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g u e s t  e d i t o r i a l

Just over a year ago, I left academia. I had been in
that realm for 25 years, working in musculoskeletal
biomechanics and human movement analysis. It was

a move that might have surprised anyone who knew me
as a child, as well as many who watched me through my
career. Yet the transition has been smooth and rewarding,
and harbors hints of a lesson for others. 

The story begins at age eight with my stated intent
to become a professor. What I really meant was the
stereotypical absent-minded professor of European
comic books: I dreamed of inventing cool gadgets to
help defeat the villains. 

Eventually I became a real professor. I enjoyed the mix
of research and teaching, and didn’t mind the additional
reality of “publish or perish.” But as this evolved into “get
more grants or perish,” I began to wonder whether input
or output was more important to our academic institu-
tions. And when would I get to defeat the villains anyway? 

I became more interested in an alternative lifestyle
after doing some private consulting. A rather typical sce-
nario would proceed as follows: The client explains a
need; I propose a solution and write a two-page proposal
with a budget; a contract is signed; work begins; and in
the next year, my software is used in a product that dis-
rupts the industry.* This was tremendously refreshing,
compared to waiting nine months for a (possibly nega-
tive) decision on a grant proposal. And it felt much more
like my dream of inventing cool gadgets. But small dis-

GuestEditorial
BY TON VAN DEN BOGERT, PhD

ruptive projects do
not fit well within
the current business
model of academic research, where we
are encouraged to have large teams, large grants with high
indirect costs, and graduate students who do the work
over five years.

So when I left academia to start a small business in
computational biomechanics, the decision was easier
than you might expect. Many things wouldn’t change: I
could still get NIH funding (as a small business); teach
graduate students (as an adjunct); and publish (if I

avoided contracts with unreasonable restrictions and set
my fees high enough to have time to write). And I fig-
ured I could out-compete others in this niche (mostly
graduate students and postdocs such as those I used to
train) while remaining competitive through continuous

improvement of my capabilities. 
In biomedical computing, it’s actually possi-

ble for an individual or small business to be at
the cutting edge of research. To some extent,
that’s because they can collaborate with aca-
demic investigators, as I’ve continued to do
(mostly through the Simtk.org collaborative
platform). Sometimes academics have expertise
or laboratory facilities that I do not have, or they
need my expertise. Funding for such collabora-
tions is available, and I believe they provide an
increasingly viable model for biomedical re-
search, resulting in high-quality work and a win-
win situation for all parties. Most importantly,
the independent “comic book” scientist can
enjoy the freedom to quickly and efficiently in-
vent cool gadgets and slay a few villains. !!

DETAILS

Antonie (Ton) J. van den Bogert is President of Orchard
Kinetics, a startup company doing computational
musculoskeletal biomechanics R&D, based in Cleveland, Ohio.
Previous positions were at the University of Calgary and the
Cleveland Clinic Lerner Research Institute. Ton is well-known as
the moderator of Biomch-L, a mailing list and social network
for biomechanists, which has existed since 1988 and now has
more than 10,000 members. He co-founded the Technical
Group on Computer Simulation of the International Society of
Biomechanics (ISB) in 1989, and is currently the president of the
ISB. As a pioneer in musculoskeletal modeling and simulation,
he has held a collaborating R01 grant with Simbios, and
currently serves on the Scientific Advisory Board of Simbios. 

* In 2005, I received a Technical Achievement Award from the Academy
of Motion Picture Arts and Sciences for work with Motion Analysis Corp.
(Santa Rosa, CA). This was a consulting project that resulted in software
to generate realistic 3-D human animations from motion capture data. 

Slaying Villains Outside 
the Ivory Tower
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There are numerous modeling methods available to
make predictions of muscle and joint contact forces.
While such predictions can help improve treatments

for movement-related disorders such as stroke or osteoarthritis,
there’s a problem: choosing which one to use. The research
community hasn’t had a way to easily evaluate different ap-
proaches. The Grand Challenge Competition to Predict In
Vivo Knee Loads—now in its third year—changes that by mo-
tivating researchers to critically evaluate their simulations of
contact forces in the knee, and by providing a
wealth of experimental data to do so.

“Through the competition, I hope that we as
a research community will be a little more criti-
cal of ourselves—in a good way—so that we can
really gain confidence in what we’re predicting
and our models can become much more useful
clinically,” says B.J. Fregly, PhD, professor of
mechanical and aerospace engineering at the
University of Florida. He and Darryl D’Lima,
MD, PhD, at Scripps Clinic are principal inves-
tigators of the grand challenge grant. 

Each fall, the competition organizers make
available a comprehensive data set for one subject
who has received an instrumented, force-measur-
ing knee implant. The data includes pre-surgery
MRI and CT data, surface marker trajectory data,
electromyography signals, and dynamic x-ray im-
ages of knee motion, just to list a few. But the com-
petition’s participants are not given the in vivo contact force
measurements. These they must predict and submit to the
American Society of Mechanical Engineers (ASME) and the
competition organizers. Presentations and discussions of the
competition submissions and the announcement of the winner
occur at ASME’s Summer Bioengineering Meeting.

While other research areas have held similar competitions,
“this grand challenge competition is the only one I’m aware
of in biomechanics,” says Grace Peng, PhD, a program direc-
tor at the NIH’s National Institute of Biomedical Imaging and
Bioengineering, which funds the knee grand challenge grant.
“In that way, it’s really unique.”

The government has recently been pushing the use of prizes
and challenges, especially for science and technology. “Chal-
lenges like this help benchmark some of the many techniques
available and determine best practices,” says Peng. “It is help-

s i m T K  h i g h l i g h t s

DETAILS
The publication “Grand Challenge Competition 
to Predict In Vivo Knee Loads” in the Journal of
Orthopaedic Research provides a detailed description
of the project and data.  To access the data, visit
http://simtk.org/home/kneeloads.

BY JOY P. KU, PhD, DIRECTOR OF SIMBIOS

ful to discuss the methods openly and publicly and have the
technology converge.”

That’s what Stephen Piazza, PhD, associate professor of
kinesiology at Pennsylvania State University, and his then-
graduate student Michael Hast, PhD, discovered when they
participated in (and won) last year’s competition. “When
multiple groups are working on the same problem, the same
data, there’s a potential for sharing and learning that can’t
occur otherwise,” says Piazza. 

Hast agrees: “Sometimes it feels like you’re in a cave work-
ing on these problems. Being able to see how others ap-
proached the same problem was a good experience.” 

Piazza and Hast actually waited one year after learning
about the competition before entering. “We couldn’t do it the
first year. Our simulation wasn’t where we wanted it to be,”
says Piazza. The competition motivated them to extend their
simulations, which had previously been used to predict forces
for a highly constrained mechanical knee simulator, to work
with the more variable human data. 

For Hast, the competition was the capstone to his PhD. The
competition’s data set, which is synchronized and captures sub-
jects performing different activities and using different walking
motions, was much more extensive than he had the time or op-
portunity to collect for his thesis. 

“It is really an embarrass-
ment of riches as far as the
data is concerned,” says Hast,
who plans to use the data in
his future research. As for the
competition, he says, “It’s cost-
effective and helps the greater
orthopedic community. It’s a
really great cause.”  !!

A Simbios website providing 
open access to high quality 
biocomputational tools, accurate
models and the people behind them

SimTKHighlights

Grand Challenge Competition Provides Rich 
Data Set to Improve Joint Contact Force Predictions
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Revealing the brain’s hidden stash of pic-
tures, thoughts, and plans has, until re-

cently, been the work of parlor magicians.
Yet within the last decade, neuroscientists

have gained powerful methods for delving
into the contents of brain activity, allowing
them to predict specific thoughts—includ-
ing images, memories, and intentions—
from brain activity. 

“When these pattern recognition
techniques came out, it gave the
field a big boost. People realized that
now we can really get at content,”
says John-Dylan Haynes, PhD, at
the Bernstein Center for Computa-
tional Neuroscience in Berlin.

Since the 1990s, functional
magnetic resonance imaging
(fMRI) has been used to track the
flow of blood and oxygen in the
brain, thus showing which spots in
the brain are busy. Around 2005,
neuroscientists discovered that
computational multi-voxel pattern
analysis (MVPA)—a technique
used in other fields such as finger-
print identification—could help
them do more than just pinpoint
what part of the brain is active. It
could help them read meaning in
the patterns of activity. If fMRI
takes pictures of the brain’s hidden
bar codes, MVPA decodes them.
Two studies below show the power
of MVPA applied to intentions and
memories. The final study below
shows how modeling can recreate
the images in the mind’s eye.

Decoding Intentions
Some of the early studies using

MVPA showed how scientists could
use a volunteer’s brain patterns to
train a linear classifier to predict

whether the volunteer was looking at, say, a
face or a chair. Then researchers expanded to
predict other mental content: emotions,
sounds, and memories, for example.

Intentions, Haynes found, are also pre-
dictable. In a study published first in 2008 in
Nature Neuroscience and repeated using
ultra-high field fMRI in June 2011 in Public

Library of Science One, Haynes and his
coworkers asked volunteers to enter an MRI
machine with one button near their left fin-
ger, and one button near their right finger.

Relax, they told the volunteers. Watch this
stream of letters in front of your eyes, choose
which button you will push, remember the
letter in front of you at the moment you

TAPPING THE BRAIN:
Decoding fMRI

A Brain’s Choice to Make.  Before a volunteer clicked on either a left or right button, Haynes and his group col-
lected the volunteer’s brain activity using fMRI. The scientists found regions (in green) that, analyzed using pat-
tern recognition techniques, could predict the button the volunteer would push. Those regions revealed the
predicted decision up to seven seconds before the volunteer felt he or she had made a decision.  Credit: John-
Dylan Haynes and Chun Siong Soon.
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choose, and then press the button. The vol-
unteers told the researchers which letter was
in front of their eyes when they chose which
button to press. Haynes and his coworkers
found that not only could the classifier pre-
dict which button a volunteer was about to
press, it could predict it far earlier than vol-
unteer was able to—up to seven seconds be-
fore the volunteer reported consciously
choosing which button to push. 

With this study, Haynes established that
our brains know some things before we do.
“Not all of our decisions are made con-
sciously,” he says. 

Haynes was also one of the first to use
MVPA to explore the brain for patterns. Be-
cause Haynes didn’t know exactly where he
might find patterns of decision-making in the
brain, or how many seconds before the deci-
sion he might be able to see those patterns,
he used MVPA as an initial tool for explo-
ration. He used a procedure called searchlight
decoding to search the whole brain without
making any assumptions ahead of time, and
pinpoint the areas and times in the brain that
forecast decision-making. More recently,
Haynes and his group have found they can
predict not just button pushing, but abstract
thought as well, such as deciding whether to
add or subtract two numbers.

