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g u e s t  e d i t o r i a l

In an era of increasingly comprehensive molecular
characterizations of living systems, computation has
emerged as a key technology to facilitate integrative

understanding of biological mechanisms. Computation
can be integrative in biomedical science in several differ-
ent ways. Perhaps the best recognized of these is the role
of computing for information integration. This is a central
goal of bioinformatics. A related but distinct type of inte-
gration is functional integration. Once bioinfor-
matics has organized and annotated the molecular
components of the biological system, we can build
functional interaction networks whether ge-
nomic, transcriptional, signaling, metabolic or
physiological. These reconstructed networks serve
as a foundation for developing comprehensive
functionally integrated systems models of the cell
or living system. This kind of functional integra-
tion is at the core of systems biology. A third way
that computation can integrate is structurally,
across physical scales of biological organization,
from molecule to organism. This type of compu-
tational biology is often now commonly referred
to as multiscale modeling. Indeed the Inter-
Agency Modeling and Analysis Group1 com-
prised of officers from nine federal agencies (plus
the Canadian agency, MITACS) has formed the Multi-
scale Modeling Consortium (MSM) of over 100 funded
investigators around this shared interest. Whereas systems
biology modeling is very frequently data-driven and data-
limited, multiscale modeling is more often physics-driven
and compute-limited.

Of course these different types of integration are neither
independent nor mutually exclusive. On the contrary they
are interdependent. There is no single computational ap-
proach that can integrate comprehensively from molecule
to organism, from genotype to phenotype or across inter-
acting physiological subsystems. But generalizable para-
digms are emerging that are making the prospect of models
that span increasingly broad spatial and temporal scales of
biology—blue sky pipedreams just a short time ago—seem
much more feasible, at least for certain classes of problem.

Much of this progress has been driven by improvements
in technology such as higher resolution three-dimensional
measurements of biological structures made possible by im-

GuestEditorial
BY ANDREW D. MCCULLOCH, PhD

proved microscopy and
structural biology ap-
proaches. A recent ex-
ample is the three-dimensional model of the cardiac
myocyte calcium release unit shown below that was used to
model the calcium “spark” that occurs when a single cal-
cium release unit on the sarcoplasmic reticulum membrane
opens.2 This model was made possible by improved electron

tomography techniques3 and new methods for generating
high-quality computational meshes.4 New probes for local-
izing receptors and macromolecular complexes within these
microanatomic domains will further improve these models.5

Improved computational performance and novel algorithms
are also allowing increasingly large-scale particle-based

Multiscale Modeling 
in Biomedical Research

1 See http://www.imagwiki.nibib.nih.gov.

2 Hake J, Edwards AG, Yu Z, Kekenes-Huskey PM, Michailova AP, McCammon
JA, Holst MJ, Hoshijima M, McCulloch AD. Modelling cardiac calcium sparks in
a three-dimensional reconstruction of a calcium release unit. J Physiol (Lond). 2012
Sep 15;590(Pt 18):4403–22.

3 Hayashi T, Martone ME, Yu Z, Thor A, Doi M, Holst MJ, Ellisman MH,
Hoshijima M. Three-dimensional electron microscopy reveals new details of
membrane systems for Ca2+ signaling in the heart. J Cell Sci 2009 Apr 1;122(Pt
7):1005–13.

4 Yu Z, Holst MJ, McCammon JA. High-fidelity geometric modeling for biomed-
ical applications. Finite Elem Anal Des 2008;44, 715–723.

5 Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellis-
man MH, Tsien RY. A genetically encoded tag for correlated light and electron mi-
croscopy of intact cells, tissues, and organisms. PLoS Biol. 2011 Apr;9(4):e1001041.

Multiscale model of a calcium release event (spark) from the sarcoplasmic
reticulum of a cardiac myocyte. The model includes part of a t-tubule, sar-
coplasmic reticulum and a mitochondrion. Color codes for predicted inten-
sity of a fluorescent calcium probe. The dimension of the mesh is
1430×940×406 nm. Reprinted with permission from Hake, et al (2012).2

DETAILS

Andrew McCulloch, PhD, is professor of bioengineering
and Jacobs School Distinguished Scholar at the
University of California San Diego, La Jolla, CA.
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In December, the National Institutes
of Health (NIH) approved a new
trans-NIH initiative called Big Data

to Knowledge (BD2K). With this action,
the NIH signals its intention to invest a
significant amount of money in compu-
tational research above and beyond the
ongoing investment by individual insti-
tutes, says Mark Guyer, PhD, deputy di-
rector of the National Human Genome
Research Institute (NHGRI). 

One significant piece of BD2K will be
new “big data” centers of excellence for
which RFAs (Requests for Applications)
will be announced in FY 2013 and fund-
ing provided in FY 2014-15.  While total
dollar amounts and sizes of these center
grants are yet to be firmed up, Lawrence
Tabak, DDS, PhD, deputy director of
NIH indicated in his December presen-
tation that up to 15 investigator-initiated
centers and 2 to 5 NIH-specified centers

could be funded under the pro-
gram.  In addition, BD2K will
fund significant new training
opportunities in biocomputing.

While the NIH does not call
BD2K a “replacement” for the
National Centers for Biomed-
ical Computing (NCBCs)—
which are set to term out in
2014/2015—it is certainly a fol-

low-on to that program, Guyer says.
And it is likely that several current
NCBC grant recipients will be among
those seeking funds through the new ini-
tiative, says Russ Altman, MD, PhD,
professor of genetics, bioengineering and
medicine at Stanford University, and
principal investigator for Simbios, the
National Center for Physics-Based Sim-
ulation of Biological Structures.  

The NIH will host a series of work-
shops over the course of the next sev-
eral months to figure out in specific
detail what the BD2K grant programs
will be and how they will complement
existing programs, Guyer says. These
workshops will help NIH gather the full
spectrum of community opinion in
short order, he says. “We are planning
on an accelerated basis because the
money starts in FY14.”   nn

models to be implemented. The particle-based Monte
Carlo modeling of vesicular release from pre-synaptic neu-
rons by Nadkarni and colleagues6 is an exciting example.
And improved algorithms together with higher resolution
whole organ imaging are making possible large-scale organ
models that can investigate the effects of fine spatial het-
erogeneities such as distributed scarring on clinical pheno-
types such as cardiac arrhythmias7.

Another way to push the spatio-temporal boundaries
of multiscale models is through emerging new strategies
for course-graining molecular models and for bridging mo-
lecular models to cellular scales. Fedosov and colleagues8

recently demonstrated how coarse-grained techniques
such as Dissipative Particle Dynamics can be used to
model cell membrane dynamics and adhesive forces which
are then used in multi-cellular models of red blood cell ag-
gregation and in turn included in continuum models of
whole blood non-Newtonian viscous properties. In 2009,
Silva and Rudy9 introduced another strategy for bridging
from all-atom molecular dynamics and molecular electro-
statics simulations to whole cell models by using a Markov
model of a delayed rectifier potassium channel as the in-
termediate and then exploring the mechanisms by which

disease-causing mutations can affect clinical electrophys-
iological phenotypes.

I have focused on new approaches to extending mul-
tiscale models to represent details at cellular mesoscales
and on bridging molecular to cellular models. But there
are other opportunities too. The span of important tem-
poral scales in biomedicine is even larger than that of the
spatial scales. There is tremendous potential to extend
multiscale models from the time-scale of physiological re-
sponses to those longer time-scales of growth, remodeling,
and the natural history of disease and aging. The chal-
lenges will ensure an exciting and robust future for inte-
grative multiscale modeling in biomedicine.  nn

N I H  A n n o u n c e m e n t
NIHAnnouncement

Big Data Gets Big Support

DETAILS

The December 7, 2012 BD2K announcement is
posted at http://acd.od.nih.gov/meetings.htm.  NIH
will create a BD2K web site in the near future and
all announcements about the initiative will also be
provided at the NIH guide to grants and contracts
web page, http://grants.nih.gov/grants/guide/.

g u e s t  e d i t o r i a l

6 Nadkarni S, Bartol TM, Sejnowski TJ, Levine H. Modelling vesicular release at
hippocampal synapses. PLoS Comput Biol. 2010;6(11):e1000983.

7 Winslow RL, Trayanova N, Geman D, Miller MI. Computational medicine:
translating models to clinical care. Sci Transl Med. 2012 Oct 31;4(158):158rv11.

8 Fedosov DA, Pan W, Caswell B, Gompper G, Karniadakis GE. Predicting human
blood viscosity in silico. Proc Natl Acad Sci USA. 2011 Jul 19;108(29):11772–7.

9 Silva J, Pan H, Wu D, Nekouzadeh A, Decker K, Cui J, et al. A multiscale model
linking ion-channel molecular dynamics and electrostatics to the cardiac action
potential. Proc Natl Acad Sci USA 2009;106(27):11102.

BY KATHARINE MILLER
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If he were a graduate student now, Francis Collins
would be studying computational biology. That’s
what the Director of the National Institutes of Health

(NIH) told a rapt audience at the November 2012 Na-
tional Centers for Biomedical Computing (NCBC)
Showcase. The field of computational biology is “raining
opportunities,” Collins said. 

It was a message welcomed by the six distinguished
postdoctoral fellows attending from Simbios, one of the
six NCBCs. “Hearing that our field is at the forefront of
research gave me a boost in continuing to pursue this line
of study,” says Saikat Pal, PhD, a Simbios postdoctoral fel-
low who works on multiscale modeling of the knee. 

But the showcase inspired the postdocs in other ways
as well. In addition to sharing their research in a unique
setting (see details box), they stepped outside their every-
day research focus to take a look at the entire field and get
their first inside view of NIH grant-making. 

“Giving postdocs the opportunity to attend this kind
of event is an essential part of their training,” says Russ

BY JOY P. KU, PhD, DIRECTOR OF SIMBIOS

Altman, MD, PhD, principal investigator of Simbios. “We
are preparing the next generation of leaders in the field.”

Eye-Opening Breadth
Even in an interdisciplinary field like computational

biology, it’s all too easy for researchers to develop blinders
as they hone in on a specific research focus. With presen-
tations about electronic medical records, medical imag-
ing, genetics, and ontologies, the NCBC Showcase
broadened that view for Lee-Ping Wang, PhD, a postdoc-
toral fellow researching molecular dynamic force fields.
“It was definitely a real eye-opener to see all the different
types of research,” he says. 

But it was the distribution of research areas repre-
sented—or not—that left the biggest impression on
Diwakar Shukla, PhD, a postdoctoral fellow in bioengi-
neering. Given that so many people work on molecular
dynamics simulations—as he does—Shukla says he was
surprised there was only one NCBC focused on it. Jenelle
Bray, PhD, postdoctoral fellow in structural biology,
made a similar observation. “None of the other NCBCs’
talks were even close to what I do,” she says. It’s a situa-
tion that points to both current NIH priorities and the
challenges of supporting research in such a diverse field.  

