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BY MARK A. MUSEN, MD, PhD

It Takes a Village:
Building the Next Generation
of Biomedical Ontologies

Ithough the notion of ontology has been around

since Aristotle, the perceived need to develop

ontologies in biomedicine has accelerated in
recent years as investigators attempt to make sense of the
terabytes of high-throughput data that are now finding
their way into public repositories. While the number of
biomedical terminologies and ontologies continues to
increase as new areas of biomedical content become for-
malized, the creation and annotation of these resources
can’t quite keep up. The flood of information may neces-
sitate a new approach involving vastly more ontology
developers. It may, in fact, take a village.

The construction of biomedical ontologies has long
been a cottage industry, with even vast systems such as
SNOMED (the Systemized Nomenclature of Medicine)
initially representing the handiwork of a very small group
of dedicated individuals. Venerable ontologies such as the
Foundational Model of Anatomy and the NCI Thesaurus
represent the work of a surprisingly small set of develop-
ers. Nevertheless, as the demand for ever larger and more
granular ontologies accelerates, and as large-scale systems
such as the International Classification of Disease are
being reengineered, the scientific community has increas-
ingly raised concerns about whether ontology develop-
ment ultimately can be a scalable enterprise. Practical
ontologies comprise tens of thousands of con-
cepts, and a handful of individuals can

annotate the ontology via a Web-based wiki and

suggest changes and extensions, although again, the
modification of the actual ontology content will be
channeled through a set of trained individuals who
understand principles of knowledge representation and
the use of knowledge-editing tools.

Probably the best exemplar of an open, nearly demo-
cratic ontology-development initiative is the Open
Directory Project (ODP). Founded more than 10 years
ago, the ODP has enlisted more than 75,000 volunteers
to flesh out the extensive open-content ontology of Web
pages that has been adopted by Google, Yahoo!,
Netscape, and a host of other companies. The ODP has
generated an enormous ontology (commonly known as
dmoz) that provides standard, categorized entrée to vir-
tually all the content on the Web. All of us use dmoz,
perhaps unknowingly, every time we browse the Web by
categories in Google and Yahoo!, rather than searching
the Web’s free text for particular terms. Embracing
everything imaginable that a user could search for, dmoz
is a remarkable demonstration of how scalable ontology
engineering can be, particularly when volunteers step
forward to provide fine-grained descriptions of their par-
ticular areas of personal interest.
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never have personal knowledge
of everything that needs to
be represented in such

a system.

To address this
problem, workers
in biomedicine
are attempting to
democratize the
development  of
large-scale ontolo-
gies. The engineering
of the Gene Ontology,
for example, has been char- =
acterized by an open development
process to which nearly anyone can
contribute. The actual editing of the Gene
Ontology content, however, is still performed by only a
handful of trusted curators. The National Cancer
Institute is experimenting with an open process for
extensions to the current content of the NCI Thesaurus
via the BiomedGT initiative. Here, nearly anyone can
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At bioportal.bioontology.org, the user is presented with a list of pos-
sible ontologies to explore and visualize. This screenshot of the
Cellular Components ontology shows the relationship between major
components and some of the minor components. Any registered user
can comment on any ontology.

Published by Simbios, an NIH National Center for Physics-Based Simulation of Biological Structures 1



The dmoz ontology is very simple in its structure, and
lacks the rich semantics of ontologies developed in for-
mal knowledge representation systems such as the Web
Ontology Language (OWL). When the developers of
dmoz make modeling errors, the consequences are
unlikely ever to impede the advancement of science or
to threaten lives. Nevertheless, the dmoz ontology
stands as a stunning example of how legions of volun-
teers can be mobilized to generate an enormous and
undeniably useful ontology. Imagine if the lessons of
dmoz could be applied to SNOMED or to BiomedGT!