Decoding Memories
Others, including Frank Tong, PhD, at

Vanderbilt University, have grappled with
decoding memories. Tong and his group de-
signed an experiment using MRI to test for
working memory (published in Nature in
April 2009) in the early visual areas of the
brain—areas that perceive basic visual fea-
tures. They showed a volunteer first one set
of parallel lines, then another set in a differ-

ent orientation. They told the volunteer to
remember one of the sets. Then after an 11-
second pause, they asked the volunteer to
recall the orientation they kept in mind. 

During that pause, the overall brain ac-
tivity in the early visual areas of the brain
often returned to normal. However, even at
that low level of activity (no greater than
would be expected when viewing a blank
screen), Tong found that pattern classifiers
could pick out subtle shifts in brain patterns
associated with each orientation, and could
still be trained to predict which orientation
the volunteer held in memory. “We can see
these faint echoes of what they saw before,
what they are actively holding in mind,”
Tong says. “That would be invisible if we
didn’t do multivoxel pattern analysis.” 

Tong’s study shows that working mem-
ory resides in the early visual areas of the
brain, a zone where few expected to find
such a higher thought process. And it helps
establish that images held only in the mind
are robust enough that pattern algorithms
can decode and predict them. 

Encoding Models
Researchers have also started decoding

novel brain patterns—something a linear
classifier cannot do because it can only predict
patterns it has already seen. In a study pub-
lished in Current Biology in October, compu-
tational neuroscientist Jack Gallant, PhD,

and post-doctoral researchers Shinji Nishi-
moto, PhD, and Thomas Naselaris, PhD,
and their group at the University of Califor-
nia, Berkeley used a combination of brain
modeling and decoding to reconstruct a prim-
itive version of a movie someone is watching. 

After showing a series of movie clips to a
volunteer lying inside an MRI machine, the
scientists ran the data through a two-step
process, Naselaris says. They first created an
encoding model: in essence, a virtual brain
that generates signals when images are pre-
sented to it. In the early visual region that
Gallant studies, the brain processes images as
pieces of moving edges. Each two-millimeter
cube of brain space (also called a voxel)
processes the moving edges in a unique way,
and Gallant’s group created a model for each
cube. Each model maps various features of
the movie input—motion, color, spatial fre-
quency, and so on—into an output signal
that matches as closely as possible the brain
activity seen in each cube of the volunteer’s
fMRI brain data. “It is the signature of that
one individual voxel,” Naselaris says.

Then, using a brand-new set of movie
clips, Gallant’s group collected new brain
activity data, and set the model going the
other direction. They input the brain activ-
ity to see if the model could now predict
movie scenes from brain data. A novel form
of Bayesian decoding helped them match
images, taken from a massive database of 1-

Reconstructing Movies via the Brain. Using brain activity of volunteers watching a movie (frames
in top row), Gallant and his coworkers created a model that predicts brain patterns from movie
clips. They then used that model and a database of 18 million seconds of random movie clips from
the Internet to predict the brain activity that would be expected from each clip. They then averaged
together the 100 clips in the random library that were most likely to have produced brain activity
similar to what was actually observed (bottom row).  See Nishimoto, S et al., Reconstructing Visual
Experiences from Brain Activity Evoked by Natural Movies, Current Biology 21:1641-1646 (2011).
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second movies, to brain activity patterns.
Their dark, blurry movie reconstructions
are an average of the top 100 short movie
clips with a predicted brain pattern that fits
best to the actual brain activity patterns.

Naselaris cautions that they can’t recre-
ate dreams or other mind’s-eye images with
this model. Because they focused on an
early visual brain region, their model “has
everything to do with the light that is hit-
ting your eye,” Naselaris says.

Yet Gallant and his group’s strategy is
powerful for a number of reasons. With it,
they can make surprisingly accurate predic-
tions about images that the model has not
seen before. In addition, their strategy of
first creating an encoding model before de-
coding gives researchers a method for test-
ing theories about how the brain processes
information. For other areas of the brain,
the strategy will likely have to be modified.
“The brain is a pretty complicated place,”
Gallant says, “so there is no one grand ap-
proach that will solve everything. Instead,
there are thousands of neuroscientists using
thousands of different approaches to try to
move ahead.” !!

Personalized cancer therapy is now a re-
ality. A handful of tumor-classifying

tests and targeted drugs are in widespread
clinical use; and early attempts are under-
way to match high-risk cancer patients to
experimental drugs based on genetic testing
of their tumors. 

But progress has been incremental and
successes have been measured. Cancer is
complex and insidious; knock out one bad
player with a drug and the system evolves
resistance. Patients may live longer, but still
die of their disease. To take personalized
cancer medicine to the next level—to
achieve cures—computational approaches
are needed. “We are at a crossroads where
it’s becoming increasingly difficult to do
anything of value without a heavy element
of computation,” says Andrea Califano,
PhD, professor of biomedical informatics at

PERSONALIZED CANCER TREATMENT: 
Seeking Cures Through Computation

Columbia University and director of the
Columbia Initiative in Systems Biology.

Bioinformatics and computing are help-
ing to make advances on several fronts, in-
cluding: cataloging the full spectrum of
genomic defects in cancer; identifying the
defects that drive malignancy; efficiently
translating these discoveries to patient care;
and improving the tools that are already in
clinical use. 

Mapping the Landscape 
Several cancer genome initiatives are

cataloging the array of molecular defects
that define different cancers and cancer
subtypes. The NIH’s The Cancer Genome
Atlas (TCGA) and the International
Cancer Genome Consortium (ICGC)
have already collected multiple layers of
data—including sequencing, mutational,
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copy number alteration, DNA methylation,
microRNA, and gene expression data—on
an unprecedented number of tumors. 

“These different layers will be mapped
out, overlaid, and integrated, so we can see
the complete genomic picture of the
tumor,” says Douglas A. Levine, MD, head
of the Gynecology Research Laboratory at
the Memorial Sloan-Kettering Cancer
Center and a TCGA investigator.

This is the first time we’ve had all these
different data types on exactly the same
samples, Califano says. “And simply amaz-
ing findings are coming out.”

The TCGA reported results for its sec-
ond complete genome—for high-grade
serous ovarian cancer (a common and ag-
gressive form of this cancer)—in Nature in
June 2011. The project analyzed data from
489 tumors, including the complete exome
sequences of 316, the most ever reported to
date for any solid tumor, Levine says.

Among the most exciting findings,
about half the patients had defects—inher-
ited or acquired mutations or epigenetic si-
lencing—in the tumor suppressor genes
BRCA1 and BRCA2 or in related DNA re-
pair genes. These tumors might respond to
PARP inhibitors, which improve survival
in women with inherited BRCA1 and
BRCA2 mutations, Levine says. 

Also, seven percent of tumors had ho-
mozygous deletions in the tumor suppressor
gene PTEN, a defect not previously reported
in this subtype of ovarian cancer. Levine
and others have already begun clinical trials
to treat this subset of patients with a new
class of drugs called PI3 kinase inhibitors,
which target the PI3K/AKT/mTOR path-
way that PTEN regulates. 

“All these things need to be tested. But
we now have the landscape and the
roadmap laid out,” Levine says. “Molecular
medicine is not really being used at all
today in ovarian cancer. I hope it can be
used in the near future to make better treat-
ment decisions.”

Identifying the 
Driving Defects

Sequencing cancer genomes is only the
first step in understanding this disease; the
next step is to sort out which genetic
changes are driving the cancer—and thus
will make robust biomarkers and drug tar-
gets—and which are merely incidental.
This is where systems biology comes in
handy, Califano says. “The idea is to com-
putationally interrogate regulatory net-
works of the cancer cell to find out what are
the genes that are actually causally related
to the presentation of a specific tumor phe-

notype,” Califano says. 
For example, in a 2010 paper in Na-

ture, Califano’s team used network analy-
sis to identify two master regulators of a
particularly aggressive subtype of glioma
brain cancer. These two transcription fac-
tors (C/EBP! and Stat-3) don’t appear in
the gene expression signature for this sub-
type, as they are about the 500th and
1300th most differentially expressed, Cal-
ifano says. “But, if you look at them with
these network analyses, they stand out as
being the most significant genes in terms
of their activity in regulating the signa-
ture.” Inactivating these genes in mouse
xenografts blocked tumor development or
reduced malignancy. 

In an October 2011 paper in Cell, Cal-
ifano’s team used a novel algorithm to
identify a “hidden” network of mRNAs
and microRNAs that together control
PTEN expression. They showed that 13

genes from this network are commonly
mutated in glioma. Deleting any of these
13 genes—which had never previously
been linked to glioma—suppresses PTEN
expression even if the PTEN gene is in-
tact. “So this gives you a very strong hint
that mTOR or AKT inhibitors, in combi-
nation with other drugs, may actually
work in patients that have absolutely no

detectable genetic alteration of PTEN,”
Califano says. 

Bringing the Data to 
Biologists and Physicians

Experimental biologists and clinical re-
searchers are in the best position to translate
cancer genome findings into meaningful
advances in patient care. But they often
lack the expertise needed to access and
make sense of the data. A team of scien-
tists at Georgetown University is trying
to bridge this gap by creating a user-
friendly integrated database called G-
DOC (Georgetown Database of Cancer),
which they describe in a September 2011
paper in Neoplasia. 

“We are unique in the way that we pro-
vide the data mining as well as the analytics
in one environment,” says Subha Madha-
van, MD, director of clinical research in-
formatics at the Lombardi Comprehensive

Cancer Center at Georgetown. G-DOC in-
tegrates patient data, genomic data, and
small molecule data (“for matchmaking
molecular targets with drugs,” Madhavan
says) with popular tools for analyzing and
visualizing these data, including GenePat-
tern, Pathway Studio, and Cytoscape. 
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Master Regulators. Six transcription factors, including C/EBP! and Stat-3, control most of the
genes in the gene signature of an aggressive subtype of high-grade glioma. Reprinted by per-
mission from Macmillan Publishers Ltd: Carro MS, et al., The transcriptional network for mes-
enchymal transformation of brain tumours. Nature. 2010;463:318-25.

Continued on page 8
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Hidden Network. Left: Graphic visualization of
a complex network of RNA-RNA interactions in
glioma. The interactions regulate the expression
of oncogenes and tumor suppressor genes, in-
cluding PTEN. Nodes represent individual RNAs
and edges represent RNA-RNA interactions.
Nodes near the center are more tightly regu-
lated. Below: Close-up of the densest 564-node
subgraph shown in red at the center of the net-
work. Reprinted Sumazin, et al, An Extensive
MicroRNA-Mediated Network of RNA-RNA In-
teractions Regulates Established Oncogenic
Pathways in Glioblastoma, Cell 147:2:370-381
(2011) with permission from Elsevier.

Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures
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Users (both internal and external to
Georgetown) have contributed clinical
data on more than 3000 patients with
breast or gastrointestinal cancers. “We were
just lucky to work with investigators who
had de-identified clinical data that we
could leverage,” Madhavan says. Madha-
van’s team has also imported a wealth of
data from public databases and published
articles. “We bring in the raw data and stan-
dardize them, so there’s a lot of value added
to that data,” Madhavan says. They will add

TCGA data for breast and colon cancer
when they become available, she says. 