Getting Behind the Scenes
For the postdocs, the NCBC Showcase was also a first

behind-the-scenes view of what goes on in the minds of
NIH decision makers. For example, Gert Kiss, PhD, a
postdoctoral fellow in chemistry, was impressed that, in
addition to research for research’s sake, program officers
care about the economics of NIH investments. “I was sur-
prised to learn that they want at least some of their in-
vestments to eventually produce a profit or cost-savings
and, in that way, help sustain the field.” 

And Enrique Rojas, PhD, a postdoctoral fellow study-
ing bacterial growth, was struck by the collaborative rela-
tionship between the NIH and the NCBC principal
investigators. “It’s not as if you’re trying to get their money
and they’re conservatively doling it out. Ideally, the rela-
tionship between researchers and the NIH would be one
of cooperation and collaboration, and I did get that sense.
That was encouraging.”

As they return to their labs
at Stanford, the postdocs bring
with them these inspirations
and insights. “It wasn’t a normal
science conference,” Rojas says
of the NCBC Showcase. And
perhaps that’s the point. nn

s i m b i o s  n e w s
SimbiosNews

DETAILS

Simbios postdoctoral fellows presented their latest
research developments at the NCBC Showcase:

“Torsion Angle Normal Mode Analysis”  
—Jenelle Bray

“Protein Engineering through Computational Design:
From Proof of Principle to Real Life Applications”  
—Gert Kiss

“Multiscale Modeling to Evaluate the Mechanisms
Underlying Patellofemoral Pain Syndrome”  
—Saikat Pal

“Chemical and Mechanical Regulation 
of Bacterial Cell Wall Expansion”  
—Enrique Rojas

“Mapping the Conformational Landscape 
of G-Protein Coupled Receptors Using 
Novel Computational Paradigms”  
—Diwakar Shukla

“Simple and Systematic Parameterization 
of a Polarizable Water Model”  
—Lee-Ping Wang

Abstracts for these posters can be downloaded at
http://meetings.nigms.nih.gov/assets/ncbc/NCBC_Sh
owcase_posters.pdf.

Simbios (http://simbios.stanford.edu) 
is the National Center for Physics-
Based Simulation of Biological 
Structures at Stanford.

Journey to the NIH:  
Insights and Inspirations 

from the 2012 NCBC Showcase
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Several biomedical computing projects
received big money in the fall of 2012.

If there’s one clear winner, it’s “Big Data”:
three of the grants focus on building new
computational infrastructure and tools for
dealing with massive biological datasets. A
fourth grant focuses on building new tools
for multiscale modeling. 

Advancing 
Bioinformatics 
in Africa

Genomics research in Africa will receive
a major boost thanks to a $10 million grant
to establish a sustainable bioinformatics
network on the continent. The project,
H3ABioNet, is part of the H3Africa initia-
tive—a joint venture of the National Insti-
tutes of Health (NIH) and the Wellcome
Trust to promote large-scale genomics re-
search in Africa. 

“It’s very important not only to generate
data but also to have the infrastructure and
know-how to make sense of them,” says
Victor Jongeneel, PhD, director of the
High-Performance Biological Computing
program at the University of Illinois. “The
idea is to make sure that the data produced
by H3Africa projects are analyzed in Africa
and not shipped out for analysis to groups
in Europe or the U.S. We have a moral im-
perative to make sure that the benefits of
the research and the credit for the work are
reaped locally.” The H3ABioNet team in-
cludes researchers from the University of
Illinois, Harvard, and the University of
Cape Town. 

H3ABioNet will help set up the com-
putational infrastructure needed to analyze
high-throughput sequence data, including
establishing and providing access to high-
performance computing centers, installing
analysis software, and facilitating data
storage. H3ABioNet will also train local
scientists how to handle and analyze high-
throughput data, including establishing in-
ternships to provide practical, hands-on
experience. Centers in the H3ABioNet
network will go through an accreditation
process that will ensure their proficiency
in analyzing human genomic data. 

Though the focus of H3Africa is on

human genomics, the H3ABioNet network
could provide support for any kind of com-
putationally intensive biological research in
Africa. “I’m hoping that the capacity devel-

opment that will be funded in this project
will also have an impact on fields other
than human genetics,” Jongeneel says. 

FOLLOW THE MONEY:
Big Grants in Biomedical Computing

“It’s very important 
not only to generate
data [in Africa] but 

also to have the
infrastructure and 

know-how to make
sense of them,” says

Victor Jongeneel. 

Making Sense of 
Metabolomics Data 

Metabolomics (the systematic study of
the end products of the cellular processes
that allow cells to grow and reproduce) is
coming of age—leaving scientists with a
mountain of new “omics” data to decode.
But a new data repository and coordination
center at the University of California, San
Diego, will help deal with the data deluge,
thanks to a $6 million grant from the NIH. 

“In the last few years, mass spectrometry
technology has matured to a point where one
can do reasonably robust medium-through-
put to high-throughput metabolomics,” says
principal investigator Shankar Subrama-
niam, PhD, professor of bioengineering.
“We’ve been funded to help figure out, ‘what
do we do with these data?’”

The new center will serve as the data
hub for research cores financed through the
NIH Common Funds Metabolomics Pro-
gram and similar metabolomics research
initiatives. The center will provide a na-
tional repository for metabolomics data and
will provide publicly available, user-friendly
tools for data access and analysis. Among
the challenges, Subramaniam’s team will
develop strict standards for data and meta-
data. “Data without meta-data is almost al-

Pattern Extraction. HotNet is an example of a statistically robust algorithm for extracting informa-
tion from big genomic datasets. “Hot” gene networks are more correlated with clinical phenotype.
Courtesy of: Eli Upfal, Brown University.
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ways useless,” Subramaniam says.
Subramaniam’s team is developing ro-

bust statistical methods for “metabotyping”
diseases—identifying metabolic patterns
that correlate with disease states. They are
also working on complex algorithms for re-
constructing metabolomics networks and
integrating metabolomics data with data
from proteomics and transcriptomics. “This
data integration is a very complex research
task; there’s no plug and play application
that you can buy off the shelf,” he says.

Rigorously Mining 
Genomic Data 

From personal and cancer genomes to so-
cial networks to online buying habits, we
have entered the era of Big Data. Computer
scientists have developed efficient and suc-
cessful machine learning algorithms to mine
these data for patterns. But no one quite
knows: how reliable are the results? So, a
team from Brown University has received a
$1.5-million “Big Data” grant from the Na-
tional Science Foundation and the NIH to
develop rigorous statistical tools that answer
this question. Their work focuses on data
from the Cancer Genome Atlas.

“Machine learning is very popular today.
But we don’t have statistical guarantees on
the quality of our results,” says Eli Upfal,
PhD, professor of computer science and
principal investigator on the project. “We
want to build techniques that will still be ef-
ficient and practical but also would quantify
the quality of the results.” Fellow computer
science professors Ben Raphael, PhD, and
Fabio Vandin, PhD, will help lead the effort.

Genomic data are large, complex, and

noisy on many levels, so they are a good pro-
totype for testing Big Data tools, Upfal says.
His team has already built a tool called Hot-
Net that helps identify—with high statistical
confidence—pathways of mutated proteins
that are involved in cancer. Upfal’s team also
aims to develop statistical tools to answer the
question: how big of a sample does one need
to answer a particular question in
genomics? Ultimately the tools will
have applications in many domains
beyond genomics, Upfal says. 

Bridging Gaps in 
Multiscale Modeling

Multiscale models in neurobi-
ology can help scientists under-
stand the brain from the small
molecule to the tissue level. But
to realize the promise of these
models, scientists first must
bridge critical gaps between biol-
ogists and computer scientists, as
well as between computer scien-
tists working at different scales. A
new $9.3-million NIH center at
the University of Pittsburgh—the Biomed-
ical Technology Research Center—aims
to do just that.

“Our first goal is to bridge the gap between
experiments and computations. A first step
toward this goal is to reach out to those peo-
ple already doing experiments and assist
them in solving their neurobiological prob-
lems,” says principal investigator Ivet Bahar,
PhD, professor of computational and systems
biology. The center, which is a joint collabo-
ration between the University of Pittsburgh,
Carnegie Mellon University, Pittsburgh Su-

percomputing Center, and the Salk Institute,
will develop multiscale models for five dif-
ferent driving biomedical projects across
several institutions. “The tools we build will
be tailored to their needs,” Bahar says. The
projects focus on understanding brain sig-
naling and may lead to new treatments for
neurological and behavioral disorders.

The center will also foster collabora-
tions among modelers at different scales,
such as the molecular, synapse, and brain
tissue levels, she says. Currently, she says,
“There is a serious disconnect. We would

really like to overcome
that,” Bahar says. For ex-
ample, her team will use
molecular simulations to
calculate parameters that
can be fed into cell sim-
ulations created by other
researchers. Those cell
modelers will in turn pro-
vide feedback that can
improve her team’s mo-
lecular models.  nn

Cancer’s Drivers.
Scientists applied HotNet
to The Cancer Genome
Atlas data for glioblas-
toma multiforme (a type
of brain tumor). The algo-
rithm extracted subnet-
works of highly mutated
genes. Courtesy of: Eli
Upfal, Brown University.

Modeling the Synapse. The new Biomedical
Technology Research Center at the University of
Pittsburgh aims to combine computational mod-
els and experimental data to understand how
messages are sent across synapses; and how
that affects the brain. Courtesy of: Ivet Bahar,
University of Pittsburgh.
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Enzymes are among nature’s crowning
achievements: they accelerate chemical

reactions, making life possible. People have
co-opted natural enzymes for industrial use
for thousands of years (think cheese-mak-
ing). But it’s only recently that scientists
have been able to create made-to-order
enzymes for applications ranging from
detoxifying deadly nerve gas to converting
waste into fuel.

In a process called “directed evolution”
scientists re-enact natural evolution in the
laboratory: they iteratively mutate an en-
zyme and select for mutants with the de-
sired feature. Within months, directed
evolution can increase an enzyme’s ability
to catalyze a particular reaction by as much
as 1000-fold—and sometimes even beyond.
“In the past five years alone, there have
been over 60 publications containing ex-

amples of directed evolution of enzymes for
industrial processes,” says Gert Kiss, PhD,
a postdoc at Stanford University, who did
his doctoral work in the lab of David Baker,
PhD, professor of biochemistry at the Uni-
versity of Washington and a pioneer in di-
rected enzyme evolution.

Several advancements are fueling recent
progress in the field. Chief among these is
the coupling of directed evolution with com-

putation. Though simulating directed evo-
lution exhaustively in silico remains beyond
reach, computation can help narrow the
search space for directed evolution; guide
mutagenesis; and create de novo enzymes for
catalytic activities that don’t exist in nature.