At the National Center for Biomedical Ontology
(NCBO), we are experimenting with ways in which the
biomedical community can take an active part in con-
tributing to the construction of scalable ontologies and
controlled terminologies. Our BioPortal system allows any
registered user to comment on any ontology in our dis-
tributed repository, to comment on the comments left by
other users, and to demonstrate how the elements of one
ontology may relate to those of another. We have used
this capability extensively in the engineering of the
Biomedical Resource Ontology used to describe the
online software and data resources developed by the
National Centers for Biomedical Computing and by the
recipients of Clinical and Translational Science Awards.
BioPortal, at present, does not play a role in completely
open ontology editing, however.

There are very legitimate concerns about how we can

It is clear that the
ontology-development
community needs at least to

experiment with new methods

of ontology engineering
that can scale to future
biomedical requirements.

maintain the quality of ontologies if the development
process is democratized. Organizations such as the Open
Biomedical Ontologies (OBO) Foundry have been
established under the assumption that there must always
be central management of ontology development to
ensure the quality of the content. And yet there contin-
ue to be too much data, too many medical records, and
too many experiments for the ontology-development
community to keep up with existing needs.

I don’t know whether the dmoz approach will really
be practical in biomedicine, but it is clear that the ontol-
ogy-development community needs at least to experi-

ment with new methods of ontology engineering that
can scale to future biomedical requirements. Surely there
are ways to take advantage of the expertise distributed
among all biomedical investigators in a way that will
overcome many of the limitations of centralized ontology
curation. Workers at NCBO are extremely excited about
the possibilities that new technology might provide in
enabling this more open approach to ontology engineer-
ing. Experimentation with community-based ontology
development not only may accelerate the engineering of
badly needed ontology content, but also can provide a
laboratory for the study of new mechanisms for collabo-
ration and interaction in biomedicine. [

DETAILS
BioPortal: http://bioportal.bioontology.org
The Open Director Project: http://www.dmoz.org
Mark A. Musen, M.D., Ph.D. is Professor of Medicine

(Biomedical Informatics Research) and Computer
Science at Stanford University. He is Director of the
Stanford Center for Biomedical Informatics Research
and principal investigator of the National Center for
Biomedical Ontology (NCBO).

A Note from the Managing Editor:

Starting in our next issue, we will launch a new "Debate"
column, starting with the topic selected by the survey
respondents: "To Mine or Not to Mine: Are clinical data
repositories useful sources of untapped discoveries awaiting
data-mining algorithms or are they too noisy and messy."

hanks to all who participated in the BCR survey. Your

names were entered in a drawing for an iPod shuffle
which went to Alan Villalobos from DNA2.0. The survey
results are helping us to plan for the future.

If you didn't get a chance to answer the survey, you can
still give us feedback on the magazine by visiting
http://www.biomedicalcomputationreview.org and clicking
on the "Feedback"” link.

Best,

Kﬂﬂllg Miller, manacinG epiTor
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BY JOY P. KU, PhD

very slow

Stop Wheel Reinvention,
Share Your Simulations!

imbios has built a new publication
Srepository that links publications

to the research data and software
behind them. The goal: to encourage
and facilitate replication of published
results and to foster use of what has
already been accomplished rather than
leaving others to reinvent the wheel.
The repository is built upon Simtk.org—
Simbios’ web-based infrastructure that
provides open access to simulation soft-
ware tools and models—making it easy
to use and accessible to all.

“The publication repository is more
than just the collection of data, models,
and software used in the publications,”
says Jeanette Schmidt, PhD, Executive
Director of Simbios. “It provides the
means for others to reproduce and build
upon the results of your publication.”

GIVING YOUR PUBLISHED
RESEARCH A FUTURE

Historically, when researchers have
come across papers describing potentially
useful software or data, their chances of
actually getting their hands on that soft-
ware or data were hit or miss. The student
who did the research might have moved
on, or the software developer might want
to clean up the code first and take months
(or longer) to do so. The Simbios publica-
tion repository for physics-based simula-
tions of biological structures addresses this
problem by providing a simple way to
share and access the software, data, and
other materials that support a particular
research paper. It means that all the hard
work behind the paper—the hours of cod-
ing, the repetitive experiments to get use-
able data—is captured and can easily
enable future research.