Researchers can use G-DOC to gener-
ate or test hypotheses; run in silico experi-
ments; learn about the newest types of
data—including next generation sequenc-
ing, metabolomics, DNA copy number
abnormalities, and microRNA expres-
sion—as well as about systems biology;
and speed up the pace of their research.
For example, it took one person using G-
DOC one month to complete a colon
cancer analysis that would otherwise have
taken a team of people at least a year to
complete, Madhavan says. 

Overcoming Computing Barriers
To fully realize the vision of personal-

ized cancer therapy, more labs will need to
become computationally savvy, Califano
concludes. “Right now there are a few
computationally empowered labs, but the
vast majority of other labs can only access
computational analyses through collabo-
rations,” Califano says. “There has to be
some kind of connective tissue.” He
points to models such as the National
Centers for Biomedical Computing,
which have fostered collaborations be-
tween computer specialists and biologists
and physicians. “I think this is an example
of the way things can go forward.”  !!

Gene expression signatures that stratify patients into likely and

unlikely treatment responders are already in clinical use for certain

cancers. But these “first generation” tests have severe limitations,

says W. Fraser Symmans, MD, professor of pathology at MD An-

derson Cancer Center. He and his colleagues are using state-of-

the-art bioinformatics and biostatistics techniques to develop the

next generation of gene expression tests for breast cancer.

Symmans and his colleagues discovered a paradox with some

first generation tests for breast cancer. The tests accurately sepa-

rate patients into “good” and “poor” responders to chemother-

apy; but the “good responders” have worse survival. (The tests

misclassify certain aggressive tumors that initially respond vigor-

ously to chemotherapy but tend to relapse.) His team developed a

second-generation test, described in the May 2011 issue of JAMA,

that overcomes this issue and accurately predicts survival.

The test comprises a series of gene signatures (from the tumor)

that sequentially predict: (1) response to hormonal treatment; (2)

resistance to chemotherapy; and (3) sensitivity to chemotherapy.

“We realized that one predictor was not going to be enough to

capture the complexity,” says Christos Hatzis, PhD, who led the

computational aspects of the project; Hatzis is founder and vice

president of technology at Nuvera Biosciences Inc., which has com-

mercial rights to the technology. The team used a multivariate ap-

proach to identify the key genes that define the signature;

univariate approaches yield too many redundancies because genes

work in pathways, Hatzis says. 

The test accurately identifies patients who will respond to ther-

apy about twice as often as standard methods. “It doesn’t com-

pletely solve the problem but it’s a big step forward,” Hatzis says. 
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Several biomedical computing projects
received multi-million dollar funding

in the fall of 2011, including efforts to:
simulate the cardiac physiology of the rat;
build a state-of-the-art DNA simulation
toolkit; build an artificial pancreas; and
mine data for clues about psychiatric dis-
ease. The initiatives will bring together
diverse experts, datasets, or models to ac-
complish ambitious goals. 

Modernizing the Lab Rat 
A new type of lab rat—one simulated on

a computer—will help scientists tease out
the multifactorial causes of cardiovascular
disease, thanks to a $13 million grant from
the National Institutes of Health. The
grant establishes a new National Center for
Systems Biology.

“The goal of the Virtual Physiological Rat
Project is to understand how high level
traits, such as hypertension, arise from mul-
tiple inputs at multiple levels, including ge-

netic variation and environmental perturba-
tions,” says principal investigator Daniel A.
Beard, PhD, professor of physiology at the
Medical College of Wisconsin. 

Beard’s team will build detailed compu-

tational models of the rat’s heart, vascula-
ture, and kidneys. “In some cases, we’re
drilling down to the individual cells and in-
dividual transporters and pumps that are in-
volved in the operation of the organ and
integrating all the way up to the whole

organ,” Beard says. Though sophisticated
models already exist for some of the
pieces—for example, the heart is the best
modeled of all organs—they will have to
adapt these models for rats in general and

for particular genetic strains of rats. 
Once the models are refined, Beard’s

team will breed new strains of rats in silico
and subject them to different environmental
stressors to predict which combinations of
genes and environment lead to hyperten-

sion, heart failure, kidney failure,
and other cardiovascular diseases.
Then his team will test the most
interesting predictions with exper-
iments in real rats. “The biggest
novelty and the biggest challenge
is this cycle of making a prediction
and then making a rat,” Beard
says. “We’re doing this on an un-
precedented scale.”

Simulating DNA 
at All Levels 

A new DNA simulation toolkit
will be the first to span all levels of
resolution. Funded by a $3 million
grant from the European Research
Council, the toolkit will help sci-
entists gain new insights into how
DNA functions, including how
genes are regulated and how they
interact with the environment
(epigenetics).

“The overall goal is to develop
a complete theoretical and com-
putational framework to be able
to simulate DNA in a multiscale
manner, from atomistic to chro-
matin scale,” says principal inves-

FOLLOW THE MONEY: 
Big Grants in Biomedical Computing

Virtual Rat Heart: A computational model of the rat heart that will be incorporated into the Virtual Physio-
logical Rat Project. Courtesy of: Daniel Beard, Medical College of Wisconsin.
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tigator Modesto Orozco, PhD, senior pro-
fessor and head of IRB Barcelona’s Molec-
ular Modeling and Bioinformatics group
and director of life sciences at the
Barcelona Supercomputing Center. “If we
are successful, we will define a unique series
of tools covering the entire time and size
scale of DNA.”

The toolkit will help researchers answer
questions about how nucleic acids work
“from the point of view of the first principles

DNA Unveiled: This computer simulation (which precedes from left to right and top to bottom) gives
insights into the mechanism by which DNA starts to unfold. Courtesy of: A. Pérez, IRB Barcelona.
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of physics”— for example, how the physical
properties of chromatin impact DNA regu-
latory mechanisms. “We will have to over-
come major challenges at the frontier
between the different simulation levels,”
Orozco says. “It is a very ambitious project.” 

Advancing the Artificial Pancreas 
A device that mimics the pancreas’ job

may soon be a reality, thanks in part to a
$4.5 million grant from the National Insti-
tutes of Diabetes, Digestive, and Kidney
Diseases. The device—which features a
state-of-the-art control algorithm—would
free patients with type I diabetes from their
current regimen of manual glucose monitor-
ing and insulin injections. 

“We’ve assembled an international
dream team,” says principal investigator
Frank Doyle, PhD, professor of chemical
engineering and of electrical engineering at
the University of California, Santa Barbara.
His team includes scientists from Italy, the
Mayo Clinic, the University of Virginia,
and the Sansum Diabetes Institute. Several
groups have prototypic artificial pancreas
devices in testing. But Doyle’s team aims to
bring the first sophisticated device into
real-world use. “The exciting part of this
grant is the possibility of getting beyond in-
clinic prototyping,” Doyle says. 

The devices consist of an ipod-sized com-
puter, glucose sensor, and insulin pump
(which can be attached to the arms, legs, or
stomach). A simple version (made by
Medtronic) is already on the market in Eng-
land: the system monitors glucose and shuts
off the pump automatically when blood
sugar drops too low. But Doyle’s team is
going beyond such a simple feedback loop,
using an advanced algorithm called “model
predictive control” (which is also used in
aerospace controls). “We forecast and antic-
ipate insulin needs,” rather than simply re-
sponding to current glucose levels, Doyle
says. The algorithm will even adapt to a pa-
tients’ individual patterns, such as the tim-
ing of exercise and meals, as well as to
individual variation in insulin metabolism,
Doyle says. “It won’t be a one-size fits all al-
gorithm; it will be tailored and customized
to the individual patient.”

Synthesizing Data 
on Mental Illness

A new center at the University of
Chicago will explore the origins of psychi-
atric disease by integrating existing data from
diverse disciplines and across multiple sites.
The center is the newest Silvio O. Conte
Center for Neurosciences Research and the
first with a computational focus. It received

$14 million in grants from the National In-
stitutes of Mental Health and the Chicago
Biomedical Consortium. 

“We have a lot of datasets from different
communities that have never been analyzed
within the same model before. It’s an excit-
ing research opportunity,” says principal in-
vestigator Andrey Rzhetsky, PhD, professor
of medicine and human genetics at the Uni-
versity of Chicago Medical Center. 

Rzhetsky will head a consortium of 15
lead investigators from seven schools that
will bring together clinical data, genetic
linkage data, gene pathway data, functional
data on genes and proteins, drug data, and
drug-gene interaction data. “The main
premise of the center is to get together won-
derful specialists in different disciplines;
make them talk to each other; design mod-
els that span all datasets; and make predic-
tions that can be tested experimentally.”

Rzhetsky’s team will attempt to unearth
novel connections between genes, environ-
ment, and disease phenotypes, as well as be-
tween the disorders themselves. For
example, Rzhetsky and colleagues have pre-
viously shown that autism, schizophrenia
and bipolar disorder have considerable ge-
netic overlap. “You can get a lot more from
joint analysis of several phenotypes than
from a single phenotype,” Rzhetsky says.  !!

It has become commonplace for people to
use social media to share their healthcare

stories, seek a community of individuals with
the same diseases, and learn about treatment
options. All this Internet activity also pro-
duces data that can be used for research. 

“In the networked world, who cures can-
cer? We all do,” says Paul Wicks, PhD, di-
rector of research and development at
PatientsLikeMe, a site where people diag-
nosed with serious life-changing illnesses

can record and share information.
For PatientsLikeMe and a number of

other sites, doing biomedical research using
data gathered online is part of the business
plan. With names such as 23andMe, Med-
Help, TUDiabetes, myMicrobes.eu, CureTo-

gether, these sites blend community building
with information gathering. They then turn
to computational approaches, such as data
mining and natural language processing
(NLP), to analyze the information gathered. 

This crowd-sourced research often
reaches into realms that otherwise wouldn’t
or couldn’t be studied, due to a lack of either
appropriate information or financial sup-
port. Moreover, with their access to large
populations of both cases and controls, these
sites are rapidly producing clinical research
results. That they function in a landscape of
ever-changing and growing data just makes
the process that much more interesting.  

Doing Research That 
Others Can’t or Won’t

On social media healthcare sites such as
PatientsLikeMe, people record and share in-
formation about their diseases. This self-re-

LEVERAGING SOCIAL MEDIA: 
For Biomedical Research
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ported data may have some inherent biases,
says Wicks, who hopes that those issues will
disappear as they get to a large enough scale.
But it also has some inherent strengths: On-
line, people talk about issues they might not
raise with a physician, and they can report on
and track their conditions more frequently. 