Narrowing the Search Space
Directed evolution follows two steps:

researchers mutate the starting enzyme

using a replication process that randomly
introduces errors (a procedure called error-
prone PCR); they then select or screen the
resulting variants for increased catalytic
activity. Enzymes with higher catalytic ac-
tivity undergo a second round of mutage-
nesis and selection/screening; and the
process is repeated (typically around 10 to
20 times). The number of possible variants
is astronomical (20250 for an average-sized

protein), so even with large libraries of
mutants, one can cover only a tiny frac-
tion of the search space. “You’re shooting
with a shot gun in a dark room and you’re
just hoping to hit something,” Kiss says.
When structural information is available,
computational approaches can reduce the
search space and improve the odds of a hit.
Rather than randomly mutating the whole
protein, scientists focus only on those

amino acids that are likely to
yield dividends, such as those in
the active site. “You won’t get
around the actual experiments
with these approaches,” Kiss says,
“but by providing more and more
rational input, the process be-
comes less random and thus more
effective.” 

For example, a 2012 paper in
Chemistry and Biology described
the directed evolution of human
PON1, a protein that in its na-
tive form can weakly detoxify
the nerve gas sarin. Researchers
used the computational docking
program AutoDock to explore
the effects of different mutations
on substrate binding—and iden-
tified eight key amino acids in
the active site likely to affect
sarin binding. These were sub-
jected to repeated rounds of site-

Triple Threat. Scientists use three strategies for creating protein libraries in directed evolution: a) Random
mutagenesis across the full sequence; b) Targeted mutagenesis focused on a specific site (often the active site);
and c) Protein sequence recombination for the replacements of entire segments. Reprinted with permission
from Bloom, JD, et al., Evolving strategies for enzyme engineering. Curr Opin Struct Biol 2005, 15, 447-452. 

COMPUTING BETTER ENZYMES:
Optimizing Directed Evolution



Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures 7

specific mutagenesis. The resulting labo-
ratory-evolved variants had up to 3400-
fold increased activity (relative to wild
type), enough to block the action of sarin
on human target proteins for 24 hours. 

To make the problem computationally
tractable, modeling programs must rely on
certain approximations. For example, many
approaches assume a rigid protein back-
bone when in fact, proteins are “like
spaghetti in a bowl—continuously vibrat-
ing and breathing—capable of adapting to
their environment,” Kiss says. Though
they can’t fully model backbone flexibility
(as this requires massive computer re-
sources), Kiss and colleagues have applied
a program called RosettaBackrub that can
incorporate backbone flexibility on a
smaller scale. 

Guiding Mutagenesis
Using Backrub, as well as several other

computational strategies for guiding di-
rected evolution, Kiss and colleagues in-
creased the catalytic activity of the enzyme
KE70 (a computer-designed enzyme, see
below) by 400-fold. The work is described
in a 2011 paper in the Journal of Molecular
Biology. “In many cases, the mutations were
suggested computationally,” says first au-
thor Olga Khersonsky, PhD, a postdoc in
David Baker’s lab at the University of
Washington. “Many other labs are also
now using computation to guide their di-
rected evolution processes.”

Directed evolution can enhance pro-
tein function, but this is often at the cost
of protein stability. “It really comes down
to what you select for,” Kiss says. “If you
care about improving catalytic activity,
you might end up losing thermal stability.”
Sequence analysis can help here: scientists
may focus their mutagenesis only on
“hotspots” of mutation and avoid muta-
tions in more conserved regions. The fact
that nature has disfavored changes in these
areas suggests that they are destabilizing.
In a 2010 paper in ChemBioChem, re-
searchers mutated four residues in the ac-
tive site of an esterase enzyme. But they
only allowed substitutions with amino
acids that commonly appear in these sites
in other enzymes from the same family (as
determined by the alignment program
3DM). Indeed, control experiments con-

firmed that the strategy significantly in-
creased their hit rate. 

Making Enzymes from Scratch
Directed evolution can only work if

there is a starting enzyme that has at least
a weak ability to catalyze the reaction of
interest. When no natural enzymes exist,

scientists can now create them from
scratch on a computer. “We are generating
enzymes for which there was no
actual evolutionary pressure in na-
ture,” Kiss says. Though these de-
signed enzymes display only weak
catalytic activity (“we’re very
good at making bad enzymes!”
Kiss says), they provide a starting
point for directed evolution. 

Baker’s lab has provided some of
the first examples of de novo en-
zyme creation. They first build an
idealized active site: using quantam
mechanics calculations, they de-
termine which amino acid groups
are needed—and in what orienta-
tion—to stabilize the transition
state of the chemical reaction.
Then, using the RosettaMatch
program, they search through a
database of over 86,000 crystal
structures to geometrically fit this
theoretical active site (also called
a theozyme) into a groove or cavity
on an existing protein. “The chal-
lenge is that it’s a huge search
space. Finding a way to efficiently
search through this library of scaf-
folds to find a good geometry is
very challenging,” says Daniela

Grabs-Röthlisberger, PhD, a cofounder of
Arzeda Corporation, which uses Baker’s
technology to make designer enzymes. Fi-
nally, they graft the theozyme onto the pro-
tein scaffold in silico. 

Most of the proteins turn out to be
duds: they fail to express, fold, or show the
desired activity, or they aggregate in solu-
tion. But a few percent work, Kiss says. For
example, Baker’s lab created enzymes to
catalyze the Kemp eliminase reaction (for
which no natural enzymes exist). They
came up with 57 designs in 17 different
scaffolds, 8 of which showed Kemp elimi-
nase activity. Three, including KE70, were
further optimized by directed evolution to
increase their activities up to 2000-fold.
“This is really an uphill battle. But it’s so
cool to make progress and to eventually
find a way through,” Kiss says. The Kemp
elimination is a model reaction that has
no practical applications for industry or
medicine. But, Kiss says, “we’re now start-
ing to go from proof of principle to a place
where we’re starting to apply these meth-
ods to real problems.”  nn

Do-It-Yourself Enzymes. To make your own enzyme: (1) design an idealized active
site (theozyme) using quantam mechanics; (2) use RosettaMatch to find a protein scaf-
fold that’s a geometric match for the theozyme; and (3) graft the theozyme into the
protein scaffold in silico using RosettaDesign. Courtesy of: Gert Kiss, Stanford Univer-
sity. Reprint from Kiss G, Olcum NC, Moretti R, Baker D, Houk KN, “Computational En-
zyme Design,” Angew Chem Intl Ed, In press.) 
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INTEGRATIVEINTEGRATIVE

UntanglingUntangling
By Alexander Gelfand

13 years ago
Markus Covert, PhD,
read a New York Times

article that changed his life.



The article quoted a prominent micro-
biologist who suggested that the ulti-
mate test of one’s understanding of a

simple cell wouldn’t be to synthesize an ar-
tificial version of the thing, but rather to
build a computer model of it—a model that
could predict all of the proteins expressed
by the cell’s genes, their behaviors and in-
teractions. “I think about that article every
day,” says Covert, who was a graduate stu-
dent at the time and is now an assistant
professor of bioengineering at Stanford.

To be fair, he’s done more than just
think. In 2012, Covert himself appeared in
the Times, garnering widespread attention
for having created a computational model
of the bacterium Mycoplasma genitalium.
Covert’s whole-cell model simulated all of
the microorganism’s molecular components
and their interactions over the course of its
life cycle; accounted for the function of
every annotated gene product; and pre-
dicted a wide range of behaviors with a high
degree of accuracy.

It was also a model of many parts. Twenty-
eight, to be exact—28 individual submodels,
each describing a different cellular function
(ribosome assembly, cell division, DNA re-
pair, etc.). Those submodels are defined by
thousands of parameters and compute a
comparable number of unknowns repre-
sented by 16 different categories of cell vari-
able (chromosome, mass, geometry) that in
turn represent different data types. “Chro-
mosome,” for example, might refer to the
degree of chromosomal replication, or the
location of every single protein on the
chromosome; “mass” might refer to the
mass of DNA or of proteins; “geometry”
might refer to cell radius or shape. Over the
preceding decade, Covert explains, he and
his colleagues had come to the conclusion
that no single computational approach
would suffice to model a whole cell; instead,
the task would require “a lot of different ap-
proaches”—approaches that would somehow
need to be integrated into a unified whole.

That integrative ethos is becoming in-
creasingly common. This is true whether
the problem under investigation requires
combining disparate data types, such as the
ones flowing from next-generation high-
throughput sequencing technologies; or
simulating systems that contain many dif-

ferent moving parts, each one amenable to
different mathematical treatment. And the
trend will only intensify as integrative mod-
eling and analysis becomes the modus
operandi of biomedical research in general.
As Bernhard Palsson, PhD, Covert’s former
doctoral advisor at the University of Cali-
fornia, San Diego, says, “It’s clear that over

the next 10 years, this kind of activity will
take center stage in the life sciences.” And
it will likely come in many forms.

Integrating Data 
about Gene Regulation

Mark Gerstein, PhD, and his colleagues
at Yale University have been leading contrib-
utors to the ENCODE
project, which aims to de-
lineate all of the func-
tional elements in the
human genome. Using
techniques that they orig-
inally developed in model
organisms such as worms
and mice, Gerstein and
his team recently em-
ployed several different
types of ENCODE data
to build an integrative
model of transcription
that can predict gene ex-
pression based on the
presence of particular reg-
ulatory elements. Among
other things, ENCODE
has established that as
much as 18 percent of the
human genome, most of
which was once consid-

9

ered to be “junk” DNA, helps regulate the 2
to 3 percent that actually codes for proteins.

The team began by building individual
models that correlated expression with dif-
ferent kinds of regulators—most notably,
the transcription factors and histone modi-
fications that are found at transcription start
sites directly upstream from sets of genes,
and which exert considerable influence over
whether or not those genes are transcribed
and therefore expressed. Transcription fac-
tors are proteins that activate or repress the
flow of genetic information from DNA to
messenger RNA. Histones—the spools
around which DNA winds within the chro-
mosome—are modified in various ways that
also affect gene regulation.

The models used machine-learning
methods to look at the values of thousands
of these regulators in small regions around
the transcription start sites; multiplied
them by coefficients in order to weight
their relative significance; and added them
all together to create accurate predictors of
gene expression. “That’s the stuff of integra-
tion right there,” says Gerstein, who is pro-
fessor of biomedical informatics, molecular
biophysics and biochemistry and computer
science. By comparing the relative impact
of the various regulators, Gerstein was able
to determine which transcription factors
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“It’s clear that over 
the next 10 years, this 

kind of activity will 
take center stage in 
the life sciences,” 

Palsson says.

This graph compares the prediction accuracy of three models: one
based on transcription factors (TF Model), one based on histone mod-
ifications (HM Model), and one incorporating both (TF+HM Model).
Surprisingly, no accuracy is gained by combining the TF and HM mod-
els. Reprinted by permission of Oxford University Press from Cheng
C, Gerstein M, Modeling the relative relationship of transcription fac-
tor binding and histone modifications to gene expression levels in
mouse embryonic stem cells, Nucleic Acids Res 40(2):553-68 (2012).

