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g u e s t  e d i t o r i a l

This issue of the Biomedical Computation Review fea-
tures the Centers of Excellence for Big Data Com-
puting. These 12 Centers, funded by the NIH’s Big

Data to Knowledge Initiative (BD2K), have been estab-
lished on the principle that we must be united in our ef-
forts to accelerate the translational impact of big data on
human health.

The Centers will become hubs in an emerging world-
wide biomedical data ecosystem. The foundations for this
ecosystem are already being built. Collaborations between
international groups, federal agencies and the biomedical
science community are forging the way forward with pilot
projects and initiatives. These projects are designed to in-
fluence advancement through a set of central drivers: to
inform policy decisions, to build infrastructure, and to ex-
pand the biomedical data science community.

Each of the Centers will investigate a different pro-
grammatic theme. However, most will also face similar
challenges. Some of these challenges will be dealt with
by consortium-wide consensus, while we envision that
others will be addressed by each of the Centers in differ-
ent ways. The individuality of each Center and the col-
laborations between them will allow us to identify best
practices, effective strategies, and program models for
solving common biomedical data science problems. These
findings will be the foundation for future biomedical data
science policy decisions.

The BD2K Centers consortium is also a pivotal ele-
ment in NIH efforts to develop common infrastructure
that supports data and software sharing and cloud com-
puting efforts within the biomedical data science commu-
nity. This infrastructure, which we call the Commons,
will be piloted by the Centers and guided, in-part, by the
outcome of another BD2K funded project, the Data Dis-

GuestEditorial

covery Index Coordination Con-
sortium (DDICC). The DDICC is a commu-
nity-based effort to establish core principles for finding,
accessing, and citing digital research objects (data, soft-
ware, narrative etc.). The results of the BD2K Center
cloud pilots and the DDICC efforts will provide a basis
for widespread application of the Commons.

The Centers, the DDICC, and the Commons are part
of an emerging ecosystem that fosters collaboration and
sharing. This environment will facilitate the expansion
of data science beyond the Centers and the DDICC to
their collaborators, their colleagues, and their students.
A major focus of BD2K efforts is on supporting training
to help today’s biomedical scientists incorporate data sci-
ence into their research and to produce the next genera-
tion of data-centric biomedical researchers. Each Center
has a training plan to support this mission and several of
the Centers are planning to collaborate in their training
efforts. The network of collaboration, sharing, and train-
ing provided by the Centers has great potential to accel-
erate the growth of a supportive and united biomedical
data science community.

The Centers cover a broad swath of experimental data
and metadata issues, and their research will provide use
cases for essential problems to the biomedical community.
Center directors and investigators showed great enthusi-
asm at a recent kick-off meeting, providing an early indi-
cation of the energy and commitment of this consortium.
Sustainable growth of biomedical knowledge requires shar-
ing. Through a united ecosystem we hope to improve pro-
ductivity through faster discovery at reduced cost. Success
will not only be measured by the Center’s individual proj-
ects, but through other laboratories becoming part of the
ecosystem and sharing their digital research objects.  nn
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Building a Biomedical 
Data Ecosystem

BY PHILIP E. BOURNE, PhD, ASSOCIATE DIRECTOR FOR DATA SCIENCE, 
NATIONAL INSTITUTES OF HEALTH

Welcome to the New 
Biomedical Computation Review

For nearly ten years, this magazine has been pub-
lished by Simbios (under principal investigator [PI]
Russ Altman) as part of the National Institutes of

Health’s National Center for Biomedical Computing
(NCBC) program. With the end of that program last sum-
mer, the magazine faced an uncertain future. But it has

gained new life with the support of the Mobilize Center
(under PI Scott Delp) as part of BD2K.

Expect to see similar wide-ranging stories that cover
the gamut of biomedical computing. But also watch for
some new big data–focused stories and columns as well.

Happy Reading.

BY JOY P. KU, PhD
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In 1891, when researchers first analyzed the mechanics
of walking in three dimensions, the process was
painstaking and cumbersome. It took six to eight hours

just to prepare the subject for data collection. Today, such
data are routinely collected for various therapeutic and re-
search purposes using digital motion capture technology.
At the same time, databases are filling with movement data
collected by wearable fitness devices and smartphone apps.
The availability of all these data raises the question: How
can researchers best make use of it?  

Enter the Mobilize Center, a new Big Data to Knowl-
edge (BD2K) Center of Excellence funded by the Na-
tional Institutes of Health (NIH). “Over the past decades,
we’ve created human models and simulations that embed
the mechanics and physiology of movement,” says Jen-

nifer Hicks, PhD, Director of
Data Science for the Center.
“Combining these mechanistic
models with advanced methods
from statistics and machine
learning opens up huge oppor-
tunities for understanding all
these data,” she says.

For example, in collaboration with Michael Schwartz,
PhD, and his colleagues from Gillette Children’s Spe-
cialty Healthcare, the Center will use statistical ap-
proaches to predict the outcome of surgery in children
with cerebral palsy (CP)—a neurological disorder that af-
fects motor control—using Gillette’s vast database of in-
formation about how children with CP move.

A few studies have used these data to understand why
an individual walks with a certain gait. However, Hicks
says, “We’ve only scratched the surface in terms of the
types of questions we can answer.”

To dig deeper, the Center will need to figure out how
to make more effective use of time-series data, such as
the levels of muscle strength measured every few months
for several years. In the past, researchers uncertain of how
to make use of such data might simply select a peak or
average value from the time period and discard the rest.
The data science tools the Center is developing “will
help us figure out ways to better condense these time-se-
ries signals or include more of them in our models,” Hicks
says. That additional information, combined with a
mechanistic understanding of how humans move, could
identify new factors that better predict whether a child

will benefit from a given surgery and thereby im-
prove outcomes.

The Mobilize Center is also teaming up with
industry partners, such as Azumio, to take advan-
tage of the boom in physical activity monitoring.
Azumio, a leader in health and fitness apps on
mobile devices, has tons of data from some 70
million users. Indeed, says Bojan Bernard, PhD,
Azumio’s CEO, “The distance walked in one day
by users of our Argus app is equal to two trips to
the moon and back.” 

There is a big gap, though, between having
all that data and having validated tools that ac-
tually encourage people to move more and in
ways that reduce injuries. The Mobilize Center,
with its experts in data science, biomechanics,
and behavioral science, will address that gap.
Using anonymized data from Azumio and other
mobile applications and sensors, they will shed
light on how various factors—environmental,
social, biomechanics knowledge—impact be-
havior, particularly physical activity. Ultimately,
that knowledge could be used to create more ef-
fective interventions. 

“We’re very interested in collaborating with
researchers to learn what’s hidden inside the
data,” says Bernard. “In the long term, our goal
is to use this information to improve human
health. Working with the Mobilize Center is an
important step towards this goal.”  nn  

MobilizeNews

(left) The earliest 3-D motion analysis required Geissler tubes attached to
the subject to emit light, a tuning fork to produce bursts of electrical current
to the tubes, and thick rubber straps for electrical isolation. (right) Today’s
gait analysis is much more straightforward to set up, requiring reflective
markers to be attached to the subject. Reprinted with permission from
Richard Baker, The History of Gait Analysis Before the Advent of Modern
Computers, Gait and Posture September 2007. Motion capture photo cour-
tesy of: Eric F. Chehab and Matthew R. Titchenal, Stanford BioMotion Lab.

BY JOY P. KU, PhD, DIRECTOR OF COMMUNICATIONS & ENGAGEMENT FOR THE MOBILIZE CENTER

Introducing: The Mobilize Center 
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In the first large-scale study of its kind, researchers in
Denmark computed the disease trajectories for the
country’s entire population—approximately 6.2 mil-

lion people—over the course of 15 years, revealing some
surprising and interesting patterns.  

“The advantage in Denmark is that we can follow
people with this lifelong perspective,” says Soren
Brunak, professor of systems biology at
the Technical University of Denmark,
and lead researcher on the paper pub-
lished in Nature Communications in Jan-
uary 2014. 

Since 1968, every Danish medical
record has been linked to the individ-
ual’s social security number. Even when
people move or visit different physi-
cians or hospitals, the data tracks them.
The medical records also document, in
chronological order for each patient,
every diagnosis. And the dataset covers
thousands of diseases.

To determine disease trajectories,
Soren Brunak and his colleagues relied
on the diagnostic codes from the Danish
dataset and looked for pairs of diagnoses
with positive relative risk—the proba-
bility that one diagnosis would follow
another. They then went through two
levels of condensation to get at the pat-
terns in the data.  First, they condensed
the 6.2 million patient trajectories into
the 1200 most common pairs of positive
relative risk. Next, in a non-hypothesis
driven way, the researchers condensed
the 1200 trajectories into five trajectory
networks. “We took the data, clustered
it, and saw what popped up,” Brunak
says. The five largest networks covered
diabetes, cardiovascular disease, cerebrovascular diseases,
prostate disease and chronic obstructive pulmonary dis-
ease (COPD).  

Naturally, many of the strongest trajectories were
known by physicians, Brunak says, but there were a few
surprises. “Gout, for example, showed up in a very con-
vincing way in the cardiovascular disease landscape,” he
says, a connection that wasn’t previously confirmed.  

Brunak is now working on making the networks pre-
dictive. By digging into the details of a specific network
and layering it with biomarker data (which is also avail-
able for many patients) or lifestyle data (such as income
or school performance, which are also tied to the social
security number), Brunak and his colleagues hope to dis-
cover ways to predict individual disease paths. For exam-

ple, the researchers might look at whether the data pre-
dict which diabetic patients will develop renal failure or
blindness or some other complication. “What is there in
the trajectory or genetic makeup that leads them down
a different route?” Brunak says. 

The team is also interested in understanding inverse
comorbidities—where patients with one disease are less

likely to get another disease. Having schizophrenia, for
example, is associated with reduced risk of certain types
of cancer. Is that the result of medications having a pro-
tective effect or do the cellular networks driving the dis-
ease provide protection? “It’s important to view these
trajectories as ways to discover what you don’t see as well
as what you do,” Brunak says.  nn

Big DataHighlight

Danish disease trajectories clustered into networks such as these for (a)
COPD, showing five diseases preceding the COPD diagnosis as well as
many diagnoses occurring after that; and (b) cerebrovascular diseases,
with epilepsy as a key diagnosis. Reprinted with permission from AB
Jensen, et al., Temporal disease trajectories condensed from population-
wide registry data covering 6.2 million patients, Nature Communications,
DOI: 10.1038/ncomms5022 (2014).  

BY KATHARINE MILLER

Disease Trajectories, Danish Style
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Cancer might spring from a single cell
gone awry, but tumors are not mono-

lithic collections of clones. Far from it:
They contain many different types of can-
cer cells, all with their own mutations, pro-
liferation rates, metastatic capacities, and
drug responses. 

This diversity pushes the limits of cur-
rent diagnostic and treatment capabilities.
A biopsy might miss a crucial sub-
population of tumor cells; and a
treatment that works for one set of
cells might be ineffective against
another set within the same
tumor. Moreover, greater hetero-
geneity is associated with worse
outcomes for several types of can-
cer.

“We want to better understand
how to treat tumors more effec-
tively,” says Kornelia Polyak, MD,
PhD, a breast cancer researcher at
the Dana-Farber Cancer Institute.
And that’s going to require learn-
ing a lot more about heterogene-
ity—including how it affects the
way a tumor will respond to treat-
ment, and how treatment itself
may change the tumor.

To get a handle on cancer’s
heterogeneity, some researchers
are using computational modeling
and simulation. They aim to illu-
minate how the variety of cell
types in a tumor influences cancer
progression, and to predict the
most effective course of treatment
for a given tumor. To that end,
they are using an assortment of
tools almost as diverse as cancer
itself, drawing upon fields ranging
from machine learning to digital
circuit design.

Defining the Clones
Ignoring the presence of even small

clonal subpopulations within a tumor can
allow them to flourish; so defining the num-
ber and nature of clones from limited tissue
samples is extremely important, though dif-
ficult. Statistician Daniela Witten, PhD,
and her colleagues at the University of

Washington succeeded in doing just that—
in work published in PLoS Computational Bi-
ology in July 2014—by applying some very
sophisticated statistical techniques to some
very rich next-generation sequencing data.

Witten and her collaborators began with
multiple tissue samples from a 44-year-old
breast-cancer patient. Some were from the
patient’s primary and metastatic tumors,

others from her healthy breast tissue. Using
DNA sequencing, the team identified nor-
mal alleles found in both the healthy and
cancerous samples, and abnormal ones
(mutations) found only in the cancerous
samples. But knowing which mutant alleles
are present in the cancerous tissue is not
enough. Clinicians need to know the geno-
types of the cancerous clones. So Witten

CANCER’S HETEROGENEITY:
Modeling Tumors’ Diversity

After using statistical methods to predict the genotypes of clones in breast cancer samples, Witten
and her colleagues honed in on the possible number of clones by reconstructing possible phylo-
genetic trees for 3, 4, 5 or 6 clones (A-D here). Nodes correspond to inferred clonal populations,
with C0 corresponding to the normal clone; edges are annotated with mutations that occur be-
tween the parent and child clones. Mutations are grouped into a colored box if they occur on the
same branch in all four phylogenies. The team concluded that the three-clone model (A) was too
simple to explain the data while four clones (B) explained the data quite well. Adding further
clones (C and D) increases the level of detail in the trees but provides little additional predictive
value, and can exaggerate the significance of minor fluctuations in the data. Reprinted from H
Zare, J Wang, A Hu et al., Inferring Clonal Composition from Multiple Sections of a Breast Cancer,
PLoS Comp Biol, July 2014, doi:10.1371/journal.pcbi.1003703.g006.
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used an approach called statistical machine
learning to determine probabilistic esti-
mates of the clone genotypes as well as es-
timates of the frequencies of those clones in
the different tumor subsections. The re-
searchers then modeled different numbers
of possible clones (e.g., 3, 4, 5, 6) to see
which one would best explain the genetic
variety observed in the sequencing data.