To take advantage of this, PatientsLikeMe
set out to “do research that’s new and
novel… and not just cheaper than a survey

by mail,” Wicks says. Moreover, he says, “Our
inclination is to do work that reflects the
needs of patients.” So, for example, Patients-
LikeMe studied the incidence of compulsive
gambling among people with Parkinson’s dis-
ease (PD) because people on the site were
concerned about the phenomenon. In their
sample—assembled in the course of just a
week—they found that gambling was twice
as common among PD patients as would be
expected from physician notes—suggesting
that patients don’t necessarily share certain
embarrassing information with their doctors
(although bias in the sample could also be an
issue)—and that compulsive gambling was
not associated with being on a dopamine-ag-
onist drug (as previous studies had suggested). 

PatientsLikeMe has also looked at off-
label drug use. “People don’t want to fund
research of off-label drugs, especially gener-
ics,” Wicks says. “Our platform provides a

way to capture data that no one else has the
bandwidth to look at.” 

Access to Large Populations 
for Clinical Trials

At PatientsLikeMe, 23andMe and Med-
Help, researchers are finding that online
communities offer a huge benefit to clinical
research: A vast treasure trove of cases and
an even vaster population of controls.

Launched in 2005, PatientsLikeMe has
115,000 users and covers about 1300 con-
ditions. For about twenty of those condi-
tions, PatientsLikeMe collects patient data
in a structured way, requesting information
on specific outcomes—the kinds of things
typically used for clinical trials. “We build
it so we can prepare for future research stud-
ies,” Wicks says. 

For example, early on, the site created a
community and several surveys for people
with ALS (amyotrophic lateral sclerosis).
This meant they already had lots of valuable
background data when, in 2008, the commu-
nity clamored for treatment with lithium. A
small (16-person) study in Italy had shown
that lithium could slow the progress of the
disease. But PatientsLikeMe researchers were
wary. “Many studies of ALS treatments kill
patients faster than placebo,” Wicks says.
“You want to be sure it’s not harmful.” So Pa-

tientsLikeMe immediately spent a year gath-
ering data on off-label lithium use by 150
eager ALS patients in their community. And
they matched cases to controls in a rigorous
way—using an algorithm that considered
data on both ALS onset and the shape of the
disease progression curve, key traits that vary
in significant ways among ALS patients. This
was possible, Wicks says, because they had
lead-in data describing the patients’ status be-

fore taking the drug. Preliminary results an-
nounced in December 2008 (just nine
months after the Italian research was pub-
lished) showed that lithium was not effective
in slowing disease progress. Since then, this
result was confirmed in randomized clinical
trials. The PatientsLikeMe research was pub-
lished in Nature Biotechnology in April 2011.

The genotyping service 23andMe does
research using data they gather from people
who provide not only saliva samples but also
phenotype information gathered through
online surveys. And the company leverages
social media such as Twitter and Facebook
to recruit communities of individuals with a
particular disease. “Recruiting is not done
through a clinical center,” says Chuong
(Tom) Do, PhD, a research scientist at the
company. “It’s done entirely online.” 

For many communities, Do says, “we ac-
tually have the genotyping process com-
pletely sponsored, making the financial
barriers to participation in the research as
low as possible.” For example, using a pri-
vate donation from Google founder Sergey
Brin, 23andMe was able to sponsor most of
the genotyping costs for PD cases in a re-
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This screenshot of the ALS tracking tool for an individual patient in the PatientsLikeMe lithium study
shows how the patients entered their disease characteristics, demographics, blood levels, dosage,
ALSFRS-R score (a measure of disease progression), forced vital capacity, and side effects.  Reprinted
from supplemental figure 1, Wicks, P, et al., Accelerated clinical discovery using self-reported patient
data collected online and a patient-matching algorithm, Nature Biotechnology 29, 411–414 (2011).
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cent study. But for controls, Do says,
23andMe has the advantage of being able
to use data from the population of people
who pay for the service. For a less common
disease like PD, Do says, the small propor-
tion of misclassified cases mixed in with
that population would have a negligible ef-
fect on the results of the study. “We just
need to be sure to get enough cases,” he
says. “Controls come for free. It’s actually a
huge help for us.” Indeed in a recent study
of PD (published in PLoS Genetics in June
of 2011) involving roughly 3400 cases and
29,000 controls, they were able to identify
two novel genes contributing to the risk of
developing PD. Because of the control
group’s size, Do says, “We could wring a lot
of statistical power from our dataset.” 

23andMe has also launched initiatives
to study several rare disorders, namely sar-
coma and myeloproliferative neoplasms.
While recruitment for these conditions can
be difficult and expensive in the setting of
a traditional research center, 23andMe’s
system allows for aggregation of individuals
at low overhead to the company and with-
out regard for geographic barriers, Do says.

With over 12 million users, MedHelp is
the largest online health community. The
business focuses on helping people track
their diseases as well as connecting them
with appropriate communities and physi-
cians. In addition, though, they work in
partnership with academics, physicians and
others to extract useful knowledge from
MedHelp’s accumulating data. For exam-

ple, several physicians examined data on
lens implant failures pulled from the eye-
care forums on MedHelp (forums that were
sponsored by the American Academy of
Ophthalmology). The researchers found
that multi-focal implants had a much
higher failure rate than other types—infor-
mation that was very valuable to the oph-
thalmology community. 

Rapid Turnaround Time
Compared to clinical research centers,

those who leverage social media web sites
can conduct clinical research very quickly.
The PatientsLikeMe study of lithium use in
ALS was completed in just twelve
months—before a randomized clinical trial

even began recruitment. In another exam-
ple, when members of the site’s ALS com-
munity raised a question about excessive

yawning, PatientsLikeMe published re-
search on the problem in just three months.

“The ability to accelerate the pace of
research through social media is exciting
to me,” Do says. Part of the acceleration
comes from the immediate ability to amass
and access large cohorts, he says. But it
goes beyond that. For example, when
23andMe set out to determine whether its
data was reliable enough to replicate pub-
lished genome-wide association studies
(GWAS), they completed the task at
lightning speed compared to a typical
GWAS. Indeed, it took 23andMe less than
one year to replicate and present results
from a PD GWAS that had taken the pre-
vious researchers almost six years from hy-
pothesis to publication. 

Flexibility
If data initially collected online is in-

complete or even wrong, it is easily
amended by going back to the users with
revised surveys. For example, when
23andMe first attempted to replicate a
GWAS for celiac disease, they did not
find the expected associations. Because
their survey had asked “Have you ever
been diagnosed with celiac disease,” they
believed their study might include some
false positives. So they re-worded the
question to ask: “Have you ever been di-
agnosed with celiac disease, as confirmed
by a biopsy of the small intestine.” And
with the newly (and rapidly) acquired an-
swers, they were able to replicate four of

the six expected associations.
Dealing with changes of this

kind also means re-running the
GWAS. “Many times based on re-
search results, we’ll ask new ques-
tions,” Do says. “So we end up
with a very fluid dataset and the
need for tools that allow us to
work with the data as it constantly
changes.” They often run the
same GWAS studies repeatedly.
“We have over 1000 that we run
on a regular basis, culled from the
50 plus surveys,” Do says. That is
a unique computational aspect of
the work: custom-built software to
conduct parallelized GWAS on
the same dataset. 

Today, 23andMe has more
than 120,000 peoples’ genotypes
in its database. “We look forward
to the day when we have one mil-
lion plus,” Do says. “We can only
imagine the types of discoveries
that will be possible with a data-
base that size.” !!

23andMe successfully replicated previous GWAS for a number of diseases as shown here in a chart of suc-
cess rate (versus total power) by disease class. Expected = number of associations they expected to repli-
cate. Attempts = number of associations they attempted to replicate. The blue dot represents the success
ratio (number of successful replications divided by number of expected replications). The black line repre-
sents the 95 percent prediction interval for the success ratio. Reprinted from Tung, J, et al., Efficient Repli-
cation of Over 180 Genetic Associations with Self-Reported Medical Data, PLoS ONE 6(8) (2011). 
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AnalyticsAnalytics
Big Data Big Data 



BiomedicalResearch
By Katharine Millerin

“We have recommendations for you,” announces
the website Amazon.com each time a cus-
tomer signs in. 

This mega-retailer analyzes billions of customers’ pur-
chases—nearly $40 billion worth in 2011 alone—to predict
individuals’ future buying habits. And Amazon’s system is
constantly learning: With each click of the “Place your

order” button, the company’s databank
grows, allowing it to both refine its predic-
tions and conduct research to better un-
derstand its market.  

These days, this sort of “Big Data Ana-
lytics” permeates the worlds of commerce,
finance, and government. Credit card com-
panies monitor millions of transactions to
distinguish fraudulent activity from legiti-
mate purchases; financial analysts crunch
market data to identify good investment
opportunities; and the Department of
Homeland Security tracks Internet and
phone traffic to forecast terrorist activity. 

Where is Amazon’s equivalent in health-
care and biomedical research? Do we have
a “learning healthcare system” that, like
Amazon.com, can glean insights from vast
quantities of data and push it into the hands
of users, including both patients and health-
care providers? Not even close. 

It’s a situation that frustrates and inspires
Colin Hill, CEO, president, chairman and
cofounder of GNS Healthcare, a healthcare
analytics company. “When I go to my doctor
for some treatment, he’s kind of guessing as
to what drug works,” he says. With the data
currently being captured and stored, he says,
there’s now an opportunity to take a broader

15Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures
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view of the problem. “We need to make this system smarter and
use data to better determine what interventions work,” he says. 

And there is hope, says Jeff Hammerbacher, who formerly
led the data team at Facebook and is now chief scientist at
Cloudera, a company that provides businesses with a platform
for managing and analyzing big data. “I believe that the meth-
ods used by Facebook and others—commodity hardware, open
source software, ubiquitous instrumentation—will prove just
as revolutionary for healthcare as they have for communica-
tions and retail,” he says.

Others agree: “We have to create an infrastructure that al-
lows us to harvest big data in an efficient way,” says Felix

Frueh, PhD, president of the Medco Research Institute.
Right now, biomedical infrastructure lags well behind the

curve. Our healthcare system is dispersed and disjointed; med-
ical records are a bit of a mess; and we don’t yet have the ca-
pacity to store and process the crazy amounts of data coming
our way from widespread whole-genome sequencing. And
then there are privacy issues (see “Privacy in the Era of Elec-
tronic Health Information,” a story also in this issue). More-
over, while Amazon can instantly provide up-to-date
recommendations at your fingertips, deploying biomedical ad-
vances to the clinic can take years. 

Despite these infrastructure challenges, some researchers
are plunging into biomedical Big Data now, in hopes of ex-
tracting new and actionable knowledge. They are doing clin-
ical trials using vast troves of observational health care data;
analyzing pharmacy and insurance claims data together to
identify adverse drug events; delving into molecular-level data
to discover biomarkers that help classify patients based on
their response to existing treatments; and pushing their results
out to physicians in novel and creative ways. 

Perhaps it’s asking too much to expect that the complexi-
ties of biology can be boiled down to Amazon.com-style rec-
ommendations. Yet the examples described here suggest
possible pathways to the dream of an intelligent healthcare
system with big data at its core. 