MODELING



10 BIOMEDICAL COMPUTATION REVIEW Winter 2013 www.biomedicalcomputationreview.org

and histone marks were most important to
prediction. As reported in a recent paper in
Nucleic Acids Research, the team found dis-
tinct differences in predictive strength
based on location, with transcription fac-
tors achieving their highest predictive
power in a small region of DNA centered
around the transcription start sites, and hi-
stone modifications demonstrating high
predictive power across a wide region
around the genes. As a final step, Gerstein
and his colleagues built a model that in-
cluded both histone modifications and
transcription factors, but discovered that
integrating the two did not improve accu-
racy. “They’re actually somewhat redun-
dant; you can’t do better by combining
them,” says Gerstein—a surprising result
that may help illuminate the basic biology
of transcriptional regulation.

Interestingly, Gerstein doesn’t consider
the integrative aspect of the undertaking
to have been especially challenging. “In a
sense, the integration is carried out in the
actual mathematical machinery as it’s put
together,” he says, referring to the auto-
mated manner in which the machine-
learning algorithms go about sorting and
multiplying, adding and predicting. Instead,
most of the heavy lifting comes earlier: be-
fore the data on the various regulators can
be fed into the models, they must first be
normalized and placed in the same coordi-
nate system, put in the correct format and
properly scaled. “There’s a huge amount of
upstream work [required] to be able to do

this integration,” Gerstein says, adding that
the project is “a nice case study” of “the
overall process of putting all this informa-
tion together and making predictions.”

Integrating a 
Whole Cell Model

The idea that the “integrative” part of an
ambitious integrative analysis project should
turn out to be fairly straightforward might
seem surprising. But it’s hardly uncommon.

For example, yoking together 28 indi-

Whole-Cell Model Integrates 28 Submodels of Diverse Cellular Processes. (A) The 28 sub-
models in Covert’s whole-cell model are represented by colored words in the context of the flask-
like shape of an M. genitalium cell. Submodels are connected through common metabolites, RNA,
protein, and chromosome, which are depicted as orange, green, blue, and red arrows, respectively. (B)
The model integrates cellular function submodels (right-hand column) through 16 cell variables (left-
hand column). For each one-second timestep (dark black arrows), the submodels retrieve the current
values of the cellular variables, perform their computations, and update the values of the cellular
variables accordingly. This process is repeated thousands of times during the course of each simula-
tion, ending only when the cell divides. (Colored lines between the variables and submodels indicate
the cell variables predicted by each submodel, while the number of genes associated with each sub-
model is indicated in parentheses.) Reprinted with permission from Karr JR, et al., A Whole-Cell Com-
putational Model Predicts Phenotype from Genotype, Cell 150:2:389-401 (2012).  

“There’s a huge 
amount of upstream

work [required] 
to be able to do 
this integration,” 
Gerstein says.
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vidual submodels representing different bi-
ological functions into a single, integrated
über-model of M. genitalium might appear
to be a Herculean task—especially when
many of those functions operate at differ-
ent time scales, and are computed using
mathematical approaches ranging from
Boolean logic to stochastic methods. Yet
while Covert and his colleagues did indeed
describe integration as a “key challenge” in
the Cell paper announcing their results, it
wasn’t the only one. And in the end, it was
amenable to a reasonably simple solution.
At least, for the most part.

“We decided that we could assume that
at a short timescale, [the submodels] were
independent,” Covert says, adding that in
this case, “short” meant less than a sec-
ond. There were exceptions to this rule,
most notably in the case of energy, which
was in such high demand amongst all the
submodels that Covert and his team had
to develop a special means of allocating it
before anything else could be set in mo-
tion. Once that had been worked out,
however, Covert, et al., could simulate the
whole-cell model by proceeding in one-
second timesteps, using the same method
employed to integrate ordinary differential
equations. For each timestep, they col-
lected the latest data computed for every
variable and fed it into the 28 different sub-
models. Each submodel would then return
fresh data, which served as the inputs for

the next time step. “Integration,” Covert
says, “happens at the level of data.”

So decoupled, each submodel could
even be run serially; though in practice,
multiple whole-cell simulations run concur-
rently on a 128-node computer cluster.
Thus far, the team has plowed through
thousands of simulations, including hun-
dreds of wild-type cells and hundreds more
in which M. genitalium’s 525 genes have
been disrupted one by one.

Debugging an integrated simulation of
this kind can be hairy, and Covert gives
credit to a former Google engineer who
helped the team develop automated testing
procedures for their tens of thousands of lines
of MATLAB code. Still, echoing Gerstein,
Covert says that a good deal of the toughest

work took place long before anything was in-
tegrated. And much of that work involved
selecting the most appropriate mathematics
for each of the 28 cellular functions, a task
that took many years to complete.

Those choices were driven by how well
understood each function was, and how
much quantitative data was available for it.
The most detailed submodels, like the ones
for RNA and protein degradation, use sto-
chastic processes to allow for variability. The
sparsest rely on Boolean operations. Others
still employ flux balance analysis, which an-
alyzes the flow of metabolites through a
metabolic network without specifying their
actual concentrations. “We really tried to let
the process itself, and our understanding of
it—together with the data that had been
generated with regard to it—be our guide,”

Covert says. All of the code is available on-
line, and Covert looks forward to the day
when someone writes a competing sub-
model and then runs the whole-cell model
with both versions to see which works best. 

Integrating a Multiscale Genome-
scale Metabolic Network

Flux balance analysis lies at the heart of
many cellular models and plays an impor-
tant role in multiscale modeling efforts as
well. Typically used to investigate metabo-
lism, the method begins with the recon-
struction of a genome-scale metabolic
network that describes all of the metabolic
reactions that are likely to occur in a given
cell based on its DNA, and can then be
used to model its various metabolic path-
ways. Palsson, who helped pioneer the ap-
proach, refers to such networks as “supply
chain models”—albeit ones that map the
relationships between all of the metabolites
and enzymes that carry out the biochemical
reactions necessary to sustain life.

Recently, Palsson and his colleagues
combined a metabolic model for the bac-
terium Thermotoga maritima with a model of
macromolecular expression that describes
the synthesis of every single one of the or-
ganism’s proteins. (They created the same
kind of integrated model for E. coli, as well.)
The expression model, which is based on a

network that represents the biochemical re-
actions that drive transcription and transla-
tion, simulates the machinery that a cell
uses to build its gene products, and therefore
accounts for many things that a standard
metabolic model ignores. By integrating the
two different kinds of models, Palsson and
his team vastly expanded the range of cel-
lular phenomena they could compute and
predict. “You just wouldn’t believe what we
are calculating with this model now,” he
says before going on to list regulons (collec-
tions of genes all governed by the same reg-
ulators); metabolic engineering designs; and
a variety of cellular functions. In the future,
Palsson would like to add genetic regulation
to the modeling mix, using the kind of data
Gerstein has been exploring with the EN-
CODE project.

Plenty of challenges remain. Palsson
points out that modeling the kinetics and
thermodynamics of the many biochemical
reactions that take place within a cell is
computationally difficult, and will require
algorithmic advances. “We understand a
lot of individual events,” he says, “but put-
ting them all together in a coherent whole
is tough.” 

Integrating Multiscale 
Models of Tissues

It’s equally difficult to simulate the behav-
ior of a population of cells distributed in
three-dimensional space, such as one might
find in a bacterial infection or a major organ. 

That was precisely the problem tackled
in a study recently published in PLoS Com-
putational Biology. 

Ron Weiss, PhD, and his colleagues at
the Massachusetts Institute of Technology
developed a novel combination of compu-
tational methods to design and analyze an
artificial tissue homeostasis system—one
that uses a synthetic gene network to cause
stem cells to grow and differentiate into a
stable population of insulin-producing beta-
cells of the sort found in the pancreas. (Such
a system could be used to help treat Type I
diabetes, in which beta-cells are destroyed
as the result of autoimmune defects.)

The network is comprised of several dis-

“Integration,” 
Covert says, 

“happens at the 
level of data.”

We really tried to let the process itself, and 
our understanding of it—together with the data 

that had been generated with regard to it—
be our guide,” Covert says.



ent mathematical models that progres-
sively accommodated more and more com-
plexity: one that used ordinary differential
equation simulations, and two that used

stochastic differential equation
simulations to allow for noise and
spatial effects. The spatial effects
are important because cells that
are distributed across space are ex-
posed to different environmental
conditions and can’t communi-
cate instantaneously with each
other. The noise effects matter be-
cause two cells that contain the
same genetic circuits can still pro-
duce different amounts of a partic-
ular protein due to unpredictable
fluctuations in gene expression.
To his surprise, Weiss found that
having some noise in the system
was actually helpful. “Normally, in
synthetic biology, you think of
noise and heterogeneity as being
bad things—things that tend to
destabilize the system, things that
you want to get rid of,” he says. “In
our system, the addition of noise
actually stabilizes the system and
makes it more robust.”

Once again, the low-level in-
tegration of the modules—i.e.,
the act of joining them together
to form a larger system—was not
the most challenging aspect of
the project; for the most part,
Weiss explains, it involved defin-

ing the interfaces between the various
modules and then “gluing one module onto
another.” The tricky part was figuring out
which bits mattered most to overall system
performance—especially since the modules
affected one another in unexpected and
often non-linear ways. 

Weiss and his colleagues first examined
how certain module behaviors combined to
produce optimal system performance, and
then applied Bayesian network inference,
which graphically represents the probability
that different variables may be related to one
another, in order to identify the individual
behaviors that had the greatest impact.
Weiss feels that such methods represent
broadly applicable techniques for aiding in-
tegration, just as the team’s decision to pro-
ceed from simpler systems and models to
more detailed and accurate ones offers a gen-
eral approach towards system design and un-
derstanding that could be useful to others.

Integration from Cell to Organism
If Weiss proved that integrated model-

ing and analysis could bridge the gap be-

dict the behavior of the entire system once
all the modules were connected. “What hap-
pens when you take these known modules
and try to integrate them into a much more

complex system?” he asks.
Weiss and his team designed several dif-

ferent iterations of their system, each one
more sophisticated than the last. And they
simulated those systems using three differ-

crete modules assembled from standard ge-
netic circuitry components: toggle switches
and oscillators to control population growth;
sender-receiver systems to permit intercellu-

lar communication. The question, says
Weiss, who is a dual associate professor of bi-
ological engineering and of electrical engi-
neering and computer science, was whether
he and his colleagues would be able to pre-
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Tissue Homeostasis Model Design. (A) Stem cells (blue) divide and then differentiate through
several phases to become beta (ß)-cells (red), a process that is governed by negative feedback
from the ß-cells. (B) Weiss and his colleagues created an integrative model of tissue homeostasis
by designing a modular system and subjecting it to repeated analysis and redesign. The system
went through four iterations, each one more sophisticated than the last. Reprinted from Miller
M, et al., (2012) Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic
Cellular Heterogeneity. PLoS Comput Biol 8(7): e1002579. doi:10.1371/journal.pcbi.1002579.