That’s what motivated May Liu,
PhD, a recent graduate from Stanford

University’s mechanical engineering
department, to create a publication proj-
ect on Simtk.org. She is sharing 32
walking simulations used to analyze how
muscle functions change with walking
speed in children. It’s the largest number
of simulations ever included in a mus-
cle-driven simulation study, yet Liu sees
it as just the beginning of further
research rather than the end of the line.
“The simulations themselves could
become the starting point for a number
of other studies,” Liu says. “There’s no
reason why people should have to recre-
ate simulations that already exist.”

Dahlia Weiss, a doctoral student in
structural biology and chemistry at
Stanford University, has a similar perspec-
tive. She established a publication project
for her article comparing her Climber
software tool against four other tools for
interpolating between two molecular
structures as one morphs into the other.
Climber, based on a non-linear interpola-
tion method, turned out to be very good
at producing intermediate structures for
very large, complicated changes.

“Knowing that we have a really
good tool and not making it publicly
available just seems really pointless,”
says Weiss. She thinks Climber would
be useful wherever high fidelity inter-
mediate structures are required, not just
for looking at structural movement.

REPLICATING RESEARCH GOES

BEYOND SOFTWARE SHARING
But the Simtk.org publication reposi-
tory is not just about software sharing. It
supports and encourages sharing any-
thing needed to replicate research
results. For example, Stanford University
researchers Yuan Yao, PhD, a post-doc-
toral fellow in the math department, and

On Simtk.org, May Liu created a publication project to share the three-dimensional sim-
ulation results from her latest publication analyzing eight subjects walking at four speeds
(very slow, slow, free, and fast). Shown here are still images from simulations of a rep-
resentative subject. The goal of the publication projects is to encourage and facilitate
replication of published results. Courtesy of May Liu. Reprinted with permission from Liu,
MQ, et al., Muscle contributions to support and progression over a range of walking
speeds, Journal of Biomechanics (2008) 41:3243-3252.

Published by Simbios, an NIH National Center for Physics-Based Simulation of Biological Structures




Xuhui Huang, PhD, a research associate
in the bioengineering department, and
their colleagues developed Mapper, a
tool that improves detection of low-den-
sity states within a massive amount of
data. After creating a project for Mapper
on Simtk.org, they submitted a paper
showing how Mapper could be used to
identify intermediate stable states during
the RNA hairpin folding process, a diffi-
cult task when those states represent
only two to three percent of the whole
data set. In order for someone else to
replicate that research, Yao and Huang
posted (on Simtk.org) not only the
Mapper software, but also the project’s
input data and instructions about how to
use that data with Mapper.

“To reproduce the results from a
paper is not an easy task,” Huang says.
“You need all the components togeth-
er—the data, the program, your param-
eters, instructions—so that people can
easily reproduce the results. Simtk.org
provides such a platform, especially
with this publication mode.”

While the information could have
been posted on his own web-
site, Yao says that researchers
from other fields would
not think to look there.
For an interdisciplinary
field, a common platform
like the Simtk.org publi-
cation repository is particu-
larly valuable.

REWARDS

FOR SHARING
While some researchers think that
sharing their software or data means giv-
ing up their competitive advantage, oth-
ers believe that it is a great way to build
a successful career. “Careers often come
from the application of software to make
new discoveries in the life sciences,” says
Philip Bourne, PhD, a professor in phar-
macology at the University of California
at San Diego, and founding editor-in-

chief of the journal PLoS Computational
Biology. “So by making the software
available, researchers open up that possi-
bility to benefit from what other people
do with the software as well.”