DEFINING BIG DATA 
IN BIOMEDICINE

Big data in biomedicine is coming from two ends, says Hill:
the genomics-driven end (genotyping, gene expression, and
now next-generation sequencing data); and the payer-provider
end (electronic medical records, pharmacy prescription infor-
mation, insurance records).

On the genomics end, the data deluge is imminent. With
next-generation sequencing—a process that greatly simplifies
the sequencing of DNA—it is now possible to generate whole
genome sequences for large numbers of people at low cost. It’s
a bit of a game-changer. 

“Raw data-wise, it’s 4 terabytes of data from one person,”
says Eric Schadt, chair of genetics at Mt. Sinai Medical School
in New York City. “But now imagine doing this for thousands
of people in the course of a month. You’re into petabyte scales
of raw data. So how do you manage and organize that scale of
information in ways that facilitate downstream analyses?” 

For now, as we wait for next-gen sequencing to work its
magic, genomics data matrices remain long and
thin, with typically tens to hundreds of patients
but millions or at least tens of thousands of vari-
ables, Hill notes. 

“But on the payer-provider data side,” Hill says,
“we’re dealing now with large longitudinal claims
data sets that are both wide and deep.” A data matrix
might have hundreds of thousands of patients with
many characteristics for each—demographics, treat-
ment histories, outcomes and interventions across
time—but typically not yet thousands or millions of
molecular characteristics. 

To a great degree, the two sides of biomedical big
data have yet to converge. Some researchers work
with the clinical and pharmaceutical data; others
work with the biomolecular and genomics data.
“The bottom line is,” says Eric Perakslis, PhD,

chief information officer at the U.S. Food and Drug Admin-
istration, “the large body of healthcare data out there has yet
to be truly enhanced with molecular pathology. And without
that you’re really not getting at mechanisms of action or pre-
dictive biology.” Where there is data, he says, “It’s almost
this random thing: Molecular data is collected at a few time
points but that’s it.”

Nevertheless, Schadt believes that a world where these bio-
molecular and clinical datasets come together may arrive soon.

“In maybe ten years time,” he says, “all newborns and everyone
walking through the door will have his or her genome se-
quenced and other traits collected and that information will
all be crunched in the context of their medical history to assess
the state of the individual.” 

“In maybe ten years time,” says Eric
Schadt, “all newborns and

everyone walking through the door
will have his or her genome sequenced
and other traits collected and that
information will all be crunched in the
context of their medical history to
assess the state of the individual.”  

“I believe that the methods used by Facebook
and others (commodity hardware, open

source software, ubiquitous instrumentation)
will prove just as revolutionary for healthcare as
they have for communications and retail,” says
Jeff Hammerbacher.
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THE TOOLS OF BIG DATA ANALYTICS
If you have data sets with millions or tens of millions of pa-

tients followed as a function of time, standard statistics aren’t
sufficient, especially if you are looking for associations among
more than two variables, or data layers. “This is not about
genome-wide association studies (GWAS),” Hill says. Such
studies typically seek to connect genomic signatures with dis-
ease conditions—essentially looking at only two layers of data.
“When people start doing this from multiple layers of data,

that’s where it becomes non-trivial,” Hill says. “That’s
where in my mind it gets to big data analytics
rather than biostatistics or bioinformatics.”

Many of the tools of big data analytics are
already being used in other fields, says
Schadt. “We’re almost latecomers to this
game but the same sorts of principles ap-
plied by Homeland Security or a credit
card fraud division are the kinds of ap-
proaches we want to apply in the
clinical arena.” 

The U.S. Department of Home-
land Security, for example, examines
such things as cell phone and email
traffic and credit card purchase his-
tory in an attempt to predict the next
big national security threat. They
want to consider everything together,
letting the data speak for itself but
looking for patterns in the data that
may signify a threat, Schadt says.
They achieve this using machine
learning in which computers ex-
tract patterns and classifiers from
a body of data and use them to in-
terpret and predict new data:
They know when a prior threat oc-
curred, so they look for features that
would have helped them predict it and

apply that looking forward. In a clinical setting, that could
mean looking at not only which molecular or sequencing data
predicts a drug response but also what nurse was on duty in a

particular wing during specific hours when an event occurred.
“You just want all this information and then crunch it to figure
out what features turn out to be important,” Schadt says. 

In addition to machine-learning, Hill says, there is a need
for approaches that scale up to the interpretation of big data. In
his opinion, this means using hypothesis-free probabilistic causal
approaches, such as Bayesian network analysis, to get at not only
correlations, but cause and effect. 

He points to strategies developed by Daphne Koller, PhD,

professor of computer science at Stan-
ford University, as an example of what

can be done. Much of her work involves
the use of Bayesian networks—graphical

representations of probability distributions—
for machine learning. These methods scale well

to large, multi-layered data sets, he says. Hill’s
company, GNS Healthcare, has developed its own

variation, which they call “reverse engineering and for-
ward simulation” (REFS). “We break the dataset into tril-
lions of little pieces, evaluating little relationships,” he says.
Each fragment then has a Bayesian probabilistic score sig-
naling how likely the candidate relationship is as well as
the probability of a particular directionality (an indication
of possible cause and effect). After scoring all of the pos-
sible pair-wise and three-way relationships, REFS grabs
the most likely network fragments and assembles them
into an ensemble of possible networks that are robust and

consistent with the data. That’s the reverse engineered part.
Next comes forward simulation to predict outcomes when

parts of each network
are altered. This proce-
dure allows researchers
to score the probability
that players in the en-
semble of networks are
important and to do so
in an unbiased way
across a large dataset.

Schadt agrees that
such data-driven ap-

proaches are essential, and he uses them in his own work. But
he says big data analytics covers a vast computational space
ranging from bottom-up dynamical systems modeling to top-

“When people start doing this from multiple layers of data, that’s where it
becomes non-trivial,” Colin Hill says.  “That’s where in my mind it gets to

big data analytics rather than biostatistics or bioinformatics.”

“We’re almost latecomers to this game,” says Schadt,
“but the same sorts of principles applied by

Homeland Security or a credit card fraud division are the
kinds of approaches we want to apply in the clinical arena.” 
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down probabilistic causal approaches—whatever approach
(including hypothesis-driven), he says, “can derive meaningful
information to aid us in understanding a disease condition or
drug response or whatever the end goal is.” Essentially, he says,
it’s not the approach that defines big data analytics, but the
goal of extracting knowledge and ultimately understanding
from big data. 

Perakslis views the problem somewhat differently. “In order
to get translational breakthroughs, you have to start out with

an intentional design, which starts with intentional sampling,”
he says. “And to be honest, I don’t think it works well yet hy-
pothesis free.” In a GWAS, he says, of course you look at
everything because you don’t know where to look. But the an-
swers you seek can be lost in the noise. 

Perakslis is more interested in broadening the types of data
that are brought to bear in focused clinical trials. “Too often,
when people make decisions, they are only looking at part of
the story,” he says. So, for example, if at the end of a Phase III
clinical trial a drug doesn’t produce the degree of success
needed for approval, the database should be rich with infor-
mation to help figure out why and where to go from there.
TranSMART, a clinical informatics database that Perakslis
helped assemble when he worked at J&J, does just that: It in-
tegrates different types of data into one location. 

CLINICAL & PHARMACEUTICAL 
BIG DATA: ALREADY ABUNDANT 

These days, for certain large healthcare organizations, large
quantities of data simply accrue as an inevitable part of doing
business. This is true of most hospitals, health maintenance
organizations (HMOs), and pharmacy benefits managers (also
known as PBMs). In these settings, “You really are getting at
big data on the scales of LinkedIn, Amazon, Google, eBay and
Netflix,” says Yael Garten, PhD, a senior data scientist at
LinkedIn who received her doctorate in biomedical informat-
ics from Stanford University.

For example, Kaiser Permanente (KP), an HMO, has a 7
terabyte research database culled from electronic medical
records, says Joe Terdiman, MD, PhD, director of information
technology at Kaiser Permanente Northern California’s Divi-
sion of Research. That doesn’t include any imaging data or ge-
nomics data. This special research database has been
pre-cleaned and standardized using SNOWMED CT, an on-
tology of medical terms useful for research. “By cleaning and
standardizing the data and making it easily accessible, we hope
to do our research faster and more accurately,” Terdiman says. 

Medco, a PBM, accumulates longitudinal pharmacy data
“because we are who we are and do what we do,” Frueh says.
As a large PBM that covers about 65 million lives in the
United States, Medco manages the pharmaceutical side of
the healthcare industry on behalf of payers. Their clients are

health plans and large self-insured employers, state and gov-
ernmental agencies, as well as Medicare. The company has
agreements with some of these clients who provide large sets
of medical claims data for research purposes. From the claims
data, Medco can extract patient indications, treatments,
dates of treatment, and outcomes (for example, whether the
patient was hospitalized or not). Putting this multi-layered
data together, Medco can search for associations between
drug use, patient characteristics, and clinical impact (good,
bad or indifferent) in order to determine whether a drug
works the way it should. 

And at Medco, big data analytics has already reaped divi-
dends by uncovering drug-drug interactions. For example,
clopidogrel (Plavix™) is a widely used drug that prevents
harmful blood clots that may cause heart attacks or strokes.
However, researchers were concerned that certain other
drugs—proton-pump inhibitors used to reduce gastric acid pro-
duction—might interfere with its activation by the body.
Using their database, Medco looked for differences in two co-
horts: those on one drug and those on the two drugs that po-
tentially interact. The study revealed that patients taking both
Plavix and a proton-pump inhibitor had a 50 percent higher
chance of cardiovascular events (stroke or heart attack). 

A similar study showed that antidepressants block the ef-
fectiveness of tamoxifen taken to prevent breast cancer recur-
rence. Patients taking both drugs were twice as likely to
experience a recurrence. 

“Both of these studies are prototypical of the kinds of ques-
tions we can ask in our database where we can correlate phar-
macy data with clinical outcome data,” Frueh says. 

GOING HYPOTHESIS-FREE
Though Medco’s outcomes are impressive, they have thus

far relied on fairly straightforward statistical and epidemiolog-
ical methods that were nevertheless quite labor intensive.
“The hands-on analytics time to write the SAS code and spec-
ify clearly what you need for each hypothesis is very time-con-
suming,” Frueh says. In addition, the work depends on having
a hypothesis to begin with—potentially missing other signals
that might exist in the data. 

To address this limitation, Medco is currently working with
Hill’s GNS Healthcare to determine whether a hypothesis-
free approach could yield new insights. So in the Plavix ex-
ample, rather than starting with the hypothesis that
proton-pump inhibitors might interact with drug activation,
Frueh says, “We’re letting the technology run wild and seeing
what it comes up with.” 

Because GNS Healthcare’s REFS platform automates the
process, he says, Medco can take the strongest signals from the
data and avoid wasting time on hypotheses that don’t lead to
anything. Right now they are confirming whether the

In a GWAS, Perakslis says, of course you
look at everything because you don’t

know where to look.  But the answers you
seek can be lost in the noise.