“Normally, in synthetic biology, you think of
noise and heterogeneity as being bad things—
things that tend to destabilize the system, things 
that you want to get rid of,” Weiss says. “In our
system, the addition of noise actually stabilizes

the system and makes it more robust.”



his next steps, and would like to integrate
patient-specific metabolome data into the
whole-body model. The key challenge, he
says, is not the integration per se, which in-
volves using the data generated by the
PBPK model to constrain the metabolic
one, or pumping the output from the meta-
bolic model into the whole-body simula-
tion. Rather, it is in knowing enough to do
both kinds of modeling in the first place. 

Kuepfer, who did his graduate
work in metabolic modeling and
now works for a company that
uses pharmacokinetic and phar-
macodynamic modeling to evalu-
ate drug candidates, has the tools
and experience to work both
sides of the street. As things stand
today, however, most specialists in
genome-scale metabolic network
reconstruction probably wouldn’t
share his familiarity with PBPK
modeling—though Kuepfer does
expect a growing number to ex-
tend their focus beyond the cellu-
lar scale in the future. Palsson,
meanwhile, points out that meta-
bolic models, though highly scala-
ble and easy to compute, can also
be hard to understand. “How to
use them and apply them requires
a certain skill set that isn’t com-
monly available,” he says.

And that might be the com-
mon take-away from all of these

studies. Figuring out how to integrate the
various models and data types involved is
one thing; but it is not the only thing, nor
is it necessarily the hardest thing. Often, the
thorniest issues involve overall design, or
conceptual clarity, or individual expertise.
Integrative modeling and analysis may hold
the keys to many complex computational
and biological problems. But they will only
lead to meaningful results if researchers give

careful thought to the individual compo-
nents they are attempting to combine—and
the problems they are trying to solve.  nn

whole-body level, thereby revealing how
cellular and extracellular mechanisms in-
fluence one another. In a series of case
studies, they examined the cellular basis of
acetaminophen poisoning; probed the
workings of allopurinol, a drug used to treat
gout; and looked at how variations in indi-
vidual physiology (such as liver size) can
interact with metabolic disorders (such as
an impaired ability to eliminate ammonia)

to create otherwise inexplicable levels of
biomarkers in the blood.

The Integrative Skill Set
Palsson, who has used metabolic net-

work reconstructions to model the interac-
tions between multiple tissue types, says
that multiscale, cell-to-whole-body models
like Kuepfer’s are going to make “astonish-
ing progress over the next decade or so,” in

part because so many diseases, from cancer
to psychiatric disorders, have a metabolic
component. Kuepfer is already considering

tween genetic circuitry and heterogeneous
populations of cells, Lars Kuepfer, PhD,
showed they could do the same for cells
and entire organisms. 

Working as part of the Virtual Liver
Network, a national initiative funded by
the German Federal Ministry for Education
and Research, Kuepfer and his colleagues in
the computational systems biology group at
Bayer Technology Services in Leverkusen,

Germany, yoked a genome-scale metabolic
model of the kind used by Covert and Pals-
son to a physiologically-based pharmacoki-
netic (PBPK) model of the sort used to
simulate the availability of drugs in tissues
throughout the body. More precisely, they
integrated a genome-scale network recon-
struction of a human hepatocyte into the
liver tissue of a PBPK model representing
an adult human being. The resulting mul-
tiscale model enables the calculation of
thousands of cellular reactions within a
whole-body framework containing 200 or
so ordinary differential equations and sev-
eral hundred parameters, ranging from an-
thropometric details like age and height, to
physicochemical ones like the solubility
and molecular weight of the compounds
under investigation. 

Kuepfer and his team were then able to
introduce changes at the whole-body level—
administering a therapeutic agent or a drug
overdose, for example, or generating an ab-
normally high level of some naturally oc-
curring compound—and track the effects
at the cellular level, and even feed the en-
suing metabolic perturbations back to the

13Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures

Integrating Metabolic Models with Gene Expression. (a) illustrates how genome-scale metabolic
models are constructed, with specific metabolic paths inferred from the presence of particular genes. (b)
illustrates how integrated models of metabolism and macromolecular expression (aka ME-Models) like
the one in Palsson’s paper link various biological sciences and relate gene products to genetic perturba-
tions and gene functions in the context of cellular physiology. Reprinted with permission from Lerman
JA, et al., In silico method for modelling metabolism and gene product expression at genome scale, Nat
Commun doi: 10.1038/ncomms1928 (2012).

…metabolic models, though highly scalable 
and easy to compute, can also be hard to 
understand. “How to use them and apply 
them requires a certain skill set that isn’t 

commonly available,” Palsson says.
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soaring over the horizon. But determining whether
it’s a hawk or a raven will be nearly impossible for
someone with myopia, also known as nearsighted-
ness. In this common condition, light focuses on a
spot in front of, rather than on, the retina. Eye-
glasses can correct the defect, as can refractive sur-
gery in which a lens-shaped portion of the
cornea—the outer layer of the eye in front of the
pupil—is removed in a precise way, pushing the
focus back to the retina. 

But when Anna Pandolfi, PhD, asked her
doctor if her myopia could be treated with refrac-
tive surgery (commonly known by such trade-
mark names as LASIK or LASEK), he said her
eyes were “too thin” to endure the surgery. 

Pandolfi, associate professor of structural me-
chanics in the structural engineering department
at the Politecnico di Milano in
Italy, wanted to know more:
How did her eye abnormality
affect the surgical outcome?
After some initial research, she
realized that researchers didn’t
really know the answer: They
couldn’t conduct experiments
on humans without great risk to
the patient; and there were no
adequate computer models of the eye.  

Pandolfi also realized that she could help. As a
civil engineer with a longstanding interest in com-
putational mechanics and the study of materials,
she could create a computational model of the
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cornea that might help explain how refractive sur-
gery would impact problematic eyes such as hers. 

Pandolfi is not alone in realizing the need for
computational modeling of the eye’s biomechan-
ics. The risks of experimentation are too great.
“You can’t start hacking around with peoples’ eyes
to see what works,” says Harvey Burd, D. Phil.,
university lecturer in engineering science at the
University of Oxford. 

Moreover, given the eye’s multiple intercon-
nected parts, each of which is comprised of layers
of cells, connective tissue, and fluid that must all
function properly to give us sight (our most val-
ued sense), it’s perhaps no surprise that there are
myriad biomechanical ways the eye can fail. The
array of diseases and disorders that afflict the eye
include glaucoma, cataracts, macular degenera-
tion, and retinal detachment, to name just a few. 

Despite the eye’s complexity, says Phil Luthert,
PhD, professor of pathology at University Col-
lege, London, it lends itself well to computational

approaches. “There is something fantastically
tractable about the eye,” he says. The discrete
steerable globe has a blood supply; allows light in
one end; and sends signals through the optic nerve
at the other end. “The eye ought to be a really

Squint,
and you can almost 
make out that bird

EYES
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neat place to try to get an integrated model in the
next ten years.” 

Already, biomechanical models of practically
every part of the eye—from the muscles that con-
trol eye movement to the cornea, lens, vitreous
humour, sclera, lamina cribrosa and retina—are
contributing to a better understanding of both
the normal and the diseased eye. 

What’s in the Blink of an Eye? 
Biomechanics of eye muscles

Eyes can move extremely fast. Indeed, the jerky
eye movements called saccades are the fastest
movements produced by the
human body. Eyes also engage in
smooth pursuit as they follow a
moving object. And they con-
verge and diverge as well—
moving toward or away from
each other to maintain binocu-
lar vision. The muscles and tis-
sue that surround the eye
control all of these movements. 

Biomechanical models of
the eye muscles can give in-
sights into diseases in which the
muscles fail. For example, a
condition called strabismus can
result when the eyes are not
properly aligned; and gaze palsy
prevents the eyes from moving
in the same direction. Surgeries
for these problems often go
wrong because they involve
guesswork about which muscles
to shorten or lengthen.

The model SEE++ can help guide surgeons to
improve outcomes. It consists of three parts: a geo-
metric model of the muscles; a muscle force model;
and a kinematic model that brings the geometry
and forces together to define stable eye positions. 

Using SEE++, physicians can enter a patient’s
response to diagnostic testing (such as the classic
“head tilt test” in which tilting the head results in
telltale eye movements) and try to work backward
to understand the muscle forces that cause the pa-
tient’s particular pathology. “It’s not always per-
fect,” says Thomas Kaltofen, a researcher at RISC
Software GmbH, a limited liability company in
Austria that developed the program. “There’s
often more than one way to achieve a particular
pattern.” But in conjunction with a physician’s ex-
pertise, the program can hone in on the causes of
a particular pathology and then simulate how to
correct it surgically. SEE++ is currently used for

surgical planning, mostly in Austria.
“Often, we’re ruling things out as well as ruling

them in. You get closer and closer to the pattern
measured from the real patient and at some point
assume that you might be simulating the actual
case,” he says. “It works quite well when you have
enough data.”  

Kaltofen and his colleagues recently added the
skull to the visualization, and hope to soon inte-
grate it into the model as a constraint on muscle
movement. They also plan to integrate a more
flexible model of the signal that comes from the
brain to the muscle; and add the capacity to simu-
late new, innovative surgeries.

A Model of Extraocular Muscles. The software
program SEE++ creates individualized models of the
eye muscles that can be used to both diagnose mus-
cle problems and plan surgical treatments. Courtesy
of: Thomas Kaltofen, www.see-kid.at.
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Despite its usefulness, SEE++ simulates only
static movements (where the eye ends up) rather
than dynamic movements (the trajectory and ac-
celerations it used to get there). A new model cre-
ated by Dinesh K. Pai, PhD, professor of computer
science at the University of British Columbia,
takes this extra step. “Static movements assume
you can ignore the inertial term—the effect of
mass or accelerations—and that motions are bal-

anced at all times,” he says. “But eye movements
are some of the fastest movements we make; and
the dynamics are significant.” 

Using their model, Pai and his colleagues
have learned how to build robotic eyes that can
do both saccades and smooth pursuit. Their
model includes “pulleys,” the connective tissues
that lie between the muscles on the sides and top
of the eye. These tissues play a greater role than
once believed. “Many surgeries cut away at these
functionally important connective tissues. As a

result, rates of success at eye surgery are relatively
poor,” Pai says. “If we can model these, we can
use the model for surgical planning.” 

SEE++ has also added a model of the pulleys,
Kaltofen says. Pulleys detour rather than going
straight; and they move when the eye moves. So
SEE++ includes pulleys in the geometric model as
well as in the force and kinematic models. “The
whole model changes by introducing this behav-
ior, though it’s a slight change,” Kaltofen says.
Why the pulleys move with the eye is not fully
clear. They may help simplify the brain’s job of co-
ordinating eye movements, Kaltofen says, “but
that’s only one theory.” Research is ongoing.