Bourne acknowledges that the cur-
rent system does not always reward the
work involved in preparing and support-
ing open-source software: answering
questions from software users and provid-
ing documentation, examples, and tuto-
rials. All of that effort takes time that
could be spent doing research that would
generate more publications—the metric
by which academics are primarily judged.
To address this concern, Bourne says,
PLoS is considering having a special sec-
tion that only publishes articles report-
ing on open-source compu-
tational biology software %
that has been deposit-
ed in an established
repository.

@
e

Molecular dynamics were used to simulate the fold-
ing of the RNA hairpin structure (above), generating
hundreds of thousands of molecular structures.
Mapper was then used to sort through all that data
to identify the relatively infrequent intermediate
states that occur during the folding process.

Courtesy of Yuan Yao.

Learn more about the projects mentioned in this article.

http://simtk.org/home/mspeedwalksims
http://simtk.org/home/mapper
http://simtk.org/home/climber
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A FIRST STEP TOWARD THE

PUBLICATION OF THE FUTURE

Bourne sees the Simbios publica-
tion repository as a very positive step:
“It actually speaks to the dream that |
have.” He envisions all aspects of
research being accessible, with the
paper being an access point to the
experiment. From the paper, a
researcher could retrieve and manip-
ulate the associated data, and possibly
discover new links and relationships
via the data and tools—not just the
paper citations—enhancing the
research process.

Bourne observes that there are an
increasing number of efforts to cap-
ture this whole research work flow

process. The goal of his BioLit
(http://biolit.ucsd.edu) project
is to connect open access
articles with information in
existing biological databas-
es, such as the Protein Data
Bank (PDB). Another exam-
ple is the Insight Journal
(http://www.insight-journal.org),
an open access on-line
publication focused on
medical image pro-
~  cessing and visualiza-
tion where authors are
encouraged to provide
the data and software associ-
ated with their papers.

“Most people get togeth-
er because of content,”
Bourne says. Efforts such as the
Simtk.org publication repository
provide the infrastructure to share
different types of information,
enabling a dialog between the
people who are using and
developing the content.

“My sense is that in the next
ten years, scientific discourse is
going to change very dramati-
cally as a result of these kinds of
things.” Bourne says. []

Simbios (http://simbios.stanford.edu)
is a National Center for Biomedical Computing
located at Stanford University.

www.biomedicalcomputationreview.org
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Modeling Cracks
in Clogged Arteries

Every year, doctors in the United
States perform more than a million
angioplasties: By inflating a tiny balloon
inside a clogged artery, cardiologists can
compress fatty plaques and restore blood
flow. But the balloon also applies high
pressure that can crack the wall of hard-

ened, fat-lined arteries—sometimes
with disastrous results. Now, structural
engineers have created the first fully
three-dimensional model to predict how
arteries fracture under such stress.
“Once you have the true geometry [of
the artery], this model applies pressure
to simulate the presence of a balloon
and evaluate the possibility of breaking
the plaque or rupturing the artery walls,”

04454

0.333

0.223

amna

O

0.003

0.251

0.8

0.1

o.om

0.0

Evolution of cracks in a clogged human artery depends on the
geometry of the arterial wall and the pressure inside the artery.
In the first simulation (left), a 40-percent-narrowed artery frac-
tures at a blood pressure of 260 mmHg. In the second simulation
(right), an 80-percent-narrowed artery fractures at a blood pres-
sure of 380 mmHg. Colors show the distribution of stress on the
arterial wall, measured in megapascals. Courtesy of Anna
Pandolfi. Reprinted from Pandolfi A and Ferrara A, Numerical
modeling of fracture in human arteries, in Computer Methods in
Biomechanics and Biomedical Engineering (2008) 11(5):563.

Published by Simbios, an NIH National Center for Physics-Based Simulation of Biological Structures

says author Anna Pandolfi,
PhD, an associate professor of
structural mechanics at the
Politecnico di Milano in Italy.
The research appears in the
October 2008 issue of Computer
Methods in Biomechanics and
Biomedical Engineering.