Using hypothesis-free
approaches, Frueh says, “We’re

letting the technology run wild and
seeing what it comes up with.”
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strongest findings identified by applying the REFS platform to
the Plavix database actually hold up to more in-depth analysis.  

ADDING GENOMICS 
TO THE MIX

The REFS platform developed by GNS Healthcare also
functions in contexts that include genomic data. For exam-
ple, in work published in PLoS Computational Biology in
March 2011, GNS Healthcare and Biogen identified novel
therapeutic intervention points among the one-third of
arthritis patients who don’t respond to a commonly used anti-
inflammatory treatment regimen (TNF- ! blockade). The
clinical study sampled blood drawn before and after treatment
of 77 patients. The multi-layered data included genomic se-
quence variations; gene expression data; and 28 standard
arthritis scoring measures of drug effectiveness (tender or
swollen joints, c-reactive protein, pain, etc.). Despite being
entirely data driven, the second-highest rated intervention
point they discovered was the actual known target of the
drug. The first-highest rated intervention point—a new tar-
get—is now being studied by Biogen. 

“To my knowledge,” Hill says, “this is the first time that a
data-driven computational approach (rather than a single bio-
marker approach) has been applied to do this in a comprehen-
sive way.” And although the number of patients was relatively
small, Hill says, the study suggests that researchers can now
interrogate computer models of drug and disease biology to
better understand cause and effect relationships from the data
itself, without reliance on prior biological knowledge. 

“If you ask me why we’re doing this,” Hill says, “it’s be-
cause it’s going to cure cancer and other diseases and there’s
no other way to do it than by using big data analytics…
. If you do discovery the way it’s been done until
now, it just doesn’t cut it.” 

Today, rather than deal with the vastness of
genomics data, Schadt says, many researchers
distill it down to look only at the hundred or so
gene variants they think they know something
about. But this will be a mistake in the long
run, Schadt says. “We need to derive
higher level information from
all of that data without re-
ducing dimensionality to
the most naïve level. And
then we need the ability to con-
nect that information to other large
data sources such as all the types of data
gathered by a large medical center.” 

The eMERGE Network, an NIH-funded
collaboration across seven sites, is taking a run-
ning start at doing this. They are linking electronic
medical records data with genomics data across seven dif-
ferent sites. Researchers will be able to study cohorts ex-
tracted from this “big data” without having to actively recruit
and gather samples from a study population. 

To a great extent, though, the eMERGE Network is still
building its repository and confirming that it can repeat
known results. The analytics are only now getting underway. 

Kaiser Permanente, like the eMERGE network, is currently
building what will be one of the largest biorepositories any-
where, with genotype data from 100,000 patients. “We hope
to reach 500,000,” says Terdiman of Kaiser Permanente. 

But Kaiser is still sorting through what sort of platform to
use for the data. They are looking at Hadoop—an up-and-
coming open-source distributed-computing framework for
storing and managing big data—as well as other possibilities.
“With 100,000 patients genotyped, and each one has
700,000 SNPs, that’s a pretty big matrix,” Terdiman says.
And then when you associate that with phenotypic data
from the electronic medical record, he points out, “there’s a
combinatorial effect of all these variables such that simple
or even relatively fast processors might take weeks to do a
single analysis.” GWAS programs usually run on small
samples, and Terdiman doesn’t yet know how well they
will scale to the full genotyped database. “No one, liter-
ally, has had the amount of data to do GWAS studies
that we have,” he says. 

Really, says Frueh, the data deluge
from whole genome sequencing is
just beginning. Frueh would love to
tie Medco’s data to genomics
biorepositories but there just
isn’t enough data yet. Frueh
notes that he could possibly
partner with labs or or-

ganizations that have done large GWAS but, he says, unless
you’re asking the same questions as the GWAS, you won’t
get a lot of depth in those studies, especially after matching
people to the pharmacy database. “You go from large to small
numbers very quickly,” he says. 

Stephen McHale, CEO of Explorys, a big data bioinformat-
ics company based in Cleveland Ohio, says that traditional re-
lational data-warehousing technology can’t efficiently handle
the 30 billion clinical elements in their dataset. So Explorys
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implemented the type of data architecture that supports
Google, Yahoo and Facebook. “Our technology is all column
store and using MapReduce and those kinds of architectures,”
he says, referring to approaches that use large numbers of com-
puters to process highly distributable problems across huge
datasets. He says that, to his knowledge, it’s a first in the med-
ical space. “We needed that sort of architecture to support this
much data.” And with genomics coming their way, it seems
even more essential to use these types of architecture, McHale
says. Explorys is now working on some pilot initiatives to in-
tegrate genomic data with observational data. 

MAKING BIG DATA ACTIONABLE
Extracting knowledge from big data is a huge challenge,

but perhaps a greater one is ensuring that big data infrastruc-
ture will form the backbone of an effort to push Amazon.com-
style recommendations to practitioners and patients. 

Garten notes that implementing an Amazon or LinkedIn
style recommendation system in biomedicine will be tough.
Such systems use machine learning and natural language pro-
cessing to, in a sense, bucket customers into groups. “But the
ability to bucket people together is harder in biomedicine,”
Garten says. “The slightest variations can matter a lot in terms
of how we metabolize drugs or respond to the environment,
so the signal is harder to find.” The stakes are also higher for
getting a false result.

But Medco’s experience suggests such bucketing is already
possible, at least to some extent. For example, in the Plavix
example described above, Medco was in a position to imme-
diately effect a change: “We can pull a switch and say that
each and every pharmacist on our list needs to be told about
this,” Frueh says. After implementing the rule, Medco saw a
drop of about one third in co-use of the interacting drugs.
“This is one example where the use of big data in this stepwise
process has cut down on the time it takes to get changes into
clinical practice,” Frueh says.

In another example, Medco was able to use its infrastruc-
ture to increase uptake of a genotyping test for warfarin dos-
ing. First, however, they had to show payers that the test was
cost-effective. In a clinical trial conducted in collaboration
with Mayo Clinic, Medco showed that genotyping reduced
the rate of hospitalizations among warfarin-dosed patients by
30 percent. Armed with that information, payers became
supportive of Medco reaching out to physicians to suggest
they use the genotyping test before prescribing warfarin. Be-
cause of Medco’s big data infrastructure, this outreach could
be easily accomplished: Each time a physician prescribed
warfarin, a message was routed back through the pharmacy
to the physician, suggesting use of the test. The result: an in-
crease in uptake of the test from a rate of 0.5 percent or so

“This is one example where the use of
big data in this stepwise process

has cut down on the time it takes to get
changes into clinical practice,” Frueh says.
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in the general physician population up to approximately 20
to 30 percent by physicians in the network. 

“This has to do with creating an environment and the oper-
ational infrastructure to be proactive,” Frueh says. And Frueh

suspects that uptake of the test will continue to grow. “We’re
probably at the beginning of what we hope will be a hockey-stick
shaped uptake of this test.” The lesson: Big data, and the con-
nectedness of big data to the real world, provides the opportunity
to take advantage of teachable moments at the point of care. 

As we go from data generation to knowledge about what it
means, to making that knowledge actionable, Schadt says, “It
will impact clinical decisions on every level.” 

PLAYING CATCH UP AND THEN SOME
To some extent, big data analytics in biomedicine lags fi-

nance and commerce because it hasn’t taken advantage of
commercial methods of handling large datasets—like Hadoop
and parallelized computing. “These allow data analytics in an
industry-level manner,” Garten says. “That’s something that
LinkedIn, Amazon and Facebook have already nailed, and
bioinformatics is lagging behind those industries.” 

Bioinformatics researchers still spend a lot of time struc-
turing and organizing their data, preparing to harvest the in-
sights that are the end goal, says Garten. By contrast, the
private sector has completed the phase of structuring and col-
lecting data in an organized fashion and is now investing
more and more effort toward producing interesting results and
insights. Eventually, Garten says, “the practices and experi-
ence from the corporations with large amounts of data (i.e.,
LinkedIn, Amazon, Google, Yahoo) will propagate back to
the academic and research setting, and help accelerate the
process of organizing the data.” 

At the same time, bioinformatics actually has something
to offer the broader world, Garten says. She and others with a
bioinformatics background who have moved into other arenas
bring to the table an ability to handle messy data that is often
incomplete. The expertise in integrating various datasets in
creative ways to infer insights from this data, as is done in
translational bioinformatics, is useful for extracting business
insights in other industries.

Hill also sees biomedical approaches filtering outward.
“REFS is data-agnostic,” he says.  It can work on genomic data
as easily as clinical data—or, for that matter, financial data.
Hill’s company recently created a financial spinoff called
FINA Technologies. He also spun off Dataspora, which is fo-
cused on consumer ecommerce. “We’ve created a technology
that goes all the way from unraveling how cancer drugs work
to predicting financial markets,” Hill says. “This technology
is applicable to how complex systems work in different indus-
tries, and there’s something profound about that.” !!

“The practices and experience from the corporations with large
amounts of data (i.e., LinkedIn, Amazon, Google, Yahoo) will

propagate back to the academic and research setting, and help
accelerate the process of organizing the data,” Yael Garten says.
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It’s the basis of every patient/physician in-
teraction: Shared personal health infor-
mation is kept confidential and used only

for the patient’s benefit. It’s a tradition that started before the time of Hip-
pocrates, endured through the era of records stored in filing cabinets, and per-
sists today as we move to electronic patient records. And it’s codified in the
form of HIPAA, the federal Health Insurance Portability and Accountability
Act, which ensures the privacy of health records. 

But as sensitive personal health data accrue in ever larger databases, concerns
over privacy breaches are on the rise. And as researchers perceive the potential
usefulness of this vast data trove, they seek strategies to access it without violating
HIPAA. In response, data privacy experts are developing ever more sophisticated
methods to protect electronic health data from unwanted exposure. And while
many of these experts have raised alarms about the vulnerabilities of the privacy-
protection schemes currently in place, they have also begun talking about the
possibility of implementing far more powerful technologies in the near future.

“This is the start of the golden age of privacy research,” says Dan Kifer,
PhD, a computer scientist at Pennsylvania State University who has investi-
gated privacy-preserving techniques for applications ranging from biomedical
research to the U.S. Census. 

Privacy Fears Drive Innovation
The rapid progress taking place in privacy research in the biomedical arena

is driven in large part by fear—namely, fear that the vast warehouses of biomed-
ical data now being assembled could be vulnerable to the same kinds of privacy

By Alexander Gelfand
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breaches that have in recent years plagued such infor-
mation aggregators as Google and Facebook.