The Window into the Eye: 
Models explain cornea’s transparency

The cornea is a curved lens that bends light to-
ward a focal point inside the eye, providing about
two-thirds of the eye’s optical power. Structurally,

“the cornea is a perfect pressure vessel,” says Peter
Pinsky, PhD, professor of mechanical engineering
at Stanford University. “It’s floppy and flexible
when isolated, but assumes a highly precise and
stable shape when internally pressurized like a bal-
loon.” It is also—rather remarkably—transparent,
allowing about 90 percent of incident light to
enter the eye. 

Computational biomechanics can help provide
a theoretical understanding of both corneal shape
and transparency, issues that matter for a variety
of clinical problems, Pinsky says. For example,
corneal shape is an important issue for refractive

A Robotic Eye. Pai’s computational model of extra-ocular eye move-
ments was the basis for this tendon-driven robotic eye, which can even
engage in the extremely rapid eye movements known as saccades.
Courtesy of: Dinesh Pai, Mahkameh Lakzadeh and Tony Hodgson. 
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surgery—the procedure Pandolfi was denied due
to the thinness of her cornea. Also, in certain dis-
eases such as keratoconus, corneal shape is severely
changed as a result of ultrastructural rearrange-
ments within the tissue. And other disease
processes can compromise corneal transparency,
leading to blindness.

Pinsky spent most of his career working on the
theory side of finite element method (FEM)—a
numerical technique that divides a complex object
into simple elements that can be solved in relation
to each other, often in a triangular mesh. But about
10 years ago, he began applying FEM to model the
cornea. He’s specifically interested in how the
cornea maintains transparency as well as why it as-
sumes the shape it does.

Prevailing theory holds that a cornea’s trans-
parency stems from its nanoscale organization. Sci-
entists know that within the stroma—the thickest
layer of the cornea—lies an intricate system of rib-
bon-like fibers called lamellae. “These flattened
strands lie one on top of another in up to 500 lay-
ers,” Pinsky says. The lamellae are also like large
cables—cut through them and you will see the
finer level of smaller cables made up of thousands
of individual fibrils that are beautifully organized
in an almost perfect regular lattice. But researchers
don’t really know precisely how the fibrils are
maintained in this pseudo-lattice arrangement as
required for transparency. 

Proteoglycan molecules—proteins with
“GAG” (glycosaminoglycan) chains that
branch out in a star-like structure—are
known to play a critical role. Theory has
it that these GAGs bridge from one col-
lagen fibril to another to form an elastic
network. But this doesn’t match up with
imaging or fit what’s known about GAG
chemistry, which suggests the fibrils and
GAGs should be mutually repulsive,
Pinsky says.

To study the phenomenon theoreti-
cally, Pinsky and his colleagues created
a numerical model of a portion of the
cornea. Working with a representative
volume, they characterized the system
in an idealized way—endowing the fib-
rils and proteoglycans with nicely or-
ganized properties and characterizing
the system’s electrostatic and elastic en-
ergies. “We then try to find the model
parameters that make the energy of the
system stationary,” he says.  

The result: The fibril lattice’s response
to external forces is better explained by osmotic
stress perturbations resulting from electrostatic in-
teractions than by the GAG elastic bridging the-
ory. And the model explains a curious quality of
corneas: when isolated and placed in a salt bath,
they swell enormously. No other theory success-
fully predicts this behavior of the cornea at various
levels of hydration. The model is being applied to

explain the fundamental mechanism for Fuch’s
dystrophy, a condition in which the ion pumping
mechanisms at the posterior surface of the cornea
are compromised, resulting in swelling and a loss
of corneal transparency. 

The second thrust of Pinsky’s cornea work in-
volves understanding how refractive surgery im-
pacts the shape and health of the cornea. When
removing part of the cornea or adding implants,
Pinsky says, it is important to know how the cuts
affect the tissue mechanics. Imaging is starting to
provide a good 3-D understanding of how the
lamellae are organized in the stromal layer of the
cornea. And Pinsky’s lab has been doing experi-
ments to mechanically test super-thin slices of the
cornea. His group has also put all that data to-
gether to produce a predictive FEM model and a
theory of the tissue’s 3-D structure. 

“This is of interest to the laser companies,”
Pinsky says. “LASIK, which is really an ingen-
ious procedure, is nevertheless a pretty signifi-
cant attack on the cornea.” It involves cutting a
flap, lifting it, and then vaporizing some of the
stromal tissue in a precise way. The flap is then
carefully repositioned over the cornea. But, says
Pinsky, “the flap remains mechanically defunct
because wound healing does not fully integrate
it with the underlying stroma.” And the removal
of tissue changes the state of stress in the remain-

Corneal Tissue “Unit Cell.” To model the nanoscale structure of the
cornea, Pinsky and his colleagues worked with a unit cell (representa-
tive volume) of tissue, as illustrated here, showing collagen fibrils (cylin-
drical zones with blue ends) and GAGs arranged in a next-nearest
neighbor connectivity (in the red zone—not explicitly modeled). The
team used numerical methods to analyze the unit cell and obtain the
free energies of the system. The color contours illustrate the electro-
static potential. Courtesy of: Peter Pinsky.



ing tissue. Using his models, Pinsky seeks to un-
derstand how the cornea responds to various sur-
gical procedures with the goal of improving the
predictability of outcomes. He also hopes the
models will provide insight into how the
lamellae rearrange to produce an altered
corneal shape in keratoconus.

Pandolfi is also interested in using
FEM to understand how refractive sur-
gery affects the eye, with a particular in-
terest in problematic eyes like hers.
Unlike Pinsky, she models the corneal
material as a whole, rather than at a

molecular level. “Once
you have a numerical
model, you can run a
simulation to see if the
eye can undergo a sur-
gical intervention or
not,” she says. 

To create her model,
Pandolfi started with the geome-
try—building the exact shape of
the cornea using photographs
and measurements. “This was
easy in that you have all the in-
formation you need,” Pandolfi
says. Describing how the material
behaves is trickier, she says, be-
cause the mechanical properties
cannot be directly measured in
living tissue. She only had data
on how dead pig or human
corneas behave in response to
displacement. So, she used in-

verse analysis—feeding the model with the
geometry of these tests and observed displace-
ments—to discover the mechanical parameters. 

Using this approach, Pandolfi showed that,
after refractive surgery, the eye’s refractive power
(visual acuity) is more sensitive to changes of in-
traocular pressure (IOP). “For an engineer, this is
clear,” Pandolfi says. “The cornea is thinner so it
is more sensitive to a change of IOP.” Pandolfi has
now validated the results. In addition, she showed
that after removing 10 percent of the cornea in a
simulated refractive surgery, the remaining tissue
is subjected to 15 to 20 percent more stress. It’s a
noteworthy result given that some surgeries reduce
corneal thickness by as much as 50 percent. Imag-
ine thinning the cornea from the thickness of a
soccer ball to that of a helium balloon: it becomes
more stretchable in response to internal pressure,
and this in turn affects the cornea’s ability to focus
light in the right spot.

To date, Pandolfi’s model has relied on average
values for the cornea’s geometry and material
properties. Now she’s moving toward understand-
ing the differences between different individual’s
eyes. “We cannot speak about an ideal eye,” she
says. “We have to speak about the range of vari-
ability of the parameters that define the real eye.”

One of her students is using geometric data from
20 pre- and post-operative eyes and simulating
how the surgeries likely affect IOP and the stress
state inside the cornea. 

Clear-eyed:
Models of the lens explore 
cataract prevention and treatment

Behind the cornea lies the aqueous humor; and
behind that floats the lens, a transparent unit that
is responsible for about one-third of the eye’s opti-
cal power. Shaped like a lentil bean—round, and
convex on both sides—the lens has an outer cap-
sule made of stiff collagen elements in a flexible
matrix. Inside, lens fibers stretch from the front to
the back in onion-like layers. 

With age, the lens can become opaque, a con-
dition called age-related nuclear cataract that is
treated by removing the natural lens and replacing
it with an artificial one. Also with age, the lens
loses its ability to adjust (or “accommodate”) its
focus from objects in the distance to objects close
by. Called presbyopia, this condition occurs in al-
most all adults after about age 50. 
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A Weakened Cornea. Pandolfi’s finite element models of the
cornea after refractive surgery revealed that the thinner cornea
is under greater stress (top) and loses visual acuity more rapidly
than normal corneas do if IOP goes up (graph, lower). 
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Using computer modeling, researchers are try-
ing to get a better understanding of how the lens
develops cataracts, how it responds to cataract sur-
gery, and how it loses its ability to accommodate.
“It’s a neat system for an integrative model because
at the cellular level, the location of physiological
components determines the local tissue’s optical
function,” says Paul Donaldson, PhD, professor of
optometry and vision science at the University of
Auckland, New Zealand.

Nuclear cataracts develop as a result of protein
cross-linking at the center of the lens. “It’s like mol-
ecules falling out of solution and scattering light,”
Donaldson says. The cause is uncertain, but Don-
aldson believes that protein cross-linking might be
driven by a failure of the lens to maintain its normal
physiological environment—a process in which in-
ternal micro-circulation likely plays a key role. As
we age, Donaldson proposes, the micro-circulation
system runs down, losing its ability to deliver suffi-
cient nutrients to the lens center and initiating the
biochemical changes that lead to protein cross-
linking and compromised lens transparency. 

The existence of a lens micro-circulation system
was first proposed by Donaldson’s collaborator,
Richard Mathias, PhD, who is now professor of
physiology and biophysics at the State University of
New York, Stony Brook. He took electrical meas-
urements, analyzed the circuits discovered, and
modeled the resulting ion and water fluxes to
demonstrate that micro-circulation occurs within
the lens. Over time, Mathias’ model evolved to
cover many physiological components of the lens,
says Ehsan Vaghefi, PhD, a bioengineering re-
searcher in the department of optometry and vision
science, also at Auckland. But Mathias solved his
model analytically and in one dimension, which
tended to become exponentially time-consuming
and complex. Building on this work, Donaldson and
Vaghefi encapsulated Mathias’s analytical model
into a 3-D finite element framework that includes
parameters such as the spatial location of trans-

porters and ion channels/pumps throughout the
lens. They then used brute force (iterating through
a series of approximate solutions) to solve numerical
equations that describe fluid circulation at a micro-
scopic level throughout the lens. After many itera-
tions, the results converged on a solution. 

The advantage of this approach, Vaghefi says,
is that the model can make predictions about what
happens when the environment and/or physiology
of the lens is perturbed. For example, the team has
now shown that, in response to stimulation with
an external probe, the model lens behaves the
same way as a real lens. 

Vaghefi and Donaldson both hope their model
will be used as a tool to predict how age-dependent
changes in lens physiology affect the progression of
lens cataract—and ultimately improve treatment.
“If we could up-regulate the circulation system of
the lens,” Donaldson says, “we could deliver anti-
oxidants to delay onset of cataract.” Delaying
cataracts by just 5 to 10 years would actually cut
their incidence in half, he notes, since many people
will die of natural causes before they even get them. 