In the end, the model worked best with
four clones that mapped the clone geno-
types and frequencies to the tumor subsec-
tions in a way that corresponded both to
the physical anatomy of the tumors, and to
phylogenetic trees that described how the
clones could have evolved from normal tis-
sue, accumulating mutations and branching
off from one another over time. That kind
of evolutionary insight matters, since know-
ing how and when one clone gives rise to
another could potentially help inform treat-
ment decisions, such as when to introduce

a particular anti-cancer drug. “We know
that cancer changes fast, and we are really
just trying to get a handle on how it’s
changing, and why,” Witten says.

What Doesn’t Kill Them 
Makes Them Stronger 

Getting a handle on how and why cancer
changes over time was in fact the primary
goal of a series of computer simulations
conducted by Eleftheria Tzamali, PhD,
and her colleagues in the Computational
Medicine Laboratory at the Institute of
Computer Science, part of the Foundation
for Research and Technology–Hellas, in
Greece. In particular, Tzamali wanted to
understand how different cell types com-
bine with microenvironmental factors to
influence the morphology and progression
of tumors. For example, invasive behavior
in glioma (a type of brain cancer) and
breast-cancer cells has been tied to low oxy-

gen levels—though it has also been ob-
served regardless of oxygen level. Many
treatments specifically target proliferative
tumor cells by modifying their vasculature
and starving them of oxygen, and Tzamali
wondered how that might affect a tumor
that had more than one kind of cell in it. 

To answer that question, Tzamali de-
signed her simulations to match the physi-
cal structure of gliomas, which are known
to contain subpopulations of proliferative
cells concentrated toward the center and
invasive cells toward the edges. She ran
separate simulations using two different
kinds of invasive cells: one that is activated
by low oxygen levels (i.e., hypoxia), and
one that is invasive regardless of how much
(or how little) oxygen it gets. And she var-
ied the availability of oxygen to the tumors
to mimic different levels of vascularization.

In work published in PLoS One in Au-
gust 2014, Tzamali’s simulations recapitu-

lated the physical structure of a
real glioma, with proliferative
cells clustered in a compact core
and invasive cells forming long,
finger-like extensions along the
rim. They also showed that
changing the oxygen levels in a
tumor can have unintended, and
potentially undesirable, conse-
quences. For example, establish-
ing normal oxygen levels at the
outset prevented the hypoxia-dri-
ven invasive tumor cells from es-
tablishing dominance; but it also
accelerated the rise to dominance
of the other, more generally ag-
gressive cell type. In general, Tza-
mali says, the model suggests that

drugs that target tumor vasculature might
simply favor one phenotype in relation to
another, or at best change the rate at which

one clone overtakes its competitors. 
Just as significantly, the model also pre-

dicted that invasive cells would appear at
the outer edges of the simulated tumors at

densities too low for an MRI scan to detect.
Since MRIs are commonly used to diagnose
gliomas, this argues for performing multiple
physical biopsies well beyond a tumor’s core
in order to find any lurking killers, and
against relying too much on drugs that only
focus on the proliferative cells that tend to
cluster closer in. 

In the future, Tzamali and her colleagues
plan to ramp up the complexity of their
model, integrate more experimental data—
and validate their results with lab animals.

Complexity and Chemo
How tumors respond to chemotherapy

also reveals the importance of cellular het-
erogeneity, according to a study by Polyak
and an international team of researchers
published in Cell Reports in February 2014.
The team tracked changes in genotype
(chromosome copy number), phenotype
(four types with different proliferation and
migration traits), and spatial coordinates
for tens of thousands of tumor cells from 47
different breast-cancer patients who were
given chemotherapy to reduce tumor size
prior to surgery. They found that the pa-
tients with less pre-treatment diversity
were more likely to have the tumor com-
pletely disappear, leaving nothing behind
for the post-chemo analysis. For tumors
that showed no or only partial response to
chemotherapy, there was very little change
in intra-tumor genetic diversity, but the
frequencies of the different phenotypes
changed, with the more-proliferative types
typically declining—something that could
happen because chemotherapy tends to
target proliferative cells in particular, or be-
cause the cells are actually switching be-
tween one phenotype and another. Cells of
similar phenotype also tended to cluster to-
gether after treatment, even when they

were genetically different.  
To understand what might be driving

these growth patterns and evolutionary
dynamics, Polyak’s colleague, the compu-
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tational biologist Franziska Michor, PhD,
developed an agent-based model to simu-
late the proliferation and death of each pa-
tient’s tumor cells before, during, and after
treatment. Because the researchers knew
the actual phenotypes, proliferation rates,

and spatial coordinates of the cells at the
beginning and end of treatment, they could
vary parameters for each patient-specific
simulation to see if the model could ac-
count for what had actually occurred.

Intriguingly, they found that proliferation
alone could not produce the phenotypic
clustering they observed in the patients’
tumors. To do that, the model also had to
include phenotype switching. Permitting
cellular migration, as occurs in metastatic
breast cancer, also increased the amount of
phenotype switching that was required to ex-
plain the patient data. “We knew those were
possibilities,” Polyak says of their findings,
“but it wasn’t really expected.”

After phenotype switching and migra-
tion were added to the model, it proved ca-
pable of predicting changes in tumor-cell
distributions on a patient-by-patient basis,

giving the researchers some idea of what
was driving changes at the level of basic bi-
ology. In the future, Polyak hopes that such
a model could be used to predict the likeli-
hood that a specific individual would re-
spond well to a specific drug, giving doctors

the power to run in silico clinical trials for
their patients and helping them develop
better treatment strategies in general.

Divining the Logic of Cancer
Many researchers aim to tailor treatments

to address cancer’s troublesome heterogene-
ity. That’s certainly what David Basanta,
PhD, and Aniruddha Datta, PhD, are after,
albeit through very different means.

Datta, who directs the Center for Bioin-
formatics and Genomic Systems Engineering
at Texas A&M University, has a background
in control-systems engineering, and a fond-
ness for modeling cancer with the kinds of
Boolean networks that are used to study
digital circuits. For example, with the help
of his colleague, the computational biolo-
gist Michael Bittner, PhD, Datta has rep-
resented the mitogen-activated protein

kinase (MAPK) signal transduction net-
work, which plays a key role in cell growth,
as a series of Boolean logic gates (AND,
OR, etc.). 

The MAPK network also possesses a
number of pathways that, when dysregu-

lated, can lead to cancer. Normally, cell
proliferation results when growth factors
bind to a cell, triggering a signal transduc-
tion cascade that eventually activates the
genes involved in proliferation. But muta-
tions in the genes within the cascade can
cause those cell-proliferation genes to be
switched on permanently, or turn off the
genes that would normally inhibit cell pro-
liferation. Both kinds of mutations can be
represented in a circuit by something that
engineers call a “stuck-at fault,” in which a
particular logic gate is stuck in the on or off
position. The effects of anti-cancer drugs
that target these mutations can be superim-
posed on the same circuit.

In a real patient with a heterogeneous
tumor, however, each clonal subpopulation
will require its own representative circuit.
The trick, according to Datta, is to deter-
mine exactly where all of the various faults
are occurring; sort out the relative influence
that each circuit exerts on the others and
on the tumor as a whole; and predict the ef-
ficacy of different drug combinations given
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Michor and her colleagues built these computer simulations of tumor growth using data from actual
patients. They show changes in cellular phenotype and topology during chemotherapy.  Reprinted
from V Almendro et al., Inference of Tumor Evolution during Chemotherapy by Computational Mod-
eling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity, Cell Reports 6, 514–527, (2014).
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all of the above.
Toward that end, Datta and doctoral stu-

dent Anwoy Kumar Mohanty used statisti-
cal methods to develop a multilevel,
hierarchical model of cancer tissue that can
accommodate a number of possible networks
as well as multiple drugs. They also devel-
oped an algorithm that uses probabilistic
techniques (including Bayesian ones) to es-
timate the frequencies of a tumor’s various
subpopulations and their relative influence

on overall tumor behavior. The work, which
is described in a paper that appeared in IEEE
Transactions on Biomedical Engineering this
past March, is still in the early stages: so far,
the algorithm has only been validated using
synthetic data and experimental data de-
rived from normal, healthy cells. But Datta
plans to begin testing the model against
three different cancer cell lines within the
next year. And he envisions a day when a
patient’s biopsy could be algorithmically an-
alyzed to produce a drug regimen tailored to
his or her particular tumor. “That’s my goal,”
he says. “That’s the finish line.”

From Genetic Mutations 
to Genetic Algorithms

It’s a finish line that Basanta hopes to
cross as well. Basanta and his fellow model-
ers in the Cancer Evolutionary Dynamics
research group at the Moffitt Cancer Center
in Tampa, Florida, work with biologists and
clinicians to understand the evolutionary
dynamics of cancer progression and treat-
ment resistance. Recently, Basanta, Arturo
Araujo, PhD, Jill Gallaher, PhD, and other
modelers in the Mathematical Oncology de-
partment used differential equations to
model a heterogeneous, metastatic prostate
cancer tumor located in the
bone—a tumor whose cells could
possess any permutation of three
different mutations, for up to eight
possible cancer cell phenotypes
with unique proliferation rates and
drug responses. The model, which
is described in a paper that ap-
peared last August in Clinical and
Experimental Metastasis, includes
two sets of equations: one repre-
senting the tumor and its various
phenotypes, which grow and re-
spond differently to five distinct
therapies (e.g., hormone depriva-
tion therapy, chemotherapy, experimental
therapies targeting specific pathways); and
one representing the bone microenviron-
ment. The two equations are coupled so
that the tumor affects the bone microenvi-
ronment, and vice versa.

Basanta and Araujo fed the model with
data drawn from the literature, and from lab
experiments conducted by a team of Moffitt
biologists led by Conor Lynch, PhD. And
they looked to clinicians at the center for
information on how particular treatments
were applied to real patients–and how those
treatments affected cancer cell growth rates
and bone behavior. Once fully parameter-
ized, the model was able to simulate a vir-
tual patient; and each simulation could
include a different tumor with its own par-

ticular mix of mutations and cell types.
The outputs of each patient-specific

simulation were then fed into a genetic al-
gorithm that produced 1,000 successive
generations of treatment options using the
five drugs in the model. With each gener-
ation, the algorithm dropped the worst per-
forming treatments and kept the best, until
it was left with only those that kept the
cancer at bay the longest. For each patient,
the algorithm came up with an optimal sin-
gle-drug regimen, and another that used
more than one therapy in a particular se-
quence. And it did it all pretty quickly: for
a virtual patient with the most heteroge-
neous tumor possible, the algorithm arrived
at the current real-world standard of care–
continuous hormone deprivation therapy—
in less than 15 minutes. It also yielded some
surprising results. In a couple of cases, for ex-
ample, the algorithm recommended sequen-
tial courses of only two of the five therapies.
And as Basanta notes, the first therapy
didn’t even have to kill as many cancer cells
as possible; it just had to prime the tumor
for the second one. 

“It really defies logic,” Araujo says.
“You’d think that if you threw everything
you had against the tumor, it would work.”

But, he explains, the tumor is evolving and
developing resistance according to a ge-
netic algorithm of its own. “How can you
tackle that? How can you keep one step
ahead of what the tumor’s going to do? The
only way is to simulate how the tumor
might evolve and anticipate all of its moves
using the same genetic algorithm.” 

Like Datta, Basanta and Araujo hope for
a day when a patient can walk into the
clinic, have his tumor sampled and ana-
lyzed, and receive a personalized treatment
regimen based on its specific composition.
“A lot of these decisions are being made in
the dark,” Araujo says of the current ap-
proach to treating tumors that may contain
multitudes. “But mathematics says there is
a better way.”   nn

Datta and his colleagues constructed this
Boolean network of the MAPK transduction
network. Fault locations (i.e., genes stuck in the
“on” or “off” position) are shown in purple
boxes. Target locations of inhibitory drugs are
indicated by solid colored rectangles, with the
names of their molecular targets (PTEN, MEK1)
printed nearby. The names of the drugs them-
selves (Lapatinib, U0126) appear in color-coded
boxes on the left-hand side of the diagram.
Reprinted with permission from A Mohanty
and A Datta, A Model for Cancer Heterogene-
ity, IEEE Transactions on Biomedical Engineer-
ing, 61(3) (2014).
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Most scientists seeking to turn back
adult cells’ developmental clocks rely

on go-to recipes that—when followed just
right—will yield stem cells. A dash of one
reprogramming factor, a sprinkle of an-
other, and let the mixture stew. Likewise,
when researchers want stem cells to remain
stem cells or, alternatively, when they want
them coaxed down a particular develop-
mental pathway, they have cocktails they
turn to. Most of these recipes were con-
cocted using trial and error over the past
few years, and then they’ve been passed be-
tween labs. Whether they’re the best ways
to derive or control stem cells, or the most
efficient, is unclear. 

Now, by harnessing the power of big
data, modeling, and computational biology,
scientists are starting to write new—and
potentially better—protocols for creating
and maintaining stem cells, based on a bet-
ter understanding of how large networks of
genes and proteins interact to influence cel-
lular development and differentiation. 