Granted, the evidence of such breaches in the
realm of medical records, clinical data, and genomic
information remains slim. The most alarming inci-
dents to date have involved simple failures of security,
or of access control, such as the theft or loss of unse-
cured computers containing electronic medical
records, rather than the unintentional leakage of sen-
sitive information from large biomedical databases;
and as yet, no one has reportedly been harmed by the
unauthorized release of their biomedical information.
Instead, the most impressive privacy breaches to date
have been perpetrated by
academic researchers
who were trying to find
weaknesses in the systems
they were attacking:
identifying the medical
records of a particular in-
dividual in a hospital sys-
tem, for example, or
identifying participants
in a genome-wide associ-
ation study (GWAS) designed to link particular dis-
eases to specific genetic variations. 

Yet anxiety over the possibility of more public, and
more harmful, privacy breaches continues to build, the
principal concern being that insurers and employers

might use biomedical data to dis-
criminate against policyholders and
employees. Such fears are not un-
founded. “Insurers have historically
used data to make coverage determi-
nations,” says Deven McGraw, direc-
tor of the health privacy project at the
Center for Democracy and Technol-
ogy, a nonprofit public interest group
in Washington, DC. Carl Gunter,
PhD, a computer scientist at the Uni-
versity of Illinois who studies the health
information exchanges that enable hos-
pitals to share electronic medical
records, emphasizes the “dreadful risks”
posed by medical identity theft, in
which one person assumes the identity
of another when seeking medical care,
and the medical histories of both victim
and thief become dangerously entangled.
And there is rising concern over the pri-
vacy risks associated with genomic data
in particular. As Brad Malin, PhD, direc-
tor of the Health Information Privacy Lab
at Vanderbilt University, points out, ge-
nomic data is highly distinguishable, ex-
tremely stable, and can in certain
situations be used to predict the likelihood
that an individual might fall prey to this
disease or that one—information that
could be used to deny coverage or a job.

Some of these scenarios might seem
unlikely at the present time. It’s doubtful,

for example, that many people outside of a university
computer science department would have the techni-
cal wherewithal to pick a single individual out of the
mass of statistics associated with a GWAS. But tech-
nological progress has a way of closing the gap between
the improbable and the probable. “There’s nothing to
say that what’s unreasonable now won’t be unreason-
able in the near future,” Malin says. And even the
smallest risk of a privacy violation can be enough to
scare a patient away from participating in a clinical
trial, or persuade an institution to withhold data from
researchers due to ethical or legal concerns. According
to Gunter, some health information exchanges have

already prohibited the sharing of electronic medical
records for research purposes. “There is such fear that
we need to address it before we can make full use of
this data for research purposes,” says Lucila Ohno-
Machado, PhD, founding chief of the division of bio-

De-identification protocols suppress or modify bits of data that
might allow an attacker to determine precisely to whom a partic-
ular record belongs.
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medical informatics and associate dean for informatics
at the University of California at San Diego (UCSD)
and principal investigator for iDash (integrating Data
for Analysis, anonymization, and SHaring), a National
Center for Biomedical Computing.

All of this unease—over the privacy rights of in-
dividuals, over potential discrimination, and over the
chilling effect that privacy concerns can have on re-
search—has prompted a great deal of innovation
amongst the mathematicians, cryptographers, and
computer scientists who are working to develop
mechanisms that will allow researchers to analyze
biomedical data without compromising privacy.

Data-Driven Privacy Measures
Staal Vinterbo, PhD, a computer scientist in the

division of biomedical informatics at UCSD, distin-

guishes between two broad classes of privacy-protect-
ing mechanisms currently under development:
“data-driven” mechanisms that define privacy in terms
of the data itself, and “process-driven” mechanisms
that define privacy in terms of how they access the
data. Both are intended to let researchers perform
meaningful analyses without disclosing sensitive per-
sonal information, but they stem from very different
concepts of data privacy, and they often work via very
different means. The most common data-driven ap-
proaches, for example, modify raw data so that it can
be released without revealing sensitive information,
while most process-driven approaches leave the un-
derlying data alone and instead build privacy protec-
tions into the algorithms they use to extract it.
Data-driven mechanisms came first, but process-dri-
ven ones may offer better protection—albeit at a price.

De-identification, or anonymization, is the most
commonly employed privacy measure, and one that
lies very much on the data-driven side of the divide.
Rather than freely sharing all of the data in a group
of records, de-identification protocols suppress or
modify the bits that might allow an attacker to de-
termine precisely to whom a particular record be-
longs. Some of these protocols, especially the more
experimental ones, can be quite sophisticated. Spec-
tral anonymization, which Vinterbo has investigated
with Thomas Lasko, MD, PhD, a researcher at Van-
derbilt, manipulates data in mathematically complex
ways so that useful correlations can be maintained
for research purposes even after the information has

been randomized to prevent specific individuals from
being identified. Synthetic data generation, which
Kifer has explored, creates new data that statistically
mimics the real stuff, but shields the actual partici-
pants in the original data set. But the anonymization
schemes that are most often used to de-identify elec-
tronic health records in the real world simply delete
or truncate specific data fields containing identifiable
information like proper names and ZIP codes.

The advantage of de-identification is that it al-
lows analysts to examine the raw data itself, albeit in
altered form, rather than running queries against it
from behind a privacy-preserving interface. The dis-
advantage is that it does not always work.

The first and most widely publicized demonstra-
tion of the weaknesses of de-identification occurred
in 1997, when Latanya Sweeney, PhD, linked the

supposedly de-identified health records released by
the Massachusetts state insurance commission to
the state’s voter-registration rolls and re-identified
the personal medical records of then-Governor
William Weld. (Sweeney, who was a graduate stu-
dent at MIT at the time, is now
director of the Data Privacy Lab
at Harvard University.)

Sweeney’s successful re-identi-
fication attack helped prompt the
adoption of the HIPAA Privacy
Rule in 2000. The Privacy Rule
imposes restrictions on the release
of “individually identifiable
health information.” These feder-
ally legislated constraints on dis-
closure are waived, however, if the
data has been de-identified by ap-
plying the so-called “safe harbor”
method, which involves removing
18 identifiers, including names,
dates, and Social Security num-
bers. Since data that has been de-
identified under the safe harbor
method is no longer considered to
be individually identifiable, it is
no longer covered by the Privacy
Rule, and can be freely shared.

Yet there is a growing sense among data privacy ex-
perts that no form of de-identification will ever be good
enough to meet the highest standards of privacy pro-
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tection, and that the entire approach will only grow
less reliable over time. The reason for this is simple: as
more and more data is collected and stored about us
all—in online databases and on social networking sites,
in publicly available government repositories and else-
where—it becomes easier and easier to launch the kind
of linkage attack that allowed Sweeney to re-identify
William Weld’s medical records. As the computer sci-
entists Arvind Narayanan, PhD, and Vitaly
Shmatikov, PhD, noted in a 2010 article in Commu-
nications of the ACM (Association for Computing Ma-
chinery), “any attribute can be identifying in
combination with others.” In other words, no matter
how many fields are
deleted from an individ-
ual’s record, as long as
there is something left for
researchers to work with,
there will also be enough
left for re-identification. 

Moreover, because de-
identification techniques
have for the most part
been designed to protect
specific kinds of data from
specific kinds of attack, they lack the flexibility needed
to deal with a rapidly changing data landscape. The
task of anonymization will only become harder, for ex-
ample, as more and more categories of information,

from handwritten clinical notes to
genetic sequences, are gathered and
stored in digital repositories. The ad
hoc nature of such data-driven meth-
ods also means that they tend to lack
a rigorous mathematical basis; and by
their very nature they can only access
a very limited amount of data. As a re-
sult, it can be difficult to quantify just
how much privacy protection they
truly offer. Scientists can only estimate
their efficacy by trying to break
them—thereby proving their limita-
tions, but not their strengths.

This is not to say that de-identifica-
tion and other data-driven approaches
do not have their uses. Malin and his
colleagues at Vanderbilt, for example,
have for several years used de-identifi-
cation strategies such as k-anonymiza-
tion to help protect the privacy of
electronic medical records used for re-
search purposes. “We have de-identified
more than 1.5 million medical records
from the Vanderbilt University Medical
Center,” he says. K-anonymization works
by suppressing or modifying enough data
to make a certain number of records (k)
in a database appear to be identical. If
done appropriately, the data can still be
used for research, but the individuals who
provided it become lost in a crowd of
look-alikes. Several data privacy experts

have pointed to flaws in k-anonymization—for exam-
ple, an attacker who possesses sufficient background
knowledge about someone can break k-anonymity and
re-identify that individual– but the risks of re-identifi-
cation remain low. And like any de-identification
scheme, k-anonymization allows researchers to exam-
ine the raw data.

Process-Driven 
Privacy Measures

Still, many scientists have begun moving away
from data-driven approaches and toward more math-
ematically rigorous process-driven ones. “Eventually,

all of us realized that this is just a never-ending cycle:
find a way of perturbing the data, find weaknesses,
try to fix them, find more weaknesses, try to fix
them,” says Kifer. While a graduate student at Cor-

Differential privacy is achieved by introducing some random noise into
the query responses. An analyst can only see the blurry answers pro-
vided by the algorithms, never the raw data itself.
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nell University, Kifer helped develop a more robust
refinement to k-anonymity known as l-diversity—a
refinement that was soon shown to have flaws of its
own. Recognizing the apparent limitations of de-
identification in general, he and his fellow re-
searchers began seeking a different path: one that
involves devising ways of querying statistical data-
bases while providing privacy guarantees that can be
expressed as mathematical and statistical statements.

The first and still the most promising of these ap-
proaches, differential privacy, was proposed in 2006
by Cynthia Dwork, PhD, and colleagues at Microsoft
Research, Ben-Gurion University, and the Weizmann
Institute of Science. Dwork recognized the cycle de-
scribed by Kifer from the history of cryptography. She
also knew that modern cryptographers only liberated
themselves from that cycle when they developed for-
mal, provable definitions of information security that
could be quantified. So Dwork and her collaborators
did the same in the realm of privacy, formulating a
mathematical definition of the concept that amounts
to a promise to the data subject that his life will not,
in Dwork’s words, “change substantially for the better
or the worse as a result of a computation on the data.”
Precisely how that is achieved is more or less up for
grabs; any solution that satisfies the basic definition,
which in its true form looks more like a mathematical
proof than a verbal guarantee, will necessarily be dif-
ferentially private.

Scientists like Dwork and Kifer are still working

out how to implement differential privacy in the real
world, and few applications have moved beyond the
lab. In general, however, differential privacy is
achieved by writing special algorithms that sit be-
tween a statistical database and an analyst who
wishes to run queries against it. If an algorithm is dif-
ferentially private, then the results it produces should
be essentially the same independent of whether any
single person is included in the database or not. One
important consequence of this is that no matter what
an analyst knows—no matter what background
knowledge they might possess—they still cannot
learn anything more about a specific individual just
because they happen to be in the database. Con-
versely, even if an analyst were to know everything
about each individual represented in the data except
for one, they still should not be able to learn much
about that one remaining person. No de-identifica-
tion scheme can make those kinds of guarantees.