Computer models of the lens could also help
researchers design better cataract surgical proce-
dures and lens replacements. Currently, cloudy
cataract lenses are surgically replaced with new
lenses that have a fixed optical power. “It’s a plas-
tic lens that behaves like a spectacle lens but in-
side your eye,” Burd says. “A lot of people are
trying to head toward a lens that can behave more
like a natural lens.” But that, of course, requires a
good understanding of the natural lens physiology. 

To that end, Burd created a finite-element, mul-
tiscale model of the lens capsule—the outermost
layer of the lens. Like the cornea, the lens capsule
has a complex microscopic structure that affects the
material’s behavior. So Burd’s millimeter-scale finite
element model of the lens capsule includes micro-
scale structural information about the behavior of
collagen fibers embedded in an elastic matrix. The
model could be used to evaluate how the implanta-
tion of new lenses stresses the lens capsule. 

Burd has also modeled how the lens loses the
ability to accommodate as we age. He and his col-
leagues have proposed an empirical model that rep-
resents the changes in the elasticity of the lens over
time. Combining that with Burd’s lens capsule
model, they showed that 80 percent of the age-re-
lated decline in lens accommodation is caused by
increased stiffness in the lens fibers—not changes
to the capsule itself. This suggests that inserting an
appropriately flexible artificial lens within the cap-

Net Microcirculation in the Lens. This 3-D vector map shows the net
current densities calculated by Vaghefi and Donaldson’s model of micro-
circulation in the human lens when the model is stimulated with a sim-
ulated vibrating probe at the pole. According to the model, net flow
moves inward at the poles and outward around the equatorial plane.
Reprinted from Vaghefi E, et al., Development of a 3-D finite element
model of lens microcirculation, BioMedical Engineering OnLine 2012,
11:69 doi:10.1186/1475-925X-11-69. 
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sule might help the lens retain its ability to accom-
modate. But, Burd says, researchers would have to
know how such a surgery would alter the material
properties of the lens capsule—another topic he
hopes to address using his models.

Not a Dry Eye in the House:
Fluid mechanics in the vitreous humour

Moving deeper into the eye, the next major
structure is the vitreous humor—a gelatinous blob
that fills the area between the
lens and the retina. As the eye
moves, so too does the blob, ex-
erting mechanical forces on the
surrounding tissue—primarily
the retina. With age, the blob
can become liquefied in parts
and can also shrink and detach
from the retina, allowing the liq-
uefied portion to fill in the gap
between the vitreous gel and the
retina. This causes flashes of light
and floaters in the visual field
as the eye moves. More impor-
tantly, however, portions of the
vitreous that are still attached to
the retina can pull on or tear the
retina. This, in some cases, leads
to retinal detachment, a condi-
tion in which the photoreceptor-
rich retina pulls away from the
nourishing tissue behind the eye,
resulting in blindness. 

Interestingly, retinal detach-
ment following vitreous de-
tachment occurs more often
in nearsighted eyes. Rodolfo
Repetto, PhD, lecturer in hy-
draulics at Universita Degli
Studi di Genova, and his col-
leagues hypothesized that me-
chanics plays a role. “Possibly
myopic eyes’ oblong shape af-
fects friction at the interface be-
tween the liquefied vitreous
humor and the retina during eye
movement,” Repetto says. His
group’s computational models of
fluid flow in the vitreous during
saccades—rapid flickering motions of the eye—
confirmed this hypothesis. “Even with a homoge-
neous fluid, the stresses within the vitreous and
on the retina are significantly higher [in myopic
eyes],” he says. 

Repetto and his colleagues are also modeling
the effect of surgical treatments for retinal de-
tachment. Typically, surgeons attach a silicon
band that deforms the eye shape into a slight
hourglass shape, pulling the retina back in touch
with the tissue behind it. “It works, but there was
no understanding about what happens in terms

of the motion of the fluid in the vitreous cham-
ber,” Repetto says. His group showed that the mo-
tion and stresses in the humour are significantly
altered. “Reattachment depends on the stresses
generated from the inside on the retina,” he says.
“It’s a first step toward understanding why the
process works.”

Another surgery replaces the vitreous with an
oil that pushes the retina back in contact with
the essential underlying tissues. But sometimes
the oil breaks down into an emulsion that is not

Mixing Processes in the Vitreous. For some diseases, drugs are delivered
to the retina by injection into the vitreous. Models of fluid flow in the vit-
reous can help researchers understand how much of the drug will actually
reach the targeted cells before it is excreted. Here, Repetto and his col-
leagues modeled particle movement in the vitreous in an analytical model
and showed that the mixing properties and fluid structures depend on fluid
properties, such as viscosity, and eye motion (particularly, speed). Recently,
Repetto’s team computationally reconstructed 2-D images of the speed of
these flows to get a fully 3-D image of fluid motion in the vitreous humour.
Reprinted from Stocchino A, et al., Mixing processes in the vitreous cham-
ber induced by eye rotations, Phys Med Biol 55 (2010) 453–467, with per-
mission from IOP Publishing.
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transparent. Repetto’s group is modeling the oils
to better understand why this happens. “It de-
pends again on mechanics,” he says. 

With an Eye to Glaucoma:
Modeling the effects 
of intraocular pressure 

At the back of the eye, more than a million
nerve fibers (axons from ganglion nerve cells in the
retina) extend through an opening known as the
scleral canal within a zone called the optic nerve
head (the eye’s “blind spot,” which has no photore-
ceptors). The lamina cribrosa (LC), a porous struc-
ture that resembles a loose foam, fills in the area
around the nerves. In glaucoma, a disease whose
most common symptom is elevated intraocular
pressure (IOP), “the LC gets squished down, moves
backwards, and becomes more like scar tissue,” says
says Ross Ethier, PhD, senior research investigator
with the department of bioengineering at Imperial
College, London. Ultimately, these changes some-
how damage and kill off the nerves passing through
the scleral canal, causing blindness. But there’s little
known about why one person might get glaucoma
while another does not. 

Ethier hypothesized that individual differences
in the thickness of the sclera—the white of the
eye—might mediate the effects of pressure on the
optic nerve head. In humans, the thickness of the
sclera is quite variable, so he and his team used
11 post-mortem eyes (7 normal and 4 with glau-
coma) to build 11 finite element models of the
scleral shell, each containing a model of an iden-
tical and idealized optic nerve head. In the mod-
els, scleral thickness turned out to be a significant
factor in glaucoma risk: Differences in scleral
thickness, particularly in the region next to the
optic nerve head, produced significant variation

in strains across the LC. 
Rafael Grytz, PhD, is also interested in the

effect of elevated eye pressure on the optic nerve
head.  He recently left the Devers Eye Institute
Research Labs in Portland, Oregon, to become
assistant professor of ophthalmology at the Uni-
versity of Alabama, Birmingham, where he will

continue working on multiscale models to ex-
plore the biomechanics of the eye. “I look at
glaucoma and other eye diseases and one thing
that strikes me—and it’s the theme of my work—
is that the biomechanical mechanisms are occur-
ring and interacting across very different length
scales,” he says. 

Pressure creates a
loading condition at
the macroscale that
translates down the
scale of the collagen
fibrils, the main load-
bearing constituents
of the LC. “If you load
them beyond certain
pressures, remodeling
occurs,” he says. That,
in turn, might have
an impact on the
nanoscale—interrupt-
ing axonal transport. 

So Grytz’s models
start with a biomechan-
ical model of how the
individual collagen fibril responds to loaded forces.
From this, he derives material properties of eye tis-
sues at the microscale, and then simulates growth
and remodeling of the entire eye with particular
attention to how the LC thickens in the early
stages of glaucoma. This involves creating a
generic finite element model of the optic nerve
head and modeling the living tissues of the scleral
canal as an adapting mixture of components—col-
lagen tissues, axons, etc. He found, first, that the
mixture would create an LC all by itself under or-

Lamina Cribrosa. This photograph of a plastic rendering of lam-
ina cribrosa was produced on a StrataSys 3-D printer. Courtesy
of: J. Crawford Downs, PhD, Christopher A. Girkin, MD, and Ken-
neth R. Sloan, PhD, University of Alabama at Birmingham.

Multiscale Eye Models. Grytz integrates eye models
at a variety of scales. Courtesy of: Rafael Grytz.
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dinary IOP. And that at elevated IOP, the LC
thickened by recruiting collagen from the tissue
behind the LC. Eventually, the simulated tissue
reached a steady state where it no longer thick-
ened. This was the first study to show that biome-
chanics could drive the growth and remodeling of
the LC in a way that matched observations of early
glaucoma in monkey eyes. 

Grytz acknowledges that a major challenge re-
mains: determining the mechanism that leads to
the insult to the axons. Thus far, he has simulated
the human eye coupled with the micro-architec-
ture of the LC and axons passing through LC’s
porous structure. Though still in the early stages,
he says the simulation is fully coupled and shows
that when he elevates IOP, the axons are highly
shear deformed around the edges of the LC. “But
there’s so much we still don’t understand, and I be-
lieve computer simulations will be a great benefit
to explore this problem,” he says. 

Looking Deep into the Eye: 
Retina modeling and simulation

The retina is perhaps the most complex com-
ponent of the eye. In addition to 100 million
photoreceptors and more than a million nerve
cells that send visual signals to the brain, the
retina is a highly layered anatomical and physio-
logical structure. Existing models of the retina
tend to simplify it into a slab of cells, says Vaghefi.
“That’s not accurate.” 

Luthert, who calls himself a “would-be” mod-
eler of the retina, agrees. His “bugbear” with exist-
ing metabolic models of the retina is their use of
systems biology without a spatial domain. “Biology
occurs in a cell with a finite size and constraints
about what can move where,” he says. “The cell in
turn sits in a tissue with blood vessels that are con-
strained in space.” As a result, he says, multiscale
modeling is needed to capture the metabolic and
spatial elements within one integrated model. 

So, a few years ago, Luthert joined with others
to propose a multimillion-dollar grand scheme for
computational modeling of the retina. The plan
included several building blocks: a model of the
cells that come together to create the outer retina;
a model of blood flow in the retina; and the incor-
poration of imaging data to refine the models and
then make them patient-specific. 

Though the European Commission’s Research
and Innovation Department didn’t fund the grant,
Luthert remains completely committed to the
plan. “It’s absolutely the way forward,” he says.
“The major treatment for diabetic retinopathy in-
volves injections into the eye with an intrinsic
risk,” he says. “The lack of clarity about when or
how often to inject lends itself nicely to a compu-
tational approach.” 

He acknowledges the plan was perhaps a bit
ambitious. “So what we’re doing now is chopping
it up into bits and running with those,” he says. For

example, one of his graduate students is modeling
blood flow in the choroid—the remarkably rich
vascular bed at the back of the retina. And Vaghefi
and his colleagues are using various imaging meth-
ods to try to build models that are more anatomi-
cally and physiologically correct. “It’s a move from
simple equations put down in the ‘80s to make the
models more precise.”