In lab experiments, arteries
tend to break when exposed to
pressures of 0.3 megapascals or
more—about 20 times the
average human blood pressure.
But angioplasty can easily gen-
erate such forces, and some
areas of diseased arteries are
particularly fragile.

To better understand how
arteries fracture, Pandolfi and
her colleague Anna Ferrara,
PhD, of the Politecnico di
Milano, combined high-reso-
lution magnetic resonance
imaging (MRI) of a patient’s
arteries with a model they pre-
viously developed to describe
fracture in brittle solids, such
as glass. Using a technique
called finite element analysis,
they divided the artery wall
into small volumes and
assumed each chunk had a uni-
form behavior. Then they sim-
ulated several high-pressure
scenarios and monitored the
evolution of arterial cracks.

“What we got was an inter-
esting correspondence with
the medical data,” Pandolfi
says: As others had seen in a
clinical setting, cracks usually
began at the edge, or “shoul-
der,” of a fatty plaque.

But, Pandolfi says, the model
has limitations: An MRI scan

can only describe an artery’s shape, not
its mechanical properties, such as resist-
ance. And these parameters vary from
patient to patient, depending on the
extent of arterial disease. To get individ-
ualized data, Pandolfi says, one must test
a piece of artery outside the body or do
an in situ experiment—dangerous proce-
dures in a patient with unstable arteries.
“The key thing is to get more data
and do more tests on human tissue,”
says Gerhard Holzapfel, PhD, profes-
sor of biomechanics at Graz University
in Austria who published his own
model of arterial fracture last year.
“When we throw in more data,” he
says, “l am very certain we can actual-
ly define a more optimal stent, on a
computer, for a specific lesion.”

—By Hadley Leggett, MD

Modeling Muscles
From the Inside Out

A new model of skeletal muscle
starts from the micro-mechanical prop-
erties of the smallest possible unit—the
sarcomere—and builds up to the mus-
cle fibers and then to the muscles
themselves. In addition, it places the
fibers in their natural context—within
surrounding soft tissue. The effort
brings a new degree of flexibility and
realism to muscle simulation.

“The idea behind micromechanical
modeling is to imitate the behavior of
the material as well as possible,” says
lead researcher Markus Boél, PhD, pro-
fessor of mechanics of polymers and
biomaterials at the Braunschweig
University of Technology in Germany.
“We're trying to include all the micro-
parameters we can. In this way we do
not have to fit the material behavior to
the experimental data.” His work
appears in the October 2008 issue of
Computer Methods in Biomechanics and
Biomedical Engineering.

Scientists started making mathe-
matical models of muscles in the 1920s.
Most attempts to date were one-dimen-
sional, and they ignored the soft tissue
surrounding muscle fibers, Bol says.
Also, they usually were built from the
outside in: Scientists would look at the
way a muscle behaved and tweak their
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model’s parameters (such as the num-
ber of contractions per second) until it
matched the behavior. This led to some
accurate but limited simulations.

Bol's work builds muscles from the
inside out. He uses the finite element
method, originally developed by aero-
space engineers to design planes, to
divide a muscle into discrete parts that
each behave differently. Previous finite
element muscle models used a continu-
um-based approach, which lumped all
muscle fibers together and treated them
as a single unit. But Bol gets into the
nitty-gritty of each tiny fiber. In essence,
his modeled muscles behave like a bunch
of ropes of different thicknesses attached
at the same point. Because the model
describes each rope independently, Bol
can plug in any parameters he wants and
get realistic behavior back out.

In his model, Bél splits the muscle
into an active element (the contractile
muscle fibers) and a passive one (the
incompressible tissue that surrounds
them). Putting the “ropes” into the
realistic environment of soft tissue
yields a more complete picture, he says.