In practice, differential privacy is achieved by in-
troducing some random noise into the query re-
sponses. For example, if an analyst were to ask how
many people in a database were over 5 feet tall, and
the true answer was 56, then a differentially private
algorithm might grab a random variable from a prob-
ability distribution and add it to the true answer, spit-
ting out 57 instead. The noise is the difference
between the response (57) and the true answer (56).
“Our choice of randomness,” Dwork writes in an e-
mail, “makes responses close to the truth much more
likely than answers that are far from the truth (which
is what we want for accuracy).”

Nonetheless, attentive readers will have noticed
that differential privacy does in fact work by provid-
ing slightly inaccurate results; as Dwork says, it uses
probability to introduce “a little bit of uncertainty.”
This has two significant consequences. 

First, in a differentially private setting, an analyst
can only see the blurry answers provided by the al-
gorithms; he can never examine the raw data itself.
Dwork and several colleagues are currently investi-
gating the possibility of allowing trusted individuals
to view the underlying data—a situation Dwork de-
scribes as “differential privacy with a human in the
loop”—but that is still very much under develop-
ment. At least for now, researchers who need to see
the innards of the data sets they are working with
must look elsewhere for privacy protection.

Second, the question of how much noise is enough
noise, and how much noise is too much
noise, is a rather thorny one. The trick is to
add just enough randomness to the query
answers to protect the
privacy of the individuals
whose records lie in the
database, but not so
much that an analyst can
no longer learn accurate
or meaningful things
from a statistical perspec-
tive about the sample
population they com-

prise. This is the price of privacy,
or the trade-off between privacy
and utility; and it may be the most
serious challenge facing those who
are trying to bring differential pri-
vacy out of the lab. “We can al-
ways find wildly inaccurate ways of
computing something that ensures
a given level of privacy,” says
Dwork. The science lies in finding
ways of ensuring privacy that do
not destroy utility.

As it turns out, some queries,
and some databases, are more
“sensitive” than others, meaning
that they are more prone to leak
information. As a result, they re-
quire more noise. According to
Vinterbo, more fine-grained infor-
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mation also requires more noise—a situation that may
prove challenging in the case of genomic databases,
which contain enormous amounts of incredibly de-
tailed data. Since you wouldn’t want to add more
noise than is absolutely necessary, matching the ap-
propriate amount of noise to the sensitivity of the
query and of the database—in effect, figuring out how
to balance privacy against utility—is crucial. And as
Kamalika Chaudhuri, PhD, an expert on machine
learning at UCSD, says, it also turns out to be “fairly
technical and complicated.”

Which is not to say that it can’t be done. A num-
ber of researchers are investigating ways of relaxing
differential privacy so that it still offers strong privacy
protection without requiring excessive amounts of
noise, while others are trying to find novel methods
of adding noise that won’t degrade accuracy.

Chaudhuri, for example, is interested in using al-
gorithms called “classifiers” that can be used to trawl
through large collections of medical records in order
to predict things like whether a particular individual
might require hospitalization. Classifiers must be
trained on standard data sets, however, and the
training process can leak sensitive information about
the training samples. A differentially private ap-
proach would typically involve adding a bit of noise
to the results coming out of the classifier—a tech-
nique known as “output perturbation.” This protects
privacy, but also makes the classifier more error-
prone. Chaudhuri has figured out a way to insert the
noise earlier in the process, injecting it into the clas-
sifier itself—a technique she calls “objective pertur-
bation.” The latter still ensures differential privacy,
but the results are more accurate.

Efforts like these bode well for the adoption of
differential privacy in the coming years. But even its
supporters agree that differential privacy alone can-
not be counted upon to solve the privacy problem

once and for all. “There
is no single solution that
will suit every possible
scenario,” says Vinterbo.
In a recent paper, Kifer
pointed toward a few
specific weaknesses of
differential privacy, most
notably some limitations
on its ability to protect
privacy in social net-
works and in circum-

stances where some statistics have already been
released into the wild. “Differential privacy works,”
Kifer says. “But nothing works all the time.”

Finding Integrated Solutions
As a result, many experts are beginning to envi-

sion a more integrative and contextual approach to
biomedical data privacy—one that would offer a
menu of technical solutions backed up by policy
measures, the precise mixture of which would depend
on the nature of the data, the needs of the researchers,
and the concerns of the data subjects themselves. 

Haixu Tang, PhD, and XiaoFeng Wang, PhD, at
the Indiana University Bloomington School of In-
formatics and Computing, advocate for what they
call a “hierarchical method of data release” that
would consider the kind of analysis researchers wish
to perform on a particular data set, the level of pri-
vacy risk involved, and the degree of utility required
before deciding on a particular privacy mechanism.
(The two recently won the 2011 Award for Out-
standing Research in Privacy Enhancing Technolo-
gies for their work demonstrating that individuals
could be identified in a GWAS even when the pre-
cision of the published statistics was low and some
of the data were missing. They are currently inves-
tigating ways of introducing miniscule amounts of
noise in order to guard against such attacks without
sacrificing utility.)

Vinterbo, for his part, thinks that a comprehen-
sive solution to the privacy problem will require a
“trust infrastructure” that includes not only techni-
cal solutions, but also “legal frameworks that effi-
ciently combine technology and law.” “The needs

that will be met by technical measures alone are a
minority,” he says.

Similarly, Malin would like to see a holistic, risk-
based approach that draws on the pooled expertise
of technologists, legal experts, and ethics review
boards, all of whom would have a say in determining
how best to safeguard privacy in a particular con-
text—whether that meant implementing the most
rigorous technical scheme possible, or applying
something less formal and backing it up with care-
fully crafted use agreements and legal sanctions.
Only then, he believes, will the biomedical commu-
nity have the kind of flexible, nuanced tools needed
to address the challenges of protecting its data.

“We have developed great technical solutions,
and more are coming down the pipeline,” says Malin,
echoing Kifer’s prediction of a golden age. “But we
have to keep the bigger picture in mind.” !!
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Suppose 20 friends live in the same city and want to
meet for dinner. They should be able to identify a
unique spot that minimizes the squared distance

everyone needs to travel by taking the arithmetic mean of
each starting location. However, if these 20 friends were
spread across the world rather than in one city, the mean of
all the starting locations would be in the interior of the
Earth! In the latter example, where we cannot approximate
the friends’ locations in a 2-D plane, it is necessary to im-
pose a geometry constraint: the meeting spot must be on
the 2-D surface of Earth, a subset of the 3-D world. Since
the arithmetic mean does not incorporate geometric con-
straints into its calculation, it yields a nonsensical answer.

Geometric constraints influence even very simple calcu-
lations and arise in many contexts. In a biomechanics lab,
researchers take measurements of limb movements during

reaching and walking. In the same way that individuals can-
not have arbitrary locations in the 3-D world (lest they be
found inside Earth), limbs cannot have arbitrary positions.
Limbs have bones that have fixed sizes and joints that can
only rotate in certain directions, creating the “space of rota-
tions.” Think of this space as a low-dimensional surface em-
bedded in a higher-dimension Euclidean space, similar to
how the 2-D surface of Earth is embedded in a 3-D world.
Classical statistical computations don’t make sense in this
situation. However, having a mathematical framework that
can calculate quantities similar to the arithmetic mean under
these inherent geometric constraints would be very useful.

One solution is to choose a valid meeting spot or arm
pose that also minimizes the distance to the calculated arith-
metic mean. This point, called the exterior mean, is not
necessarily unique, but is within the set of points that satisfy
the geometric constraints and are closest to the arithmetic
mean. For instance, if the average meeting spot were the

exact center of the earth, then Rome,
San Francisco, and Tokyo would all
be exterior means. In order to calcu-
late the exterior mean, we first can
find the mean of all locations and
then project it onto the set of all
points that meet the geometric con-
straints. Depending on the details of
the geometric constraints, the exte-
rior mean might be found analytically
or through iterative methods.

One issue with the exterior mean
is that it ignores the route taken from
the starting points, so it could produce
a non-optimal solution. In our earlier
example, the distance a friend travels

to the exterior mean location may
turn out to be shortest only if he walks
through the center of Earth, since the
calculation doesn’t account for the
path the friend takes to get there.

Measurements of distances along
paths as dictated by the constrained geometry of a surface
are called geodesic distances, and a better analog of the
arithmetic mean should minimize the sum of the squared
geodesic distances. This solution is referred to as the inte-
rior mean. For our restaurant example, the interior mean
would be the location such that the total squared distance
each friend travels along the Earth’s surface is minimized.

For the arm movement problem, the interior mean
would identify an arm orientation that minimizes the av-
erage squared distance of the path (measured in the space
of rotations—recall our surface analogue) that all other
arm poses must go through to get to that pose.

Finding the geodesic distance be-
tween two points can be difficult in
many geometries. Fortunately for the
study of limb movements, which are geo-
metrically constrained to rotations, there
exists a simple and elegant iterative al-
gorithm with rapid convergence towards
the interior mean. More complicated sta-
tistics can be computed similarly based
on geodesic distances. !!
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BY KATHARINE MILLER

T o diagnose heart disease noninvasively, scientists combine
3-D visualizations of the heart and blood vessels (recon-
structed from CT scans) with computer simulations of

blood flow. Typically, a palette of rainbow colors is used to help
identify areas of low shear stress—trouble spots of low friction or
stagnant blood flow that weaken vessel walls—a good indicator
of disease progression. But 3-D rainbows aren’t as useful as our in-
stincts suggest, says Michelle Borkin, a PhD candidate in applied
physics at Harvard University. 

After observing and interviewing cardiologists, Borkin real-
ized that interacting with and rotating 3-D images took time and
sometimes meant interrupting a procedure. And research into
the psychology of visualization suggests that humans do not read

rainbow colors in an intuitive way. 
Inspired by tools she had used to un-

derstand the structures of nebulae
in outer space, Borkin devel-

oped software called HemoVis that visualizes simulated blood flow
in two dimensions, splays or “butterflies” vessels open in a tree di-
agram, and colors the areas of low shear stress in gradations from
red to gray. In a test of the software, the 2-D visualizations (com-
pared with 3-D) led to much more accurate and efficient diagnoses
by 21 medical students; the same was true for the red/gray palette
when compared to rainbow. “At a single glance,” Borkin says,
“they get a quick and accurate diagnosis.” The work was published
in IEEE Transactions on Visualization and Computer Graphics. 

“This paper shows that making smart choices about how you
display your data in dimensionality and color not only can help
doctors see the data better and help them make discoveries,”
Borkin says, “but might also save lives.”  !!

s e e i n g  s c i e n c e
SeeingScience

Busting Assumptions about Rainbows and 3-D Images
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An arterial system that would previously have been reconstructed in 3-D (left) is instead
deconstructed into 2-D and shown at right with each branch separated from the main ves-
sel. Branching points and relationships between branches are also displayed. Areas shaded
red represent diseased areas as indicated by low shear stress measured in computer simu-
lations of blood flow. Courtesy of Michelle Borkin. 