“It takes time for stem cell researchers to
embrace these kinds of systems level meth-
ods,” says Avi Ma’ayan, PhD, of the Icahn
School of Medicine at Mount Sinai. But as
these approaches have started yielding re-
sults, he says, there’s much more interest in
giving them a shot.

Reasoning a Better
Reprogramming Recipe

At the Hebrew University of Jerusalem,
one team of researchers was getting frus-
trated by the low yield of the stem cell re-
programming methods they were using to
coax adult cells into a pluripotent state—
able to become any cell in the body. 

“The problem was that this program was
very inefficient; only a small number of cells
became stem cells, and then you’d have to
use single cell technologies to capture these
pluripotent cells,” says Yosef Buganim,
PhD, of the Hebrew University of Jerusalem.
Moreover, once those induced pluripotent
stem cells (iPSCs) were isolated, the quality
of them varied. Only about 20 percent of the
mouse iPSCs, Buganim says, had the capa-
bility to develop into a whole mouse—the
true test for a stem cell. 

Buganim’s team was using a well-known
mixture of transcription factors, dubbed
OSKM for its four main ingredients: Oct4,
Sox2, Klf4, and Myc. The scientists began to
wonder whether the OSKM factors were
turning on not only the genetic programs
that led to pluripotency, but other programs
that were contrary to this goal. So, using a
combination of lab work and bioinformatics,
they started figuring out how OSKM influ-
ence 48 other transcription factors that were
turned on during the reprogramming process.

The final network of genes they uncov-
ered revealed just what they wanted: four
transcription factors turned on by OSKM

which could, themselves, induce pluripo-
tency without turning on other, unwanted
genetic programs. “It would take you a hun-
dred years if you just tried culturing cells
with all these different combinations of fac-
tors,” Buganim says. But with bioinformat-
ics, they could analyze the gene expression
patterns much more quickly. 

When Buganim’s group used the new
mixture—SNEL for Sall4, Nanog, Esrrb,
and Lin28—on adult mouse cells, they were
able to generate higher quality iPSCs than
ever before. Eighty percent could generate
a whole mouse that could live for more
than year, Buganim says. The results were

STEM CELL (RE)PROGRAMMING:
Computing New Recipes

Ma’ayan and his collaborators connected 15 known pluripotency regulators to 15 lineage markers in
this network, which shows how various combinations push the cell toward four different fates (cir-
cled in dotted lines). Reprinted from Xu H, Ang Y-S, Sevilla A, Lemischka IR, Ma’ayan A (2014) Con-
struction and Validation of a Regulatory Network for Pluripotency and Self-Renewal of Mouse
Embryonic Stem Cells. PLoS Comput Biol 10(8): e1003777. doi:10.1371/journal.pcbi.1003777. 
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published in Cell Stem Cell in September.
Now, his team is focused on uncovering

how even more genes interact with the
pluripotency program. Rather than analyz-
ing just 48 genes already suspected to play
a role, they’re using big data to look at all
the genes in the cells as they reprogram
from adult to iPSC. 

“We have the technology to probe the
transcriptome of the entire cell, and that
makes the bioinformatics analysis that
much more important,” says Buganim.
“When you’re talking about 20,000 genes

instead of 48, it would be a nightmare to
analyze by hand.”

Knocking Down Barriers 
to Reprogramming

With the growing use of bioinformatics
in biology labs, Buganim’s group isn’t the
only one using computational modeling ap-
proaches to work out better reprogramming
recipes. Aaron Diaz, PhD, an applied math-
ematician at the University of California,
San Francisco, recently used a massive li-
brary of short hairpin RNA (shRNA) to se-
lectively block genes in cells as they were
being reprogrammed toward pluripotency.
Diaz and colleagues then analyzed the re-
sults of this genome-wide screen, using sys-
tems biology and bioinformatics approaches,
and discovered key pathways regulating the
transition to pluripotency.

Each shRNA—from a library of shRNAs
targeting more than 19,000 genes in human
cells—was packaged inside a viral particle
that had a unique barcode added. Then, each
of the hundreds of thousands of unique
viruses were added to human fibroblasts.
Using the classic OSKM technique, Diaz and
colleagues then coaxed the cells to become
iPSCs. If a cell contained a shRNA that
blocked a gene necessary for reprogramming,
it would fail to turn into an iPSC. Using
high-throughput next-generation sequenc-
ing, the researchers could then determine
which shRNAs were present in cells that be-
came iPSCs, and which shRNAs were en-
riched in cells that failed to reprogram. 

Next, they turned to bioinformatics to
analyze these results and filter out off-target
effects—false positives, essentially. More
than a thousand genes originally appeared
in the screen as influencing reprogramming,
but the analysis honed the list down to
about 20 that, if blocked, enhanced repro-

gramming. They then clustered genes into
functional modules and studied their inter-
actions, using a combination of tandem
knockdown experiments and a novel soft-
ware tool they developed: HiTSelect. The
proteins they ended up validating were in-
volved in a range of different cellular
processes including transcription, chro-
matin regulation, vesicle-mediated trans-
port and cell adhesion. The work was
reported in a July 2014 Cell paper. Now,
Diaz says, they are able to add shRNAs—
or other molecules that selectively block

these barrier genes—to the OSKM cocktail
to help lift these blocks on reprogramming. 

“I think it’s going to be more and more
mandatory for biologists to have some back-
ground in computation,” says Diaz. “With
advances in single-cell sequencing, for ex-
ample, it is becoming routine for us to gen-
erate hundreds of genome-wide profiles per
experiment. There’s just no way you can
analyze that many datasets without modern
data science approaches.”

Computationally 
Informed Differentiation

Once iPSCs are generated, researchers
want to know how to engineer the fate of
these cells—either sending them down a
pathway to become brain, blood, bone, or
any other type of somatic cell, or keeping
them dividing as stem cells. Looking deeply
at broader cell networks by analyzing the
expression levels of many genes can defi-
nitely help, says Ma’ayan.  “There’s a lot of
excitement around using bioinfor-
matics to improve differentiation
protocols,” he says. 

In an August PLoS Computa-
tional Biology paper, Ma’ayan and
collaborators described a new
model of how 15 different tran-
scription factors and 15 lineage
markers interact with each other
to influence the differentiation
of stem cells. Other researchers,
Ma’ayan says, have generated a
plethora of data on these transcrip-
tion factors—using techniques
ranging from cDNA microarrays,
RNA-seq, chromatin immunoprecipitation
followed by deep sequencing (ChIP-Seq),
mass spectrometry proteomics and phos-
pho-proteomics, and RNAi screens. But the
data from all these approaches has never

been integrated before. 
“Finding the data is not very hard,”

Ma’ayan says, “but putting it together is a
real challenge.”

So his group, using a database program
they developed called ESCAPE—for Em-
bryonic Stem Cell Atlas of Pluripotency
Evidence—took on this challenge. They
manually collected and organized each
piece of evidence to fit it into ESCAPE,
then added it to their pile of evidence.
The new network, a dense spider web of
arrows between the 15 transcription fac-

tors and 15 lineage markers, shows how
the increased expression of one factor can
push a cell toward one of four different
fates: ectoderm, mesoderm, trophoecto-
derm, and endoderm; this network was
then validated experimentally in living
cells by knocking down individual or com-
binations of factors and then measuring
the changes in expression of the rest of the
nodes in the network model. 

“We didn’t find anything earth shatter-
ing, but now we have a global framework to
work from,” Ma’ayan says. “In principle, if
the model works and it becomes predictive
and large enough, we can use it to improve
differentiation protocols and reprogram-
ming strategies.”

Researchers agree that the future of stem
cell research—and therapeutics based on
stem cells—requires the ability to quickly
and efficiently create personalized stem
cells from a patient’s own adult cells, and
then coax these iPSCs into whatever

healthy cell is needed by that patient. To
meet that end, though, the field needs more
predictable methods to direct stem cell
fates. Computational models are helping to
achieve this goal. nn



million cells at a time, and therefore do not
represent the 3-D structure of any one cell.
Using computational approaches, however,
researchers have developed ways to assem-
ble plausible 3-D structures.   

One approach is to convert contact fre-
quencies to Euclidean distances—using one
of several mathematical or probabilistic op-
tions—and then optimize the distances to
generate a consensus structure. Other re-
searchers try to infer which contacts co-
occur and then generate an ensemble of
possible structures. Both methods—consen-
sus and ensemble—generate structures that
are essentially fictional:  There is currently
no way to know whether a structure gener-
ated by these computational methods actu-

ally occurs in nature. Yet insights can be
gained from these methods nonetheless.  

Converting Frequencies 
to Distance

Researchers have tried a variety of math-
ematical approaches to convert contact fre-
quencies into distance. Initial efforts
assumed that the frequency of intrachromo-
somal contacts could be directly mapped to
Euclidean distance in 3-D, says William
Noble, PhD, professor of genome sciences
at the University of Washington. They plot-
ted genomic distance as a function of con-
tact count and then swapped genomic
distance for a distance in 3-D (Euclidean
distance) that was calibrated using imaging.

A s a result of experimental techniques
developed about a decade ago, re-

searchers now have data that can be used
to reconstruct how the genome is arranged
inside the nucleus. This 3-D structure
likely plays a role in determining cellular
function by affecting cells’ ability to access,
read and interpret genetic information. 

“We want to use 3-D genome reconstruc-
tion to understand the guiding principles of
genome organization,” says Frank Alber,
PhD, associate professor of molecular and
computational biology at the University of
Southern California. “There is a lot to be
learned. We are just at the beginning.”

Experiments called chromosome con-
formation capture—of which there are
now multiple types, in-
cluding 3C, 4C, 5C and
Hi-C—allow scientists
to determine the fre-
quency with which loci
on the genome are in con-
tact with one another—
considering all possible
interactions. These con-
tact frequencies are de-
rived from experiments
that are done on 10 to 20

ASSEMBLING THE 3-D GENOME: 
A Puzzle with Many Solutions
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Noble and his colleagues
compared two different
variants of his Poisson
method of predicting the
3-D structure of chromo-
some 1 with several dif-
ferent multidimensional
scaling algorithms (MDS)
at different resolutions:  1
Mb (A), 500 kb (B), 200 kb
(C) and 100 kb (D). The sec-
ond Poisson method was
more stable in response to
resolution changes than
were the other methods.
Reprinted from N Varo-
quaux, F Ay, WS Noble, and
JP Vert, A statistical ap-
proach for inferring the 3D
structure of the genome,
Bioinformatics (2014) 30
(12): i26-i33.
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Unlike the other approaches described
above, Mozziconacci’s approach, called
ShRec3D, does not include an iterative op-
timization step. “The matrix analysis directly
gives the structure,” he says. The triangular
inequality is satisfied on the graph, but not
necessarily in Euclidean 3-D space. “In the
end, the structure is a view of the mind.
There is no such structure in 3-D space.”  

Despite their fictional nature, one advan-
tage of the various consensus approaches,
Mozziconacci says, is that they can be inte-
grated with a 3-D genome browser. Genome
sequence data and related information, such
as function and epigenomic data, are essen-
tially one-dimensional. Annotating the 3-D
structure with this information and viewing

“It’s basically a ruler,” Noble says. Other
methods have determined the ruler differ-
ently. For example, a tool called ChromSDE
fits a parametric curve to the data. And re-
cently Noble used a model that assumes the
contacts are generated according to a Pois-
son process where events occur randomly
over a given time interval with a particular
(Poisson) form of distribution.  

In each case, researchers optimize the
distances to converge on a single, consensus
structure that is essentially an average of all
possible structures that could exist in the
millions of cells sampled.  Noble says the
consensus structure is useful for visualiza-
tion and hypothesis generation, but he cau-
tions: “It’s risky to conclude anything from
these models alone, and validations [using
fluorescence in situ hybridization or FISH]
are expensive and therefore sparse.” 

A recent paper published in Nature
Methods by Julien Mozziconacci, PhD, Lec-
turer in Physics and Biology at Pierre &
Marie Curie University, Paris, France, and

his colleagues took a graph theoretic ap-
proach to the same problem. They graphed
the contact frequencies from a set of Hi-C
data as a single structure where the weights
on the graph are the inverse of the contact
frequency. “The higher the frequency, the
closer the distance,” Mozziconnaci says. For
unconnected nodes, the graph assigned the
shortest possible distance in order to fulfill
the triangular inequality, i.e., given three
points in space—A, B, and C—the sum of
the distance between A and B and the dis-
tance between B and C is always greater
than or equal to the distance between A
and C. “If you don’t have this property then
you are not talking about distances,” Mozzi-
connaci says. 

ShRec3D allows researchers to superimpose
existing information onto reconstructed 3-D
chromosome structures. For example, chro-
matin might be partitioned into compartments
as shown in (a), where yellow indicates gene-
rich, GC-rich regions, on the left and red indi-
cates gene-poor, AT-rich regions, on the right.
Or researchers might display, on the 3-D struc-
ture, linear information such as shown in (b),
where cyan regions harbor a high level of
acetylation; pink regions harbor a high level of
tri-methylation; and purple regions harbor
both modifications. Reprinted with permission
from A Lesne, J Riposo, P Roger, A Cournac, J
Mozziconacci, 3-D genome reconstruction from
chromosomal contacts, Nature Methods (2014)
doi:10.1038/nmeth.3104.
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it in a 3-D genome browser allows novel ob-
servations, Mozziconacci says. For example,
a researcher might display where a particular
transcription factor lies in 3-D space relative
to other loci with which it is known to in-
teract. Mozziconacci looks forward to a time
when different techniques, such as sequenc-
ing and microscopy, are brought together in
a unified model. “People get very excited
about getting the crystal-like structure of
the genome, but we need to assess the struc-
ture-function relationship,” Mozziconacci
says. “I don’t think we’ve seen many in-
sights on the function side yet.  That’s still
to be discovered.”    