The model has both experimental
and clinical value, Bol says. Scientists
will use it to test the properties of living
muscle, or to help doctors design unique
treatments for patients, he believes. He
is now working with sports doctors to
refine and implement his approach. “But
I have to say, these are first trials and
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work is still in progress,” he cautions.

The new model can simulate any
biological tissue that contracts, not just
skeletal muscles, says Ellen Kuhl, PhD,
professor of mechanical engineering at
Stanford University. Kuhl was so
impressed that she is now working with
Bol to model heart tissue, with the goal
of helping researchers develop a patch
to replace dead tissue after a heart
attack. “I think the cardiac application
is even more sexy, because many more
people could benefit from it,” she says.
—By Lisa Grossman

“Digital Embryo” Created

How does a humble zygote grow into
a fully functioning animal, billions or
trillions of cells strong? This question
has intrigued biologists for centuries.
Now scientists have generated the first
complete developmental blueprint of a
vertebrate—a “digital embryo” map-
ping the positions, divisions, and
movements of every cell during the first
24 hours of a zebrafish’s life.

“Such reconstruction of a complex
vertebrate embryo had not been achieved
before,” says Philipp Keller, a PhD candi-
date at the European Molecular Biology
Laboratory (EMBL) in Heidelberg,
Germany. Keller is lead author of the
paper, which appeared in the October 9,
2008 issue of Science.

Developmental biologists have long
coveted such a tool, but imaging a com-
plex organism’s growth pres-
: ents a serious hurdle.
?\ After just one day, for

“%  example, a zebrafish
already has 20,000

2524.3

cells and a beating heart. To meet that
challenge, Keller and his colleagues
developed a new technique called digital
scanned laser light sheet fluorescence
microscopy (DSLM).

DSLM generated a three-dimension-
al image of the embryo by combining
about 400 pictures taken along slightly
different planes. The team repeated this
process every 60 to 90 seconds, tracking
changes as the zebrafish developed. In
24 hours, this amounted to about
400,000 images for each embryo.

To deal with this deluge of data—
three terabytes per embryo—the
researchers developed a computational
pipeline. They wrote algorithms defin-
ing the structure of cell nuclei, then
ran the microscopy data through a net-
work of more than 1000 computers at
EMBL and the Karlsruhe Institute of
Technology in Germany.

The computational analysis picked
out every nucleus. Keller’s team then
processed this information into compre-
hensive databases of cell positions, divi-
sions, and migratory tracks. In all, they
catalogued 55 million nucleus entries.

Digitizing the data was key.
“Microscopy tells you about phenom-
ena from a qualitative point of view,”
Keller says. “But with digital
embryos, we can count the number of
cells that are involved in a process
and see what they do.”

The digital embryo has many poten-
tial uses. For example, the researchers
used it to determine that zebrafish germ
layers—which eventually give rise to
all of the fish’s tissues—form more syn-

chronously across the embryo than pre-
viously thought.
Keller also envi-
Firuss [N]
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This simulation of muscle contraction shows the process from a sin-
gle twitch (at left) to continuous clenching (at right). Reprinted from
B6l M and Reese S, Micromechanical modeling of skeletal muscles
based on the finite element method, Computer Methods in
Biomechanics and Biomedical Engineering (2008) 11(5):489-504 with
permission from Taylor & Francis, publishers.
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sions applications in tissue engineer-
ing and the study of tumor growth.
Overlaying the digital embryo with
genomic data also could be powerful,
he adds. Researchers could learn
which genes regulate vital develop-
mental processes, such as organ forma-
tion. To encourage such progress in
multiple fields, the researchers made
their data public.

DSLM images of a zebrafish embryo at four
different time periods, between 1.5 and 20
hours post-fertilization. Different colors
indicate different densities of nuclei (blue
and purple are least dense, while yellow is
most dense). Courtesy of Philipp Keller.

