing analysis in brain cancers. Glioblastomas are an
irreversible death sentence, but that’s only because
they’re detected so late. If you can detect them early,

you actually can cure them. So we’ll see if we can do
early detection and save people’s lives.

Q:What advice do you 
have for young scientists?

A:I think anybody who doesn’t want to be left
behind is going to be forced to move toward sys-

tems biology. And I think a lot of this will come from
younger people, who recognize what the future is. So
my advice to them is, first, it’s really important for

young scientists to learn to think in a more global way.
We have many lab meetings where I will come in and
say: “Here’s an idea we’re going to talk about.” And
everybody will have to say what they think about that
idea. It’s important to have your focus and do your
thing but it’s also important to think in a big way.
Second, it’s really important to enjoy what you are
doing. Passion is what makes science fun. Finally, I
think this is the most exciting time in science in the 40
years of my career. In some ways I wish I were young
again so I could start all over. On the other hand, I’m
happy where I am now. Maybe I wouldn’t do as well the
second time around. ■■

ISB QUICK FACTS

What:  Non-profit research institute
Where: Seattle, Washington
Faculty: 11 members
Staff: 170 members
Facility: 65,000 square feet
Funding sources: 80% federal grants & contracts;

20% grants from foundations, industry, individuals
Annual symposium: every spring

It’s critical that you not just practice the biology but 
you invent the future with the new technology.

The Institute, near Lake Union. Courtesy: ISB



Inside a cell, the ribosome deciphers genetic codes
to produce proteins at unfathomable speeds. Now,
researchers at Los Alamos National Laboratory

(LANL) have simulated this complex nano-machine
in action. With 2.6 million atoms moving at once, it’s
the largest molecular simulation ever attempted by a
factor of six. The work by Kevin Sanbonmatsu, PhD,
a computational structural biologist, and his col-
leagues at LANL revealed some new details about the
essential translating molecule, transfer RNA: it must
be flexible in two places for decoding to occur. The
simulation also identified a new structural gate,
which may act as a control mechanism for selecting
the proper transfer RNA.
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The ribosome (large subunit in white and small sub-
unit in cyan) uses the transfer RNA molecules
(incoming in red; outgoing in yellow) to read the
genetic information from the messenger RNA
(green) to produce protein. For visualization pur-
poses, the top portion of the ribosome is cut away.
Courtesy of LANL. 
See a Quicktime movie showing transfer RNA at:
http://www.lanl.gov/news/images/sanbonmatsu.mov
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