Ensemble Methods 
If structural heterogeneity in the genome

reflects functional variations among cells,
consensus approaches might not provide
the full picture, Alber says. “It’s unlikely
that the genome falls into a single opti-
mum structure.” 

So he and his colleagues use large Hi-
C datasets to generate a range of possible
3-D genome structures. “We deconvolute
the Hi-C data into a population of indi-
vidual structures that, as a whole, are sta-
tistically consistent with the data.” The
aim is to figure out which contacts are
most likely to co-occur. Simply embedding
the data in 3-D limits the interaction
among two regions. Alber also considers
the cooperativity principle—if two regions
are interacting then perhaps neighboring

interactions are more likely.
The frequency of each contact is then

accurately reproduced in an ensemble. So
if we infer from Hi-C experiments that A
contacts B in 15 percent of cells, A will
contact B in 15 percent of the ensemble.
“This is an approximation of the true pop-
ulation,” Alber says. “We don’t know what
the true population is, and the data are in-
complete, but we integrate additional infor-
mation to get a better approximation.” 

Once there’s an ensemble of tens of
thousands of structures, there remains the
question of what biology you learn from it.

There’s a need for new structural biology
tools that can mine the structures in the
population to find patterns of co-occur-
rence (when A contacts B does it also tend
to contact F?) and relate them to function,
Alber says. 

From Fiction to Reality:  
Single-cell Hi-C

The consensus approach tends to aver-
age out the real differences among hetero-

geneous structures, Alber says. Take the sit-
uation where A contacts B half of the time
and A contacts C half of the time. In fact,
in half the structures these pairs are actually
interacting, but the consensus will put these
both at a specific distance from each other
based on frequency. 

But the ensemble approach may suffer
from a different kind of unreliability, says
Mark Segal, PhD, professor of biostatistics
at the University of California, San Fran-
cisco. The ensemble may not correspond to
actual variation in a cell population, he
says. “It might, but it’s unfounded. It could

all be algorithmic as opposed to correlating
with anything biological.”    

One thing all agree on: Single-cell assays
have the potential to be more informative.
“That’s what’s coming next,” Segal says. 

Single-cell Hi-C is done, as the name sug-
gests, on a single cell.  It still suffers from the
same low efficiency that troubles Hi-C gen-
erally—it may only identify 1000 loci in any
one cell. But if done on hundreds of thou-
sands of cells, it could produce an ensemble

that could then be linked compu-
tationally to current ensembles—
lending them a basis in reality.  nn  
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Alber’s ensemble approach produces
a population of more than 10,000
genome structures. A schematic view
of the calculated structure population
is shown on top. A randomly selected
sample from the population is magni-
fied at the bottom. All 46 chromosome
territories are shown. Homologous
pairs share the same color. The nuclear
envelope is displayed in gray. For vi-
sualization purposes, the spheres are
blurred in the magnified structure be-
cause the use of 2 × 428 spheres to
represent the genome makes the ter-
ritories appear more discrete than
they actually are. Reprinted with per-
mission from R Kalhor, H Tjong, N Jay-
athilaka, F Alber, and L Chen, Genome
architectures revealed by tethered
chromosome conformation capture
and population-based modeling, Na-
ture Biotechnology 30(90–98) (2012).
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F
rancis Collins, MD, PhD, Direc-
tor of the National Institutes of
Health (NIH), says he used to feel
“data envy” toward the field of

physics. In those days, “no one would have
predicted that biology would emerge as the
biggest challenge in terms of data. But that
is now the case.”

Last year, under Collins’ leadership, the

NIH stepped up to take on that challenge
by announcing the Big Data to Knowledge
(BD2K) program, a wide-ranging plan to
enhance biomedical researchers’ ability to
make effective use of big data. 

“The goal is to begin establishing an
ecosystem that supports tools, data and
best practices for this new expanded way
of doing biomedical research,” says Philip
Bourne, PhD, NIH Associate Director for
Data Science. 

The first step toward achieving that
goal was the announcement last September
that the NIH is establishing 12 BD2K Cen-
ters of Excellence, granting each center ap-
proximately $2 million a year for four years
($24 million/year total).1

At the time of this writing, the Centers
are just getting started. But interviews with
the principal investigators (PIs) about their
data science goals reveal the Centers’ po-
tential to alter the landscape of big data
science in biomedicine.  

Imagine: All health information across
an individual’s lifetime accessed through a
single system and layered with data about
lifestyle and environmental exposures;
wearable sensors continuously tracking pa-
tients’ health status and allowing remote
interventions that are both effective and
reliable; physicians predicting, with a few
tests and a few clicks of a mouse, what
treatments are appropriate for a specific pa-
tient based on his or her unique genetic
make-up; and the cooperative analysis of
neuroimages worldwide to generate an ex-
ponential increase in our understanding of
the brain. These imaginings are all part of
the future envisioned by the BD2K Centers
and supported by the NIH. 

But before these visions can become a re-
ality, the Centers have their work cut out for

the practice of medicine. 
“My view,” says Santosh Kumar, PhD,

associate professor of computer science at
the University of Memphis and PI for the
Center of Excellence for Mobile Sensor
Data-to-Knowledge (MD2K), “is that after
four years, it becomes possible for any re-
searcher to use all of these tools collectively
to get a holistic view of the person they are

studying.” Biomedical discovery will no
longer be siloed in any particular data
source but instead available to anyone with
a computer. “With that, the true power of
BD2K will be realized,” Kumar says.

PATIENTS 
AND BIG DATA:  

Building a Patient-Centered 
Coordinate System

To gain a holistic view of patients, physi-
cians and researchers need health data to be
better organized and more readily accessed.
The new BD2K-funded Patient-Centered
Information Commons (PIC) envisions a
Google maps-like layering of data, with pa-
tients as the essential coordinates. 

The idea sprang from a National Acad-

them. They need to find ways to make effec-
tive use of the big data that continues to flow
from biomedical labs and high-throughput
experiments, including patient records, ge-
nomics and other –omics data, imaging data,
and data from mobile devices and wearable
sensors. The Centers are charged with inte-
grating vast amounts of data, connecting
data to knowledge, and developing new sta-

tistical and analytical approaches that work
well with big data. And let’s not forget the
nuts and bolts of standardizing data, collect-
ing better metadata and building pipelines
to bring all of this to bench biologists.

Wisely, NIH has directed that the data
science goals be achieved and validated in
a biomedical research milieu. “For methods
to be broadly applicable, they need to be
developed in the context of a particular
question,” says Scott Delp, PhD, professor
of biomedical engineering and PI of the
BD2K-funded Mobilize Center. For exam-
ple, several centers will determine whether
wearable sensor data, collected for 24 hours
seven days a week, can be used to improve
patient health by motivating exercise, de-
tecting when former smokers relapse, or re-
ducing hospital admissions for congestive
heart failure. 

By taming big data, the BD2K ecosys-
tem will enable a deeper understanding of
the human organism while at the same
time motivating major improvements in

1 Additional BD2K initiatives announced at the same
time bring the total to $32 million per year for four
years. Watch this magazine for future articles about
these projects. 

PIC proposes developing a Patient-Centered Information Commons (right panel) that is analogous
to a layered geographic information system (left panel). This integrated system would include
clinical information from electronic medical records as well as genomics, proteomics, and envi-
ronmental context, thus enabling a much more comprehensive characterization of disease states
and health states. Reprinted with permission from Toward Precision Medicine: Building a Knowl-
edge Network for Biomedical Research and a New Taxonomy of Disease. Washington, DC: The
National Academies Press, 2011.

By taming big data, the BD2K ecosystem will enable a deeper understanding of the human
organism while at the same time motivating major improvements in the practice of medicine. 
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emies of Science report “Toward Precision
Medicine,” says PIC PI Isaac Kohane, MD,
PhD, professor of pediatrics at Harvard
Medical School. The system would include
clinical information from electronic med-
ical records as well as genomics, pro-
teomics, and environmental context—the
so-called exposome. 

“If we could bring all these disparate data
together across a lifetime, we’d have a much
better sense of what informs disease state
and health state,” Kohane says. “That’s the
information commons. And our goal is to
make that a pragmatic reality so others can
explore it.” 

The challenges are numerous. Lacking a
national health identifier, it’s difficult to de-
termine what medical data belong with a
single patient, let alone how to layer that
with non-health sources of data, such as
shopping behavior, local pollen counts, pol-
lution indices, or social media information,
Kohane says. Medical record numbers
uniquely identify patients within particular
healthcare environments, but distinguishing
one John Smith from another across a claims
database (without medical record numbers)
is another matter. A few identifying charac-
teristics may allow probabilistic assignments
of data to specific people, but that becomes
non-trivial as the data get farther and farther
apart, Kohane says. “All these data are het-
erogeneous, sparse, biased and noisy,” he
says. “So how you actually clean them up in
a way that can use our standard tool kits
against them is an open question.” 

PIC plans to start by building a virtual
sandbox with data uploaded to a secure
cloud service. “That will allow us to start
playing the games of finding common co-
ordinate systems across the data types,”
he says. 

PIC’s first focus will be neurodevelop-
ment, for which several large hospitals
have committed genomic and clinical data.
The center will layer the data together as
a way to not only achieve the center’s goals
but also answer questions for the neurode-
velopment community. The success of a
center like this, Kohane says, “lies not just
in developing a widely adopted architec-
ture, but in using the architecture to do in-
teresting things.” 

Exploiting Mobile and 
Wearable Sensor Data

A variety of sensors on wristbands and
inside smart phones allow the collection of
health data around the clock, potentially
enabling a holistic view of patient health in
ways never before imagined. Several BD2K
centers are exploring this potential. At the

Mobilize Center, for example, researchers
envision using wearable sensor data to en-
courage healthy physical activity in people
at risk for obesity or to warn runners of im-
pending injury. 

At the same time, the team at the
MD2K Center of Excellence will investi-
gate whether data from multiple types of
mobile sensors can help clinicians moni-
tor—and eventually treat—people with
various kinds of chronic illness. The MD2K
team will gather immense amounts of data
from a population of smokers for two weeks
using wristbands and chest bands to track
activity levels; mobile phones to track not
only movement but also location; and

Google glass to track what is in an individ-
ual’s field of vision. In addition, they will
strap these devices as well as radiofrequency
sensors to a separate population of heart dis-
ease patients. It’s a huge amount of data
that MD2K will be collecting 24 hours a
day at a rate of tens of kilobytes per second,
Kumar says. 

At first, the researchers will just be try-
ing to convert sensor data into markers of
health state, behavior, or environmental
exposure. For example, can wrist sensors
reveal arm movements indicative of smok-
ing as compared to eating? Can chest sen-
sors signal stress levels in ways that relate
to an urge to begin smoking again? Can
GPS or Google glass data signal proximity
to social cues (such as being in a bar, or in
close proximity to cigarettes in a store) that
might prompt smoking? And for heart pa-
tients, can radiofrequency sensors yield
valuable information about fluid accumu-
lation in the lungs that might suggest an
adverse health event and be used to reduce

hospital readmissions? 
Once MD2K finds markers of health

state, the team will apply machine-learn-
ing approaches to discover associations
among the various markers. “The chal-
lenge is that any one sensor by itself has
some information but not necessarily
enough,” Kumar says. And data quality is-

Several BD2K centers will research
the efficacy of using mobile sensors
such as mobile phones, wrist sensors
and Google glass to monitor health
status on a continuous basis and to
create more effective interventions.
The 24/7 nature of these devices have
the potential to radically change the
way medicine is done. RisQ mobile
smoking detection app and wrist-
band image reprinted from Abhinav
Parate, Meng-Chieh Chiu, Chaniel
Chadowitz, Deepak Ganesan, Evan-
gelos Kalogerakis, RisQ: Recognizing
Smoking Gestures with Inertial Sensors on a Wristband, Proceedings of the 12th International Con-
ference on Mobile Systems, Applications and Services (MobiSys 2014). Google glass image by
Mikepanhu, creative commons license.
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sues abound. “We need to be able to figure
out when changes in the data are due to
something we want to infer or something
else entirely.” MD2K’s goal is to make ex-
tracting health markers from sensor data
feasible as well as reliable enough to trigger
an appropriate intervention. 

DISEASES,
DRUGS, AND
THERAPIES:

Large public datasets such as GenBank,
the Protein Data Bank (PDB) and many
others are already widely used by biomed-
ical researchers. But numerous valuable
data resources remain dispersed and isolated
at institutions around the world. The BD2K
Centers will develop various approaches for
connecting multiple data types and knowl-
edge resources with one another. Thus, just
as PIC is planning to bring together dis-
parate data to gain a much more holistic
understanding of patient health, many of
the other BD2K Centers plan to integrate
multiple types of data and knowledge to
achieve a more comprehensive understand-
ing of the human organism. Though the ap-
proaches the Centers take to this task may
differ, they all have the potential to gener-
ate insights that could lead to new drugs,
targeted drug regimens, or personalized
therapies or surgical interventions. 

Data Integration 
and Cellular Signaling

For bureaucratic and scientific reasons,
the pharmaceutical development process is
notoriously slow. Many researchers believe
drug discovery would be more efficient if
we had a better understanding of the rela-
tionships between diseases, the drugs that
treat them, and the pathways the drugs tar-
get in different cells and tissues. Gaining
that understanding requires gathering and
integrating lots of different kinds of data
and knowledge.  