“This paper is groundbreaking,” said
Kees Weijer, PhD, professor of devel-
opmental physiology at the University
of Dundee in Scotland. “And making
all the data available is very helpful
since these coordinates will be used to
compare the development of mutants.”

—By Michael Wall, PhD

The Circuitry of Yeast

For centuries, yeast has helped scien-
tists understand how cells work. Now,
two inventive teams have applied an
engineering approach coupled with
computer modeling to reveal new
details about key biological pathways by
which yeast cells regulate themselves in
a changing environment, as reported in
the January 25, 2008 issue of Science and
the August 28, 2008 issue of Nature.

“What's interesting to me was look-
ing at this biological system from an
information-processing perspective,”
says Jerome Mettetal, PhD, a physicist
at the Massachusetts Institute of
Technology and lead author of the
Science paper. “By applying temporally
varying inputs, you can find out a lot
about the system that you wouldn’t be
able to see otherwise.”

Traditionally, biologists measure how
cells respond by adding or taking some-
thing away in a steady-state context. But
in real cells, inputs from the environ-
ment vary constantly. To understand the
mechanisms by which cells respond to
changes, the two teams created microflu-
idic arrays that confine yeast cells in a
chamber and feed them in regular cycles,
controlled by software. Based on the out-
put, each team generated a model of the
inner workings of the cells.

Mettetal’s team added bursts of salt to
the microfluidic array in order to tease
out how yeast responds to changes in
osmotic pressure—the salt level in the
surrounding medium. They then built a
model based on the response generated
by the yeast. When they compared their
model to known cell responses to osmot-
ic changes, they discovered new roles for
three different negative feedback
loops—the processes by which a biolog-
ical system reestablishes equilibrium.

The research team on the Nature
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paper applied a similar engineering
approach to better understand how yeast
cells respond to fluctuations in nutrient
levels. If yeast is deprived of its favorite
sugar (glucose), it will consume an alter-
native and less nutritious sugar (galac-
tose). The researchers created a sinu-
soidal input by alternately feeding and
starving yeast of glucose on different
time scales while galactose was con-
stantly present in the environment. The
cells responded to long-term changes in
glucose, but not to faster fluctuations.

The researchers then made a model
based on the well-known metabolism
of galactose. But the experimental
yeast was responding much faster to the
glucose fluctuations than the model
predicted. “This suggested something
was crucially missing from the model,”
says co-author Jeff Hasty, PhD, associ-
ate professor of bioengineering at the
University of California, San Diego.
Studying live yeast provided the
answer: The messenger RN A necessary
for the galactose metabolic pathway
was degraded when glucose was pres-
ent. “The most exciting thing is that
without the model, none of this would
have happened,” said Hasty.

“The broader contribution of each
of these pieces will be to point to the
value of using periodic input signals as

a means to tease out the structure and
function of the underlying system,” says
James Collins, PhD, professor of bio-
medical engineering at Boston
University. “I am already beginning to
think about how these might be inter-
esting tools to use to look at other sys-
tems, bacteria in particular.”

—By Cassandra Brooks

Watching a Molecule Bind

Like a paper clip being pulled to a
magnet, a small molecule called ADP
gets pulled into its port in a new simu-
lation. Because of a simple case of
opposites attract, it’s the first time com-
putational biochemists have successful-
ly simulated a molecule—or ligand—
being drawn into its binding site in an
unbiased simulation.

“Nobody has been able to capture and
describe the full process of ligand binding
to a binding site while permitting natural
motion of the ligand,” says Emad
Tajkhorshid, PhD, assistant professor of
biochemistry, pharmacology and bio-
physics at the University of Illinois at
Urbana-Champaign. “We think we are
getting the most faithful representation
of the binding site, because in our simula-
tions, the protein is dynamic and allowed
to freely react to and establish new inter-
actions with the ligand as it binds.”