Meanwhile, Abbas Shirinifard, PhD, a com-
putational modeling scientist at St. Jude Children’s
Research Hospital in Memphis, Tennessee, has
been building a multiscale model of the outer
retina that covers multiple spatial and time scales.
He simulates the cascade of events that lead to a
common form of age-related macular degenera-
tion—a primary cause of vision loss in older Amer-
icans—known as “wet” macular degeneration. 

Scientists know that the wet form of macular
degeneration begins with blood vessels invading
the retina from a blood-rich zone (the choriocap-
illaris) that normally nourishes the retina rather
than destroying it. Researchers have hypothesized
that this process is caused either by an increase in
a protein called VEGF (vascular endothelial
growth factor) in response to inflammation or in-
jury; or by breaks in the Bruch’s membrane—a
physical barrier between the capillary layer and the
outer cell layer of the retina (the retinal pigment
epithelium, or RPE). To explore these possibilities,
Shirinifard modeled the cells of the choriocapil-
laris, the Bruch’s membrane, and the RPE—and
included more than 30 parameters related to trans-
port of oxygen, diffusion, and cell behavior. 

In the simulations, his team found that increas-
ing VEGF did cause capillaries to invade the retina,
but in the wrong way. Normally, in humans, blood
vessels invade the space between the RPE and the
Bruch’s membrane first, and then sit there for a
while before invading the retina. But in the simu-
lation, there was no pause: “The cells jump in to
invade the retina without any invasion of that sub-
RPE space,” Shirinifard says. “So that was shocking
and surprising.” Simulating holes in the Bruch’s
membrane produced the same result. “Both hy-
potheses failed—or my model was wrong,” he says. 

In an attempt to improve his model using ex-
perimental data, Shirinifard ordered some post-
mortem human eyes. When they arrived, some
had been crushed in shipping. The damaged eyes
had some patches of detached RPE and some
patches that were still attached to the Bruch’s
membrane. Shirinifard then had an “aha!” mo-
ment: Cellular adhesion could be a key factor in
macular degeneration. 

In his simulation, Shirinifard began perturbing
various adhesion properties (there are multiple
types of adhesion—with and without mechanical
coupling, for example) between different compo-
nents at the back of the eye. The result: His simu-
lations produced several different patterns of
capillary invasion that are actually seen in people. 

Validating the simulation is quite complicated,
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Shirinifard notes. In a clinical setting, there is typ-
ically just a snapshot of a moment in time, whereas
the simulation shows a snapshot and also the evo-
lution of a 3-D structure. “There’s not much data
to compare it with,” he says.

Currently he is turning his attention to the
inner retina, where blood vessel changes occur in
diabetic retinopathy. “There’s more data and access
to lots of parameters for building these kinds of
models,” he says. “It’s a unique opportunity.” 

All Eyes: 
A vision for a physiome model of the eye

Peter Hunter, PhD, of the University of
Auckland, has long been interested in creating a
physiome model of the eye—a complete compu-
tational system that would capture all of the eye’s
complexity from the molecular and cellular levels
up to the tissue and organ levels.

Luthert agrees there could be great value in an
integrated model. “To some extent it’s okay to
have just the pieces of the eye modeled,” he says.
“But if you take one step back, it’s clear that things
are very interconnected.” For example, although
an integrated model of the outer retina is “utterly
compelling” and could help us understand macular
degeneration, it would benefit from integration
with models of IOP and fluid flow through the vit-
reous. And, he says, “Front-of-the-eye glaucoma
stuff generates input for the back-of-the-eye glau-
coma stuff.” Thus, models of how pressure became
elevated in the first place—which involves aque-
ous production and retention in the front of the
eye (models not discussed here)—could inform
models of how the optic nerve head responds to
increased IOP. “It’s these truly complex disorders
that need a whole eye approach,” he says. 

“It’s not a bad idea,” Pinsky says. “The com-
ponents of the eye have to interact in very inti-
mate ways. Many of us are experts in one area or
another. The idea of a more comprehensive un-
derstanding is important to me. It would be a sen-
sible scientific goal.”  nn

Simulating Capillaries Invading the Retina. Shirinifard ran many
thousands of simulations of capillaries invading the RPE to see how
quickly certain changes to the parameters lead to various types of vas-
cular invasion of the choroid in wet macular degeneration. These four
snapshots show one such simulation over the course of a year (months
0, 6, 9, and 12) in 3-D as well as in a 2-D vertical slice (upper left) and
a 2-D horizontal slice at the level of the sub-RPE space. Vascular cells
are shown in red; RPE in green; and the Bruch's membrane in light
blue. Month zero starts with an activated vascular cell (purple) forming
a hole in the Bruch's membrane. At 6 months, blood vessels have spread
into part of the sub-RPE space. At 9 months, the sub-RPE space is well
infiltrated by blood vessels. And at 12 months, these vessels are now in-
vading sub-retinal space—the zone between the RPE and the photore-
ceptors. Courtesy of: Abbas Shirinifard, based on data presented in
Shirinifard A, et al., Adhesion Failures Determine the Pattern of Choroidal
Neovascularization in the Eye: A Computer Simulation Study. PLoS Com-
put Biol 8(5): e1002440. doi:10.1371/journal.pcbi.1002440 (2012).
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A n unfolded protein can move through thousands of
intermediate structures (conformations) before
finding its properly folded state. One approach to

understanding this process involves simulating a protein’s
behavior with molecular dynamics, and then analyzing the
resulting trajectories statistically to build a Markov state
model or MSM, which describes a series of conformational
states and the probabilities of transitions between them. In-
terpreting these MSMs can lead to new insights. Now, a
new application is available to address a key bottleneck
that has slowed the process of interpreta-
tion: the lack of a simple, automated
way to visualize MSMs. 

“With a picture, you gain a rapid
way to qualitatively analyze MSMs,”
says Bryce Cronkite-Ratcliff, an un-
dergraduate in computer science at
Stanford University. He worked with
Vijay Pande, PhD, professor of chem-
istry, structural biology and com-
puter science at Stanford, to create
MSMExplorer, an application for
visualizing MSM data. “It can
guide further quantitative analy-
sis in new directions,” Cronkite-
Ratcliff says. And as a bonus, the
application can generate graphics for
publications and posters, a task that most
MSM researchers currently do by hand. 

To create an MSM of a protein folding
simulation, a program like MSMBuilder—also
out of Pande’s lab and also available at
simtk.org—runs simulations to watch how often a
protein goes from one state to another, and clusters in-
termediate structures based on kinetic proximity—i.e.,
how energetically easy it is to change from one structure
to another. The resulting data matrices must then un-
dergo extensive quantitative analysis to be understood.
Visualizing the data as a network can guide researchers
to ask relevant quantitative questions. “MSMExplorer is
not a replacement for quantitative analysis, but it lets
you see overall patterns that are otherwise hard to tease
out of the numbers,” Cronkite-Ratcliff says.

A few years ago, for example, Greg Bowman, PhD,
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DETAILS

MSMExplorer is available for download at
https://simtk.org/home/msmexplorer along 
with a walkthrough and video demonstration.

BY KATHARINE MILLER

then a graduate student in Pande’s lab, crunched the num-
bers for a lot of MSMs and discovered the presence of ki-
netic hubs. These kinetic hubs represent a new and more
physically accurate way to conceptualize how proteins fold,
where the native (folded) state plays the role of a central
hub (gathering point) kinetically, not just thermodynam-
ically. The work was very labor intensive. But if MSMEx-
plorer had existed at that time, Cronkite-Ratcliff says, the
discovery would have been much more obvious. Because
the visualization displays various protein-folding states and
their connections in sizes that reflect their likelihood of

occurring, the hubs pop out. “It’s hard to look at a matrix
or do calculations on a matrix and de-

tect whether there’s a kinetic hub,”
he says. “But it’s pretty easy to open
a picture and see whether there’s a

giant circle in the middle with spokes
going out from it.” 

Certainly other software programs
exist that can build visualizations of net-
works—including Cytoscape and Gephi,

to name just two. But MSMExplorer
knows how to collect the MSM

files it needs and automatically
turn them into a useful visual-
ization “right off the bat,”
Cronkite-Ratcliff says. It also
does a few things those other

programs can’t. For example,
Cronkite-Ratcliff says, MSMEx-

plorer includes some custom tools such
as transition path theory (TPT) algorithms that

extract and display the likely paths a protein will take to
get from node A to node B, as well as how much activity
occurs along each path. The nodes can also be displayed
as images of the folded states they represent, a feature that
can help users produce publication-worthy graphics. “You
can make them look less like a
hairball,” Cronkite-Ratcliff says. 

According to Pande, the
MSM technique is already used
in 20 to 30 labs around the world
and many others are interested
in adopting it. “A way to visual-
ize MSMs will empower many
researchers now and many more
in years to come,” he says.  nn

A Simbios website providing 
open access to high quality 
biocomputational tools, accurate
models and the people behind them

SimTKHighlights

MSMExplorer uses transition path theory (TPT) to depict the likelihood of a
protein folding via various intermediates. Courtesy of: Bryce Cronkite-Ratcliff.

Visualizing Markov State Models 
Using MSMExplorer 
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Three-D animators have long
sought algorithms that can pack
odd-shaped things into tight

spaces. Now, Graham Johnson, PhD, a
QB3 Faculty Fellow in bioengineering at
the University of California, San Fran-
cisco together with Arthur Olson’s Mo-
lecular Graphics Lab at The Scripps
Research Institute has created an algo-
rithm called autoPACK that can pack
anything into anything—including stuff-
ing molecules into cells to visualize how
they interact in space. And, with support
from the CG Society of Digital Artists
and Autodesk, he is challenging both pro-
fessional animators and the scientific
community to use the algorithm as part of
the autoPACK Visualization Challenge
(http://autopack.cgsociety.org).

The Challenge provides participants
with the necessary ingredients to produce
visualizations of HIV in blood serum using
open-source models that are as biologi-
cally accurate as possible and constantly
being updated. The goal: to convey hu-

manity’s complex relationship with HIV
in either a short film (under two minutes)
or a JPG image.

Johnson hopes the competition will
not only build a large community of users
and developers who become hooked on
the program, but also attract both artists
and professional, Hollywood-caliber 3-D
animators from outside biology to help
build on the open-source project. “They
will most want the generic packing algo-
rithm, but our core distribution will always
come with the biological applications as
part of the GUI,” he says. “And working
with DNA and proteins as part of the

competition will provide a biological hook
into industry that we hope will continue
long after the contest is finished.”  nn

These renderings show an early version of the
autoPACK Visualization Challenge model of HIV
with the blood serum and lipid bilayer turned
off. Moving the camera around to show differ-
ent views we see (clockwise from top): HIV ma-
trix capsid proteins with one spike protein
sticking out; a nucleocapsid of HIV; half of the
spherical virus with five visible spike proteins;
HIV RNA with an RNA binding protein that is
critical to HIV’s lifecycle. Images courtesy of
Thomas Brown and Graham Johnson.

autoPACK 
Visualization

Challenge
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