That thinking lies, at least in part, be-
hind BD2K support for the Data Coordi-
nation and Integration Center for LINCS

(BD2K-LINCS DCIC). LINCS is the Li-
brary of Integrated Network-based Cellular
Signatures (LINCS), a group of NIH-spon-
sored centers, each of which is tasked with
characterizing how various cells, tissues
and networks respond to disruption by
drugs or genetic perturbations. The centers
are producing a variety of different data
types, including gene expression, epige-
netic changes, proteomics, and images. 

BD2K-LINCS DCIC, under the leader-
ship of Avi Ma’ayan, PhD, associate profes-
sor of pharmacology and systems therapeutics
at the Icahn School of Medicine at Mt.
Sinai, is charged with integrating these di-
verse data. His team will pull all of the

LINCS datasets together, standardize them
with ontologies, and also integrate them
with data from elsewhere. “We’re organiz-
ing the data into networks based mostly on
correlations between diseases, side effects,
genes and drugs and bringing it all to-
gether,” Ma’ayan says. 

For example, the team might have a ma-
trix of merged LINCS experiments where
each column is a different experiment—a
drug treatment for a single cell or tissue
type, say—and the rows are the gene ex-
pression responses. This matrix might then

be converted into a gene-gene similarity
network based on similarities among the
drugs’ effects or among groups of genes with
a correlated response. Then researchers can
look at the overlap between these networks
and other networks—for example a net-
work of known drug side effects. “If there is
some relationship [between the known side
effects and gene expression], it can be very
powerful,” Ma’ayan says. “Now you can
take new drugs and predict their side effects
ahead of time.” Performing this same oper-
ation over numerous different cell types and
drugs becomes a vast integration task with
enormous potential to learn new things. 

Ma’ayan hopes the lessons of LINCS

data integration will be broadly applicable
to the larger BD2K effort. “We want to
bring the BD2K effort into LINCS and
make LINCS part of the BD2K effort.” 

Combining Knowledge with
Data for Breast Cancer

Pharmacogenomics
To understand why standard chemother-

apy works for some breast cancer patients
and not others, researchers at Mayo Clinic
in Rochester, Minnesota, are sequencing
and comparing the genomes of patients’ tu-

Ma’ayan and his colleagues have already developed a drug/cell-line browser for LINCS. Users can
select a dataset and then visualize the effect of more than 100 drugs on various different cell lines
by tissue, mutation, gene expression profile, and drug sensitivity. Shown here: a visualization of
cancer cell lines and their sensitivity to the drug SB590885, a Raf inhibitor, with the top 25 percent
of the most sensitive cell lines highlighted with circles. The vertical bar graph shows that skin is
most sensitive to the drug, which is consistent with the known role of B-Raf in many melanomas.
Reprinted with permission from Q Duan et al., Drug/Cell-line Browser: interactive canvas visuali-
zation of cancer drug/cell-line viability assay datasets, Bioinformatics 30 (22): 3289–3290 (2014).
The browser is freely available at http://www.maayanlab.net/LINCS/DCB/
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morous and normal tissue. But they’d like
to evaluate their patients’ tumors in light of
what’s already known about the various
treatment options and the mutations they
find. For example, how have those muta-
tions been annotated in another context?
This can be difficult because bench biolo-
gists typically use algorithms suited to ana-
lyzing spreadsheets, whereas huge public
datasets have been analyzed using graph or
network approaches, says Saurabh Sinha,
PhD, associate professor of computer sci-
ence at the University of Illinois, Urbana-
Champaign (UIUC). “There’s been very
little work doing both at the same time.” 

Bridging that gap is a major goal of the
new BD2K center called KnowEnG, a
Scalable Knowledge Engine for Large-
Scale Genomic Data under PI Jiawei Han,
PhD, professor of computer science, also at
UIUC. KnowEnG, when implemented as
a cloud-based resource, will enable users to
perform spreadsheet analysis in the context
of the existing network of genomics data—
without downloading the network. Indi-
viduals will be able to explore how their
data fits in with large networks of public
domain datasets, such as the STRING
database, which describes protein-protein
interactions, and Genemania, which is like
a Google search engine for genes, where re-
searchers input a set of genes and retrieve
genes that are related in some way, drawing
from all available genomics information. 

Various KnowEnG team members al-
ready have working systems for analyzing
large graphs, analyzing spreadsheets in
scalable ways, and putting genomics
datasets in scalable structures. “The initial
one to two years of work will be about con-
necting these pieces together,” says Sinha,
who is in charge of the KnowEnG data sci-
ence core. 

Mayo Clinic will use KnowEnG to ana-
lyze breast cancer pharmacogenomics data
in hopes that community knowledge will
shed some light and generate testable hy-
potheses to improve chemotherapy out-
comes. KnowEnG will also be applied to
projects as diverse as exploring the rela-
tionship between gene expression and
human behavior and predicting which bac-
terial strains are likely to produce novel an-
tibiotic agents. “We’re looking forward to
having the KnowEnG framework tested on
the frontlines,” Sinha says. 

Combining Data and 
Mechanics to Enhance Mobility

To evaluate surgical or therapeutic
treatments for mobility problems resulting
from conditions such as running injuries,

osteoarthritis or cerebral palsy (a neurolog-
ical disorder that affects movement and
muscle coordination), the medical profes-
sion relies largely on trial and error. The
Mobilize Center seeks to establish a differ-
ent paradigm: the use of big data to opti-
mize treatment. 

To succeed, they need to find ways to
ensure that imperfect data can yield useful
information. Motion-capture data to study
human mobility is often collected and

recorded using different protocols at multi-
ple labs and hospitals around the world.
These data can be incomplete, noisy, im-
precise, and heterogeneous, and integrating
them with notoriously unreliable health
records for the same individuals makes
things even messier. Throw in the variable
of change over time—from periodic clinic
visits, for example—and it’s a wonder re-
searchers don’t just throw up their hands.
Fortunately, scientists—including those as-
sociated with the Mobilize Center—are be-
coming quite adept at handling data
problems without tossing the baby out with
the bathwater. “Part of the big challenge is
that if you’re trying to gain insight you can’t
expect to rely on perfect data,” Delp says. 

The Center will address data imperfec-
tion by building on a system called Deep-
Dive developed by Chris Ré, PhD, assistant
professor of computer science at Stanford
and a data science core lead for the Center.
Using statistical inference techniques,
DeepDive can not only integrate diverse
data types but also take imprecision into ac-
count and deliver probabilities that an as-
sertion is true. Meanwhile, Trevor Hastie,
PhD, professor of statistics at Stanford will
lead a second data science effort to extract
insight from time-varying mobility data
spanning from seconds in duration to years. 

But even after managing the data im-

perfection problems, what’s left is still just
data without any of the advantages of ac-
cumulated expert knowledge. The typical
big data project looks at all the data and
makes inferences based on statistics, says
Delp. Sometimes this yields wonderful, in-
sightful surprises, but it can also yield
meaningless correlations among bizarre
variables no one pays attention to, he says.
To learn more from statistical techniques,
he and his team at the Mobilize Center will

bring statistical learning together with
mechanistic understanding—knowledge of
how something works based on the funda-
mentals of physics and biology. “By com-
bining these approaches, you simplify your
big data problem and gain insights that are
meaningful to the biomedical researchers
or clinicians,” Delp says.

For example, statistical learning across
a large dataset of children with cerebral
palsy might identify 23 variables that pre-
dict the outcome of a particular surgery in-
tended to improve the patient’s ability to
walk. But a person with a mechanistic un-
derstanding of cerebral palsy gait might be
able to select the three variables that can
be easily measured and will give surgeons
most of what they need to know. “That is
so much more powerful to a clinician,
when you are getting to the essence of how
things work,” Delp says. “Finding ways to
combine mechanistic understanding with
statistical methods is one of the tools the
Mobilize Center will develop.” 

Extracting and 
Predicting Phenotypes 

Researchers would like to be able to look
at big data resources—such as electronic
health records or collections of brain im-
ages—to easily determine a patient’s disease
status as well as predict how illnesses such

To learn more from statistical techniques, Delp 
and his team at the Mobilize Center will bring
statistical learning together with mechanistic

understanding—knowledge of how something
works based on the fundamentals of physics 

and biology. “By combining these approaches, 
you simplify your big data problem and gain 

insights that are meaningful to the biomedical
researchers or clinicians,” Delp says.
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as breast cancer or Alzheimer’s disease will
progress. But “a lot of phenotypes are tricky
to interpret or predict,” says Mark Craven,
PhD, professor of biostatistics and medical
informatics at the University of Wisconsin,
Madison. For example, it can take several
months to design algorithms to extract a

single phenotype—type 2 diabetes, say—
from electronic medical records, just to
identify a cohort of cases and controls to
study. And even with a three-million-voxel
brain image, it’s hard to predict whether a
patient will progress to Alzheimer’s disease.

The new BD2K-funded Center for
Predictive Computational Phenotyping
(CPCP) under Craven’s leadership is hop-
ing to improve the methods for extracting
and predicting phenotypes from electronic
health records (EHRs), images or other large
datasets such as transcriptomic or epige-
nomic data—as well as combinations of
these different data types. “One of the inter-
esting challenges is how you can leverage all
of the different data sources,” Craven says. 

Like the Mobilize Center, CPCP will
wrangle with datasets that are sparse, in-
complete or untrustworthy, as EHRs typi-
cally are. Trying to identify something that
should have been explicitly recorded in
these records (such as a diagnosis) is sur-
prisingly challenging. But it’s even harder
to extract information that is not explicitly
measured, such as disease duration, risk fac-
tors for complications, or the effectiveness
of a particular treatment. So CPCP will
work on developing improved and stream-
lined approaches for extracting informa-
tion from electronic health records, with
an initial focus on such illnesses as heart
attacks, asthma, and VTE (venous throm-
boembolism, a type of blood clot). For ex-
ample, since reduced blood volume is a risk
factor for VTE but is not directly recorded
in the EHR, they will try to identify a con-
stellation of other information that could
be used to infer reduced blood volume. 

Through its “Value of Information” lab,
CPCP is also interested in using the data
they already have to predict, in an optimal
way, what information would add the great-

est value and produce the greatest increase
in predictive power, essential functionality
for this information-rich age. Such a capa-
bility could help decide the minimum set of
tests needed to arrive at a diagnosis for a pa-
tient, or which additional experiments a re-
searcher should do to best understand a

system. In the context of computational
phenotyping, it would also help researchers
extract the most predictive information
from an EHR or image. 

Finding Causation
Accurately modeling causation in a bi-

ological system is challenging. The sheer
number of variables can raise millions of
chicken and egg questions about what as-
pect of a system caused another, not to
mention whether a hidden variable (the
rooster next door?) has a causal influence. 

The new BD2K-funded Center for
Causal Modeling and Discovery (CCMD)
of Biomedical Knowledge from Big Data is
dedicated to deriving causal insight from the
huge numbers of variables often present in
biomedical data. For example, they will look
for patterns that suggest causation among
millions of variables involved in cancer sig-
naling pathways, including genomics and
gene expression data as well as data on cell
function or dysfunction. Similarly, for
chronic obstructive pulmonary disease and
idiopathic pulmonary fibrosis, they will hunt
down causal factors in high-throughput data
that includes gene expression, DNA methy-
lation, and microRNA data as well as clini-
cal records. “The algorithms can be applied
to a wide variety of biomedical data,” says
Greg Cooper, MD, PhD, professor of bio-
medical informatics at the University of
Pittsburgh and contact PI of CCMD. Hav-
ing highly efficient algorithms to search for
likely causal patterns in the vast biomedical
data we have today could be a key step to-
ward prevention and/or treatment for a huge
range of diseases.  

CCMD plans to provide “one-stop shop-
ping” for these types of high quality causal
discovery algorithms. Some algorithms
search over different possible networks to

determine which are most strongly sup-
ported by the data while accounting for
prior knowledge and belief based on the sci-
entific literature (using Bayesian methods).
Others look for patterns of independencies
and dependencies among the variables that
suggest particular causal relationships.  

By applying these methods to diverse
biomedical problems and making the algo-
rithms available through application pro-
gramming interfaces (APIs), the Center will
ensure that they are both broadly applicable
and available to the research community.
“These APIs are one key deliverable of our
center,” Cooper says.

POWER TO 
THE PEOPLE:

In 2009, the ENIGMA Consortium (En-
hanced Neuro-Imaging Genetics through
Meta-Analysis) was launched to bring to-
gether researchers—and their genomic and
imaging data—to get a better understanding
of brain function and disease. The Consor-
tium, which has now grown to over 300 re-
searchers, has access to genome-wide,
neuroimaging, and clinical data from more
than 31,000 subjects worldwide. Using this
impressive amount of data, they are studying
ten major brain diseases, including schizo-
phrenia, major depression, bipolar illness,
attention deficit hyperactivity disorder, and
autism. They can look for genes associated
with these diseases, examine differences in
how the brain reacts to different drugs, and
trace how different parts of the brain are
connected to one another in people with
and without brain disease. 

The beauty of ENIGMA is that the re-
sults are achieved without shipping data

Accurately modeling causation in a biological system is challenging. 
The sheer number of variables can raise millions of chicken and egg 

questions about what aspect of a system caused another, not to mention 
whether a hidden variable (the rooster next door?) has a causal influence.
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around the world. Instead, small groups
within the Consortium who wish to take a
crack at a particular research question form
an alliance to help each other out. They de-
velop algorithms and distribute them to oth-

ers in the Consortium, essentially enabling
a meta-analysis across multiple centers.
“They can get off the ground quickly with
tens of thousands of data points by sending
software out,” says Paul Thompson, PhD,
professor of neurology at the University of
Southern California.   

Thompson, who is the director of the
ENIGMA Consortium, is now also the PI
for the new BD2K-funded Enigma Center
for Worldwide Medicine, Imaging and
Genomics. The Center’s work lies squarely
in the area of developing analytical and
statistical tools for big data, but it is funded
as 20 sub-awards to researchers around the
globe. “Data is nothing without people,”
Thompson says. 

ENIGMA Center researchers will de-
velop refined algorithms that can analyze
brain maps, measures and signals, and re-
late them to genomic, environmental

and epidemiological data as well as clin-
ical outcomes.

“There are some alliances you can form
that make it easier for everybody to do sci-
ence,” Thompson says. “We hope to see

discoveries on a scale that hasn’t been pos-
sible,” he says.  

DATA STANDARDS 
AND METADATA:

Basic tasks, such as storing and accessing
data efficiently, may require little or no at-
tention when researchers work with small
datasets. But these foundational issues must
be addressed head on when datasets become
enormous. And several BD2K Centers are
doing just that: creating data structures that
allow for efficient storage of and access to big

data; and developing ways to easily tag the
data with annotations or “metadata” so they
carry signatures of where they came from as
well as how they’ve been used through time. 

These are not simple problems. They are

also not glamorous. “Most people are think-
ing about the great discoveries they are
going to be making with the data and—
make no mistake—we are too,” says David
Haussler, PhD, professor of biomolecular
engineering at the University of California,
Santa Cruz, and PI of the new BD2K Center
for Big Data in Translational Genomics
(CBDTG). “But we’re also emphasizing the
need to get the nuts and bolts right before
making discoveries.” 

Establishing Data Standards
In cooperation with the Global Alliance

for Genomics and Health (GA4GH), a non-
profit consortium of genomics researchers
worldwide, CBDTG will develop and imple-
ment global standards for genomics data. 

The Center’s effort builds on work
begun by the Thousand Genomes Project,
which has already pioneered several novel
file formats—BAM for storage of large files
of DNA reads and VCF for storage of files
called variants. GA4GH will make these
formats ready for prime time and clinical
use, as well as create an additional com-
pressed format, called CRAM, that Haus-
sler says will save millions of dollars in
space costs for storing large genomics files.
CBDTG will work with them to build ab-

The ENIGMA alliance studies brain scans and DNA at more than 185 sites around the world.
They created working groups to pool and compare data from many neuroimaging centers in
order to understand the effects on the brain of various conditions, including bipolar disorder,
major depressive disorder (MDD), addiction and schizophrenia. The result is a data pool with
tens of thousands of subjects. The institutions involved in the working groups are shown on
this map from June 2013. Thompson PM et al., The ENIGMA Consortium: large-scale collabora-
tive analyses of neuroimaging and genetic data, Brain Imaging Behav. 2014. Epub 2014/01/09.
doi: 10.1007/s11682-013-9269-5. PubMed PMID: 24399358.



20 BIOMEDICAL COMPUTATION REVIEW Winter 2014/2015 www.biomedicalcomputationreview.org

stract data schemas so that the data can be
stored efficiently and optimally accessed.
“It would be hopelessly inefficient to paw
through the coming massive amounts of
genomics data to get the information you
want if it is stored in the current file for-
mats,” Haussler says.

At the same time, Haussler’s team is
working with GA4GH on standards for rep-
resenting genetic variation—not only single
nucleotide changes but also rearrangements
and duplications. “If we already knew all
possible human variations, it would be a
lookup problem. We’d have a name for each
variation,” Haussler says. “But that’s not the
case. Every individual’s genome will reveal
new variations.” 

CBDTG will also help the other BD2K

centers deal with the federation of data
across multiple locations. “We need some-
thing like URLs that identify the objects
you’re looking for,” he says. “You shouldn’t
really care where it is.” Haussler’s center is
working with Google, Amazon and Mi-
crosoft to address these problems at a fun-
damental level. One solution involves
attaching a cryptographic signature to
pieces of data that verify what they are, sort
of like bar codes on a package. But there
are lots of potential stumbling blocks. For
example, there can be multiple copies of
the same data, and one small thing can
change in one copy. “It can become a
nightmare in electronic librarianship,”
Haussler says. “We need rules of the road
for how data are represented, verified,

changed, stored back in, never lost, never
compromised. It’s great to be working with
the biggest and best on that.”

Making Annotation Happen
Ever since the 1980s when researchers

were first required to post certain experi-
mental datasets online, they have been re-
quired to also create metadata—basic
information about how the data were pro-
duced. But scientists don’t always do a
thorough enough job of it.  

“There’s a real ‘what’s in it for me’ prob-
lem to overcome,” says Mark Musen, MD,
PhD, professor of medicine at Stanford
University and PI of the new BD2K Center
for Expanded Data Annotation and Re-
trieval (CEDAR). And that threatens re-

One goal of the BD2K program is to provide computational tools in a for-
mat that can be easily used by biomedical researchers. This image shows
an example of the pipeline workflow for a specific brain-mapping prob-
lem—local shape analysis—developed by Toga and his colleagues. The
example here starts with the raw magnetic resonance imaging data for 2
cohorts (11 Alzheimer's disease patients and 10 age-matched normal con-
trols), extracts a region of interest (left superior frontal gyrus [LSFG]) for
each subject, and generates a 2-D shape manifold model of the regional
boundary. Then the pipeline computes a mean LSFG shape using the nor-

mal subjects’ LSFG shapes, co-registers the LSFG shapes of all subjects to
the mean (atlas) LSFG shape, and maps the locations of the statistically
significant differences of the 3-D displacement vector fields between the
2 cohorts. The insert images illustrate the mean LSFG shape (top-right),
the LSFG for one subject (bottom-left), and the between-group statistical
mapping results overlaid on the mean LSFG shape (bottom-right), red
color indicates p-value < 0.01. Reprinted with permission from Dinov, ID
et al., Applications of the Pipeline Environment for Visual Informatics and
Genomics Computations, BMC Bioinformatics, 12:304 (2011).
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searchers’ ability to rely on, replicate, or
share one another’s data. “Until we make it
simple to annotate data in a clear way, we’re
going to have serious problems for science,”
Musen says.

The Center’s team already has a few
tricks up its sleeve for simplifying annota-
tion, including technologies developed
through earlier projects such as Protégé, an
ontology development system, and BioPor-
tal, an ontology repository developed by the
National Center for Biomedical Ontology.
CEDAR will leverage these two technolo-
gies to automatically create Web-based in-
terfaces for filling out metadata templates.
CEDAR will also create text analysis and
predictive data tools to fill in portions of
the templates automatically. 

In addition, CEDAR will develop ways
of allowing metadata to evolve as the
data are re-analyzed or compared to other
data. “Metadata are not a static descrip-
tion of an experiment,” Musen says.
“They are an evolving record of the con-
versations researchers have about experi-
ments over time.”

The CCMD team also plans to develop
tools for annotation—but for application to
causal models that are derived from analyz-
ing biomedical data, rather than to the raw
data. “Just as meta-information about data
(metadata) can have significant value, so
too can meta-information about the models
derived from that data,” says Cooper. 

Whether simplifying metadata collection
will incentivize researchers to do a better job
remains to be seen. “I hope the overall
ecosystem CEDAR creates will show re-
searchers that the authoring of metadata
need not be onerous, and that science has
much to gain from first-rate annotations,”
Musen says.

Should CEDAR’s researcher-driven strat-
egy prove insufficient, Andrew Su, PhD,
of the Scripps Research Institute has a dif-
ferent idea. As part of The Heart of Data
Science, a new BD2K center based at the
University of California, Los Angeles,
under PI Peipei Ping, PhD, Su will enlist
the help of citizen scientists who will ex-
tract information from the biomedical lit-
erature and annotate proteomic data for
cardiovascular research. To evaluate the
quality of these annotations, the crowd-
sourced work will be compared to the Re-
actome and Intact databases, which are
curated by experts, says Henning Herm-
jakob, PhD, who will head up the center’s
data science core.

Ping’s center will also showcase the value
of metadata for discovery by expanding the
Proteome Xchange, a consortium that ag-

gregates proteomic metadata into a search-
able centralized form. The Center will add
more proteomics repositories to the Ex-
change as well as extend it to include other
–omics data types, such as metabolomics.
This program will not only motivate better
metadata collection but also address “the
absolutely nontrivial problem of finding
which datasets are relevant to a particular
research project,” Hermjakob says. 

OFFER IT TO 
THE WORLD: 

Thompson likens big data research to a
lengthy relay race. The baton passes from
labs into structured datasets; becomes inte-
grated with other data; is subjected to
analysis using novel tools and creative
mathematics; and finally is presented in a
user-friendly interface for others to use.
That’s the victory lap for the BD2K Centers:
providing a means for other researchers or
clinical personnel to use big data effectively. 

“Great integrative work and scalable
computing will amount to nil if the inter-
face isn’t immediately appealing to the bi-
ologist,” says Sinha. The KnowEnG team’s
interface will allow biologists to identify
genes that discriminate between samples as
well as probe the literature for relevant in-
formation about those genes. 

Similarly, CCMD will create a worksta-
tion for biomedical scientists so they can
easily select datasets, apply causal discovery
algorithms, see results graphically, and an-
notate and store them. And the PIs of
other centers have similar plans. 

But the new BD2K-funded Big Data for
Discovery Science (BDDS) Center under
PI Art Toga, PhD, provost professor and di-
rector of the Laboratory of Neuro Imaging
at the University of Southern California,
has interfaces as a focus. They’re creating a
smart pipeline that offers big data analysis
tools for use by non-cognoscenti. It offers
drag and drop glyphs in a graphical envi-
ronment that is layered with expertise to
guide users toward the appropriate tool for
a given task. “The system is self-aware,” says
Toga. It will not only show publications
about a particular tool, but also offer infor-
mation about parameter settings based on
past experience—acting as a sort of advisor
on best practices. Toga says the pipeline has

to make tools understandable within five to
ten minutes, and also give users feedback
when they make a mistake. “If we have to
develop complicated user manuals, we’ve
failed,” he says.

The pipeline will also include novel ways
to interrogate data casually, looking for re-
lationships and providing instantaneous in-
sights to drive hypothesis generation. For
example, researchers could peruse large, in-
tegrated datasets to look for relationships
between two cohorts that differ in only one
particular feature. “We built a prototype of
such a thing—with the computation at-
tached to the database—and played with it
and it was unbelievably useful,” Toga says.  

Though Toga will test the pipeline
using neuroimaging, genomics and pro-
teomics tools, nothing precludes its use in
other scientific domains. “The workflow is
agnostic as to the tool type,” Toga says. 

A VIRTUOUS
CYCLE

Data science methods can’t be devel-
oped in a vacuum. “You have to think,
what does the method do; what can you
learn; what problem are you solving,” Delp
says. It’s an approach designed to ensure
the development of big science methods
that work—and the first step in assuring
that they’ll also be useful to others.  

As Bourne puts it, “We view this as a vir-
tuous cycle.” The researchers are motivated
by the biomedical research that gets done,
and in the process of doing that work they
generate data, use data, and develop tools
that all get “virtuously” shared with others
to provide further motivation. “Sharing the
data and the software across the centers and
to other investigators and beyond is key,”
he says. 

So too is cooperation: Where the Cen-
ters can work synergistically with one an-
other and the NIH, they will do so. For
example, both the Mobilize Center and
MD2K will be exploring the effectiveness
of using wearable sensor data to change un-
healthy behaviors. Ontologies and annota-
tions, the focus of CEDAR, play a role in a
number of the Centers, including CCMD
and the Heart of Data Science. And nearly
all the Centers have to find ways to deal
with the sparsity, noisiness, and heterogene-
ity that so often characterizes big data. By
tackling these challenges together, Collins
says: “The whole is going to be a lot greater
than the sum of its parts.”  nn
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Indeed, the first genome-wide association
study (GWAS), published in Science in
2005, generated enormous excitement.
Comparing 116,204 genetic markers (single
nucleotide polymorphisms, or SNPs) be-
tween just 96 cases and 50 controls, re-
searchers discovered a genetic variant that
was strongly related to age-related macular
degeneration, increasing risk seven-fold for
those carrying two copies. 

Despite such successes, initial enthusi-
asm soon flagged as numerous GWAS re-
vealed a far more nuanced and messy
genetic landscape than anticipated: Hun-
dreds of genes are involved in most com-
plex diseases, and most raise the risk of
disease just a small amount—on the order
of 10 to 30 percent. Collectively, these
genes explain only a fraction of disease her-
itability, what some have coined the “miss-
ing heritability” problem. By 2009, critics
lamented that we had wasted hundreds of
millions of dollars obtaining “surprisingly
little new information.”

These criticisms cast a long shadow over
GWAS, but they were largely unfounded.
“I’ve been quite bemused and surprised by the
strange criticism of GWAS. Because it’s
telling us something about the state of nature.
And we shouldn’t be apologetic for that.
That’s just the way it is,” says Peter Visscher,
PhD, professor and chair of quantitative ge-
netics at the University of Queensland. 

Given the messy genetic reality of com-
plex diseases, GWAS have delivered ex-
actly what they are capable of delivering:
not answers, but an enormous number of

clues. To date, GWAS have reliably linked
thousands of genetic variants to hundreds
of complex diseases or traits. “Many vari-
ants have now been found for diseases
where maybe five years ago there was ab-
solutely nothing,” Visscher says. “Schizo-
phrenia is a good example. Before 2009,
there was no gene or variant that was ro-
bustly associated with the risk of schizo-
phrenia. Now there are more than 100 loci
that biologists are starting to follow up on.” 

Ever-larger GWAS will continue to con-
tribute knowledge about complex diseases;
and biologists will continue to pursue these
leads. But the bigger breakthroughs may
come from tweaking or building on GWAS
as well as taking complementary ap-
proaches. A few such alternatives are be-
ginning to pay dividends, including systems
biology approaches; prioritizing GWAS
hits; hunting for rare genetic variants; re-
versing GWAS; and exploiting the overlap
between diseases, including between com-
plex and Mendelian diseases. 

“I think we’re much closer than we have
ever been—and probably closer than we re-
alize—to understanding how genome varia-
tion affects disease risk,” says Nancy Cox,
PhD, professor of medicine and of human ge-
netics at the University of Chicago. “It’s an
incredibly exciting time to be in genetics.”

TAKING A SYSTEMS 
APPROACH

Complex disease genes likely exert their
effects through small perturbations in biolog-
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GWAS hits. A GWAS comparing tens of thousands schizophrenia cases and controls turned up
108 genetic loci associated with schizophrenia (loci above the line have achieved genome-wide
statistical significance). Many variants are located next to genes that operate in the brain or im-
mune system—suggesting a possible link between the immune system and schizophrenia.
Reprinted by permission from Macmillan Publishers Ltd: Schizophrenia Working Group of the Psy-
chiatric Genomics Consortium, Biological Insights from 108 Schizophrenia-associated Genetic Loci,
Nature 511(7510):412-3 (2014).
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ical pathways. Rather than turning proteins
on or off, for example, they may subtly alter
the amount of proteins produced. Indeed,
many studies have found that GWAS hits are
substantially enriched in variants that affect
gene expression, says Tuuli Lappalainen,
PhD, assistant professor of systems biology at
Columbia University and group leader at the
New York Genome Center. Case-in-point:
The strongest obesity-related GWAS hit—
found in the FTO locus—was originally
thought to affect FTO protein; but recent
studies show that it exerts its effects by regu-
lating a more distant gene, IRX3. 

Thus, researchers need to consider how
GWAS variants fit together into the larger
biological picture, rather than focusing on
them one at a time. If researchers can link
GWAS hits together into pathways, they
get immediate insight into the underlying
biology; it also gives them a place to look
for additional disease-related variants. 

To link GWAS hits into pathways, some
researchers are hunting down the transcrip-
tion factors (TFs) that initiate the expression
of clusters of genes in concert and thus may
play a role in complex disease. Data from

high-throughput experiments called “ChIP-
Seq” can yield valuable information about
where TFs bind to the genome, but because
TFs bind to many genes beyond their pri-
mary targets, ChIP-Seq datasets alone are
not enough. So Nicholas Tatonetti, PhD,
assistant professor of biomedical informatics
at Columbia University, decided to integrate
ChIP-Seq data from ENCODE (ENCyclo-
pedia Of DNA Elements) with other sources
of information. 

They turned to a paper by Jesse M. En-
greitz, who did the work while a student in
Russ Altman’s lab at Stanford University.
Engreitz used a statistical technique called
independent components analysis (ICA) to
identify 423 “gene expression modules”—
sets of genes that are highly co-expressed and
likely represent functional units. ICA is best
known for its ability to solve the “cocktail
party problem,” Tatonetti explains—using
data recorded on multiple microphones in a
noisy room, ICA can isolate one individual’s
voice. “It came to us that what Jesse was re-
ally doing was identifying transcription fac-
tor signals,” Tatonetti says. “Just like the
microphone records a mix of people’s voices,

the gene expression arrays are recording the
mixed signals of the transcription factors.”

By overlaying these 423 gene expression
modules on the ChIP-Seq binding data from
ENCODE, Tatonetti’s team was able to con-
nect specific transcription factors to specific
modules. Then, using data from GWAS cat-
alogs, they found that some of these gene
sets were also enriched with GWAS hits for
a particular disease. “So those two links
allow us to go from transcription factors
through the modules to disease,” Tatonetti
explains. The work turned up a number of
known associations between transcription
factors and diseases, confirming that the
method works. It also identified 458 novel
transcription factor–disease links.

In an independent study, the team vali-
dated one of these leads—between MEF2A
and Chron’s disease. Both MEF2A itself and
MEF2A-controlled genes were more highly
expressed in 59 patients with Chron’s disease
than in 42 controls. MEF2A had previously
been implicated in heart disease, but never
in Chron’s disease. The study was published
in PLoS Genetics in 2014. 

“In the future, we hope to take the sys-

Disease drivers. Nicholas Tatonetti’s team linked tran-
scription factors (blue) to common diseases (red)
through modules of co-expressed genes. For example,
they linked MEF2A to Chron’s disease. This graphic
highlights prominent clusters of diseases as well as
some highly connected transcription factors. Reprinted

from KJ Karczewski, M Snyder, RB Altman, NP
Tatonetti, Coherent Functional Modules Im-
prove Transcription Factor Target Identifica-
tion, Cooperativity Prediction, and Disease
Association, PLoS Genetics 10(2) doi:10.1371/
journal.pgen.1004122.g005. (2014).
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tems approach even further by incorporating
non-molecular data, including environmen-
tal and clinical data,” Tatonetti says. 

PRIORITIZING GWAS HITS
Because GWAS researchers compare

millions of SNPs between cases and con-
trols, many SNPs may appear to be associ-
ated with the disease just by chance. To
minimize false positives, researchers use a
much more stringent significance cut-off

than is traditionally required for statistical
significance. But there’s a cost to this rigor:
many SNPs that are truly related to the dis-
ease don’t make the cut. Increasing GWAS
sample sizes makes it easier to find these
true hits, but at considerable expense. 

To help differentiate the gems from the
duds among the “second-tier” SNPs—those
that showed some signal, but not enough to
be declared robust hits—without running
ever-larger GWAS, researchers are combin-
ing GWAS results with other sources of ev-

idence. For example, if a GWAS study for
schizophrenia identifies a gene that is also
already known to be expressed in brain tis-
sue, researchers might conclude that the hit
actually relates to the disease. 

Daniel Himmelstein, a doctoral student
in biological and medical informatics at
the University of California, San Fran-
cisco, estimates the probability that a gene
is associated with a specific disease by
drawing on multiple and varied high-
throughput datasets—combining, for ex-
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Good networking.
Daniel Himmelstein and
Sergio Baranzini constructed
a heterogeneous network with
40,343 nodes (of 18 different types)
and 1,608,168 edges (of 19 different types).
The network provides context for understanding
the relationship between a gene and disease. For example, the
network could indicate whether a candidate gene participates in the same pathways as known disease genes. Using the topology of the network,
their approach learns the mechanisms underlying known gene-disease associations to predict novel associations. Courtesy of: Daniel Himmelstein
and Sergio Baranzini, UCSF. Preprint available at bioRxiv, the preprint server for biology, http://dx.doi.org/10.1101/011569. 
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ample, data on transcriptional signatures,
protein interactions, and gene functions.
“In the past, people have only focused on
one aspect, such as protein-protein inter-
action,” says Himmelstein, who works in
Sergio Baranzini’s lab. “We’ve tried to take
it to the next level by integrating more
types of data.” 

But this strategy faces challenges of its
own: Algorithms that work for one type of
data don’t necessarily scale to complex net-
works with multiple entities and types of
relationships (called heterogeneous net-
works). So Himmelstein and his colleagues
adapted a tool from social network analy-
sis—an algorithm called PathPredict that
makes predictions about the future (or un-
known) connectivity of pairs of objects
based on past connectivity. Though origi-
nally used to predict future co-authoriships
among scientists, Himmelstein says, “We
realized it could work to paint an under-
standing of how a disease was related to a
gene by understanding the topology of con-
nections between them.” 

The team validated the approach by hid-
ing the then-largest multiple sclerosis (MS)
GWAS from the algorithm. Using only the
results from smaller multiple sclerosis
GWAS, their method assigned high ranks
to all 37 protein-coding genes that were in
fact discovered by the masked study. The
approach also gave high ranks to other
genes as well. Of the top four newly identi-
fied MS susceptibily genes, three were suc-
cessfully validated with independent data.

“We predicted not all but quite a bit of
the larger GWAS. So if we don’t have the
funding to do a larger GWAS, we can use
these types of techniques to build off the ex-
isting data,” Himmelstein concludes. “It’s
cool that you can do so much without hav-
ing to spend any more money or recruit any
more patients.” The team has applied the
method to 29 complex diseases; and the
ranked variants are publicly available at
het.io. “So other people can use our results
for prioritization,” Himmelstein says. 

CHASING RARE VARIANTS
Natural selection weeds out highly dele-

terious mutations from a population. Thus,
the genetic changes with the biggest im-
pact on disease risk tend to occur infre-
quently. GWAS chips only capture SNPs
found in at least a few percent of the pop-
ulation and thus miss rare variants—pre-
cisely those that may offer the most
exciting biological insights. Some scientists
even believe that these neglected rare vari-
ants explain much of the “missing heri-

tability” of complex diseases.
“It’s not clear how much of the inter-in-

dividual variability in risk for disease is
driven by rare variation,” Cox says. “But
when we can find that variation—really rare
stuff with big effects—it often gives us a dis-
proportionate understanding of the biology.” 

To find rare variants, scientists must
compare entire gene sequences between
cases and controls. In the past, this has
meant looking at only a handful of genes at
once. But with the advent of next-genera-
tion sequencing, scientists are beginning to
look for rare variants in a more systematic,
large-scale way—comparing entire genomes
or exomes (protein-coding genes) in what
some have called a “Rare Variant Associa-
tion Study,” or RVAS. 

Because you need to sequence a lot of
people’s DNA to pick up rare events, sam-
ple size requirements for RVAS will likely
be as big as for GWAS, says Benjamin
Neale, PhD, assistant professor in the An-
alytic and Translational Genetics Unit at

Massachusetts General Hospital, and an as-
sociated researcher at the Broad Institute.
Given the cost of sequencing, most RVAS
studies to date haven’t been that large.
Even so, moderate-size RVAS with clever
designs have turned up high-impact results. 

As an alternative to RVAS, some re-
searchers focus on de novo genetic muta-
tions—changes found in a child but not in
the parents. Autism researchers, for exam-
ple, have identified numerous rare variants
using this approach. “De novo mutations
have a lot of clear advantages in analysis and
interpretation,” Neale says. On average, ex-
omes contain just one de novo mutation,
which greatly narrows down the potential
genetic culprits. Also, they are easier to find

because they haven’t yet been weeded out
by natural selection, Neale explains. 

In a 2014 paper in Nature, researchers
compared whole-exome sequences in 2517
children with autism to those of their par-
ents and unaffected siblings. They identi-
fied de novo events in 353 genes that would
likely disrupt the corresponding protein and
thus have a high chance of being causative.
In 145 additional genes, protein-altering
de  novo events occurred in more than one
autism case, suggesting potential causation.
The genes with the most frequent hits
played roles in synaptic communication,
ion channels, and in proteins known to be
involved in fragile-X mental retardation
and Down’s syndrome, among others. 

Related rare variants have also been
identified in schizophrenia. In a 2014 paper
in Nature, researchers sequenced the ex-
omes of 2536 cases with schizophrenia and
2543 unrelated controls. Individuals with
schizophrenia had a significantly higher
rate of rare disruptive mutations in protein-

coding genes that were loosely suspected to
play a role in schizophrenia. Moreover, dis-
ruptive mutations in 28 genes related to
synaptic activity appeared in 9 cases versus
none in controls; and disruptive mutations
in 26 genes involved in calcium ion chan-
nels were found in 12 cases versus only one
in controls. Genes in these two gene sets
appear to explain about one percent of
schizophrenia cases. “So that’s consistent
with the idea that there are many rare vari-
ants scattered throughout the genome,
some of which probably confer risk for
schizophrenia,” Neale says. 

Focusing on numerical traits (e.g., bio-
marker levels) rather than binary ones (e.g.,
disease/no disease) also increases statistical
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power to detect effects. In a 2014 paper in
the New England Journal of Medicine, re-
searchers from the Broad Institute se-
quenced whole exomes of 3734 individuals
and correlated these with plasma triglyc-
eride levels. They found that carriers (about
1 in 150 people) of rare loss-of-function
mutations in the APOC3 gene had 39 per-
cent lower triglyceride levels than non-car-
riers, as well as better cholesterol levels.
Using existing data from 15 studies cover-
ing more than 100,000 people, they then
showed that carriers also had a 40 percent
reduced risk of heart disease. Thus, it ap-
pears that disrupting the APOC3
gene is protective against heart
disease—and drug companies are
now following up on this lead. 

“Even if rare variants don’t
cause a huge proportion of cases,
every gene you nail this way is ab-
solutely priceless,” Cox says. “It’s
a wedge into the biology that we
wouldn’t have otherwise.” Com-
mon variants that regulate these
same genes may also impact the
risk of complex diseases, though to
a lesser extent, she adds.

PheWAS: 
REVERSING GWAS
Scientists are also making in-

roads into complex disease ge-
netics by focusing more on the
phenotypic side of the equation.
Scientists at Vanderbilt Univer-
sity created a new approach
called a Phenome-Wide Associ-
ation Study, or PheWAS. “Phe-
WAS is essentially the inverse of
a GWAS: You start with a given
genetic variant and then you
look at what diseases are associ-
ated with it,” explains Joshua
Denny, MD, associate professor
in biomedical informatics and
medicine at Vanderbilt Univer-
sity. PheWAS begins with ge-
netic data on individuals for
whom a rich phenotypic dataset
is also available, such as in elec-
tronic medical records or a well-
characterized cohort (such as the
Framingham heart cohort).

Whereas GWAS consider only one dis-
ease at a time, PheWAS can look at multi-
ple diseases and traits at once. Denny points
to the FTO locus, which has been strongly
associated with obesity. FTO was originally
discovered in a GWAS for type II diabetes;
it took additional GWAS to reveal that this

locus only influences diabetes risk through
its effect on weight. “When you do Phe-
WAS on FTO, it’s abundantly obvious that
it’s associated with obesity. You see type II
diabetes and a whole host of other obesity-
related phenotypes. So you wouldn’t have
had to run a number of subsequent GWAS
to figure this out,” Denny says. 

With PheWAS, researchers can also
look at the emergence of diseases over time,
since electronic medical records contain
long-term medical histories. “That gets you
the power to think about the data longitu-
dinally, which you can’t do in most case-

control studies,” Denny says. 
For example, in a 2013 paper in Circula-

tion, Denny’s team first performed a GWAS
on 5272 genotyped patients from the
eMERGE (Electronic Medical Records and
Genomics) network who had previously had
a normal electrocardiogram (ECG), and ap-
peared free of heart disease at that time.
They found 23 SNPs that were robustly as-
sociated with normal variation in the speed
at which electrical pulses travel through the
heart. In a subsequent PheWAS of 13,859
individuals in eMERGE, they linked two of
these variants—in the genes SCN5A and
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Reverse GWAS. In PheWAS, researchers scan the phenome rather than the genome. This PheWAS
linked multiple phenotypes to the FTO locus. The pink line represents a more stringent cutoff for
statistical significance; the blue line represents a less stringent cutoff. When researchers don’t ac-
count for body mass index, many phenotypes are linked to FTO (A); however, adjustment for BMI
greatly attenuates these associations (B), suggesting that FTO’s effects are largely mediated
through increased weight. Reprinted from RM Cronin, et al, Phenome-wide association studies
demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body
mass index, Frontiers in Genetics, 05 August 2014 | doi: 10.3389/fgene.2014.00250.
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SCN10A—to reduced risks of atrial fibril-
lation and cardiac arrhythmias. Finally, they
asked the question: What happened to the
5272 heart healthy individuals in the years
(often decades) that followed their normal
ECG? They found that those who carried
one copy of the SCN10A variant were 20
to 30 percent less likely to go on to develop
cardiac arrhythmias and atrial fibrillation;
and those with two copies were 35 to 55 per-
cent less likely. “The coolest thing about
that study is that we had this ridiculously
long prospective study that was just at our
fingertips,” Denny says. 

In a paper published in Nature Biotech-
nology in 2013, Denny’s team performed a
large-scale PheWAS on individuals in the
eMERGE dataset. They looked for links be-
tween more than 1000 clinical phenotypes
and 3000 SNPs previously implicated in
complex disease. The PheWAS replicated
210 GWAS findings, and also revealed 63
novel associations. In particular, they
linked several genetic variants to skin con-
ditions, including noncancerous skin
growths (actinic and seborrheic keratosis)
and nonmelanoma skin cancer. “We dis-
covered a lot of stuff on skin phenotypes,
probably because these have been under-
studied by GWAS,” Denny says. 

Among the most exciting findings,
Denny’s teams linked variants in the en-
zyme TERT, which helps maintain telom-
eres (the caps at the end of chromosomes
that protect them from deterioration), to
seborrheic keratosis, which produces waxy,
wart-like growths. Unlike most genetic as-
sociations for skin phenotype, the effect did
not appear to be mediated through sun sen-
sitivity. Rather, variants that shorten your
telomeres may speed up intrinsic skin aging,
Denny explains.

PheWAS studies have also exposed nu-
merous examples of pleiotropy—where
the same gene influences multiple differ-
ent clinical phenotypes. For example,
variants at the 9p21.3 locus have been
linked to heart attacks and blocked arter-
ies; and Denny’s team was one of the first
to show that this locus is independently
related to aneurysms and hemorrhoids.
This finding gives clues to the genetics of
all four diseases. 

EXPLOITING PLEIOTROPY
Some researchers start from the assump-

tion that there may be pleiotropy among
complex diseases that share phenotypic
characteristics, such as common symptoms
or co-morbidities. By identifying these phe-
notypic overlaps, they hope to gain entrée

into the underlying genetics. “For this ap-
proach to work, you have to have a big dis-
ease phenotype database,” says Rong Xu,
PhD, assistant professor of medical infor-
matics at Case Western University. Xu is
creating such a database by systematically
mining the biomedical literature. 

“It’s a very difficult problem to extract
fine-grained semantic relationships among
diseases,” Xu says. Her team uses natural

language processing to parse the text in all
abstracts in MEDLINE (22 million cita-
tions and more than 100 million sen-
tences). Since this is a massive computing
task, they use crowd computing to get it
done quickly. 

Xu’s team uses a semi-supervised pattern
learning approach to extract disease-dis-
ease associations from the parsed text. For
example, Xu may feed in the information
that obesity is a risk factor for heart disease.
The computer studies the language pat-
terns that authors use to describe this rela-
tionship. Then the computer scans the
corpus looking for similar language pat-
terns between novel disease pairs—and in-
fers a similar relationship. 

In a 2013 paper in Bioinformatics, Xu’s
team used this approach to identify 121,359
disease pairs with overlapping symptoms; 99
percent of these relationships aren’t cap-
tured in any other structured knowledge
base. Her team is adding other disease-dis-
ease associations to the database, such as
shared risk factors or treatments. And Xu
has begun to leverage the database to pre-
dict disease genes and reposition drugs. 

For example, she found that hyperten-
sion and type II diabetes have overlapping
symptoms. When she pooled available
GWAS results from both diseases, she
turned up a novel candidate SNP that ap-
pears to be related to both diseases. The
SNP showed only a weak signal in disease-
specific GWAS, but a strong signal when
the two diseases were pooled. “So this SNP
may be underlying the mechanism of both
hypertension and diabetes,” Xu says. 

Other researchers are exploiting pheno-
typic overlaps between Mendelian and com-
plex diseases. It’s well known that patients

with Mendelian diseases are more prone to
complex ones. Thus, Mendelian genes—and
the pathways they are ensconced in—may
harbor common variants that predispose to
complex diseases. “It’s essentially an ap-
proach to get to genetics of complex diseases
using non-genetic (phenotypic) data,” says
Andrey Rzhetsky, PhD, professor of medi-
cine and of human genetics at the University
of Chicago. 

In a 2013 paper in Cell, Rzhetsky’s team
looked for co-occurrences between 100
Mendelian and 100 complex diseases using
more than 100 million electronic medical
records from the United States and Den-
mark. They found 2909 associations, most
of them novel. “What came out is that
every complex disease has a unique set of
companion Mendelian diseases, something
like a bar code,” Rzhetsky says. “This trans-
lates into a unique barcode of genes as well,
because Mendelian diseases map to genes
deterministically.”

Their analysis revealed that schizophre-
nia, bipolar disorder, autism, and depression
tend to co-occur with mutations in four
genes associated with Mendelian diseases
(Timothy syndrome, retinitis pigmentosa
18, and spinocerebellar ataxia). GWAS
studies have identified common genetic
variants in these same Mendelian genes that
also predispose carriers to multiple neu-
ropsychiatric disorders. This is just one of
many examples where diverse approaches
are converging on the same answers. 

COMING TOGETHER
By themselves, GWAS findings are like

disconnected pieces of a puzzle; they’re es-
sential—but, until they are connected to
other information, or analyzed in new ways,
there’s no hope of seeing the bigger picture.
Now, little by little, small glimpses of that
picture are starting to emerge.

This year’s American Society of Human
Genetics meeting, for example, showcased
a lot of really good science, Cox says. “It’s
all starting to come together,” she says. “I
think there’s a palpable sense of excitement
that things will finally start to break.”  nn
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In many application areas, researchers seek
to understand large collections of tabular
data, for example, patient lab test results.

The values in the table might be numerical
(3.14), Boolean (yes, no), ordinal (never, some-
times, always), or categorical (A, B, O). As a
practical matter, some entries in the table might
also be missing.

To understand numerical data, a researcher
might make a scatter plot; cluster the examples
or the features; predict some of the values in the
table based on others; remove (or simply iden-
tify) noisy or spurious values; or impute the val-
ues of missing entries. Many methods are
available for any one of these specific tasks.  By
fitting a low rank model to the data, researchers
can perform all of these computations simulta-
neously—even on large data sets containing het-
erogeneous values and many missing entries.
Here, we describe what a low rank model is, give
some examples of low rank models, and discuss
how to pick a good low rank model for a partic-
ular application.

A low rank model approximates a table as the
(matrix) product of two numerical matrices X and
Y. Every example (e.g., patient) is represented by
a row of X; every feature (e.g., lab test) is repre-

sented by a column of Y. The
length of each of these rows and
columns must be the same, and is
called the rank of the model. A
good low rank model compresses
the information in the original
data set using a rank that is much
smaller than the number of rows
or columns in the original table.

Principal Components Analy-
sis (PCA), introduced by Karl Pearson in 1901,
is a simple example of a low rank model. It finds
a low rank model that minimizes the squared dif-
ference between the entries in the low rank
model XY and those in the original data table.

PCA works well when the table consists only
of numerical data with small, normal errors and
has no missing entries. But often data does not fit
these assumptions. In our lab test example, tests
that have not been performed or survey questions
left blank leave us with missing entries; malfunc-
tioning sensors produce large, infrequent errors
rather than small, normal errors. Moreover, PCA
often returns a model that is difficult to interpret,
and cannot be made to produce a model that cap-
tures our knowledge about the data, for example,
it being nonnegative or sparse.

A number of methods have success-
fully extended PCA, each addressing
one of these issues. These variations in-
clude nonnegative matrix factorization
(which produces nonnegative factors),
matrix completion (which handles
missing data), robust PCA (which is
less sensitive to noisy data), and sparse
PCA (which produces factors with
many zero entries).

A unified framework, which we call
generalized low rank models, brings to-
gether the capabilities of these different
techniques. It is able to simultaneously
handle heterogeneous values, missing
data, and prior beliefs about the factors.
Even the well-known k-means cluster-
ing algorithm can be interpreted as a
special case of a generalized low rank
model. This framework makes it easier
to use low rank models in everyday data
analysis workflows.  nn
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Madeleine Udell is a PhD candidate at Stanford University's
Institute of Computational & Mathematical Engineering. 
She works with Stephen Boyd, PhD, professor of electrical
engineering, with a focus on on convex optimization
applications. The Boyd lab has developed and released 
a number of software packages for modeling and fitting
generalized low rank models, available in different languages: 
• Julia (https://github.com/madeleineudell/LowRankModels.jl);
• Python (https://github.com/cehorn/GLRM); and 
• Spark (http://git.io/glrmspark).  
The Julia and Spark packages are able to scale to datasets
with billions of entries. 

To learn how to use low rank models to produce scatter
plots, cluster data, predict missing entries, and identify noisy
or corrupted data, visit http://www.bcr.org/content/using-
low-rank-models.
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fellow, produced in collaboration with
more than 40 scientists and artists. 

Xbox 360 Kinect cameras capture
gallery visitors’ 3-D images and convert
them into an energy landscape embedded
in a quantum simulation of an atomic liq-
uid. The system rotates through hundreds
of different atomic simulation setups, each
with different physical properties and vi-
sual effects. And the soundscape changes
too, in response to participant-generated
waves and ripples in the atomic bath. It’s
all running as close to real-time as it can
(just a 17 millisecond delay), harnessing

the power of more than 5000
GPU cores on a computer that,
Glowacki says, “is pushing the
limits of what interactive com-
puting can do.”

Taking advantage of that
power, Glowacki recently used
dS for more scientific purposes:

a molecular dynamics (MD) simulation of
the 10-alanine peptide embedded in
10,000 water molecules. The work was re-
ported during a Faraday Discussions meet-
ing in March 2014. In ordinary MD
simulations, Glowacki says, “it can take a
long time to simulate the rare events you
really care about.” Using hand manipula-
tions of 10-alanine, experts and novices
were able to accelerate the rare events by
three to four orders of magnitude. 

Someday soon, Glowacki hopes to
investigate whether dS has any poten-
tial as a crowd-sourced platform for
mapping conformations in proteins and
other molecules—enabling the video
game generation to help advance bio-
medical science.  nn

SeeingScience

Colored atoms bounce off one an-
other on a vast wall at the Stan-
ford Art Gallery on the Stanford

University campus. But when visitors ap-
proach, their energy avatars appear on the
wall and the atoms react: Sparkly blue
ones accumulate inside the avatars while
others bounce off them, scattering and
gathering in response to their tilting,
dancing bodies.   

This is Danceroom Spectroscopy (dS),
an immersive, interactive simulation that
David Glowacki, PhD, a Stanford visit-
ing scholar and Royal Society research
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Joining the Atomic Ballet

Using Danceroom Spectroscopy (dS),
human avatars push or pull a simu-
lated 10-alanine peptide molecule
into various conformations. Above
right: A dancer performs with dS.
Photos by Paul Blakemore courtesy
of Danceroom Spectroscopy.