Yeast grows in a microfluidic chamber designed at the University of California, San Diego. Regular
nutritional inputs, generated in a wave-like pattern, reveal aspects of how the cells regulate their
metabolism and internal environments. The green background color signals that it is a galactose rich
environment. Photo credit: UC San Diego Jacobs School of Engineering.
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Until now, says
Emad Tajkhorshid,
“nobody has been

able to capture and
describe the full
process of ligand
binding to a binding
site while permitting
natural motion of
the ligand.”

Tajkhorshid and graduate student Yi
Wang describe their simulations in the
July 15, 2008 issue of the Proceedings of the
National Academy of Sciences.
Tajkhorshid and Wang simulated
the binding of adenosine disphosphate
(ADP), a molecule involved in fueling
the cell, to the ADP/ATP carrier pro-
tein (AAC) located in the membrane
of mitochondria—the cell’s power gen-
eration plants. For ADP to be shuttled
into the mitochondria, it must first
float into a cavity insidle AAC and
bind to it—an event that lasted 100
nanoseconds in the simulations.
Previously, simulations of molecular
binding have required an active force to
produce the attachment. But placing
the ligand (in this case ADP) at the
mouth of the ligand binding site (here,
the AAC cavity) in molecular dynamics
simulations is more faithful to biological
reality. Initially, Tajkhorshid thought
that the ADP would just float away.
Instead it moved right into place. He
and his colleagues found that AAC uses
a special bait to lure ADP to its binding
site: Positively charged amino acids line
the sides and bottom of the AAC cavi-
ty, creating a surprisingly strong electro-
static potential that attracts the nega-
tively charged ADP. They called this

process “electrostatic funneling.” And

www.biomedicalcomputationreview.org



because of it, no additional forces are
needed in the simulations of ADP
binding to AAC.

In addition, when the team scanned
the amino-acid sequences of other
molecules that shuttle negatively
charged molecules across mitochon-
drial membranes, they found large
numbers of positively charged
amino acids not present in other
membrane proteins, Tajkhorshid
says. He suspects these other carri-
ers also use electrostatic funneling
to pull in their molecular quarries.

Alan Robinson, PhD, a
researcher at the Medical Research
Council Dunn Human Nutrition
Unit in Cambridge, U.K., says
Tajkhorshid has “published what looks
like the most reasonable structure of
ADP bound to the carrier.” This struc-
ture may serve as the starting point for
more detailed studies of how ADP
binds to AAC and how it triggers the
protein to open, he says.

— By Michael M. Torrice, PhD

Identifying a
Cell’s Weakest Link

To understand why bridges collapse
or computers fail, engineers might
create models of these systems and
push them beyond their limits. Now,
computational biologists are using a
similar approach to understand the
causes of cell death. By driving their
model of the cell beyond experimen-
tally observed values of certain impor-
tant cellular ingredients, they push it
to the “breaking point”—uncovering
the weakest links. The process
revealed some new biological roles for
several key signaling molecules—the
kinases ERK, Akt, and MK2.

“It showed us things that, in retro-
spect, we couldn’t see looking by inspec-
tion of the original model,” says co-author
Michael Yaffe, PhD, associate professor of
biology and biological engineering at the
Massachusetts Institute of Technology
(MIT). The work was published in the
October 17, 2008 issue of Cell.

The mechanisms by which proteins
influence cytokine-induced apoptosis, or

R
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cell death, are poorly understood. So
Yaffe and colleagues Kevin Janes, PhD, a
recent MIT graduate, and H. Christian
Reinhardt, PhD, a postdoctoral associ-
ate at MIT, built a model of the cell

using carefully collected data. Included
in the model were nearly 8,000 meas-
urements of protein signals in response
to combinations of three cytokines
that help dictate the fates of cells:
tumor necrosis factor (TNF), known as
the “death stimulus,” and epidermal
growth factor (EGF) and insulin,

Breakpoint model analysis pushes cellular
ingredients beyond their normal ranges to
see which ones are critical to a particular
cellular process. Here we see fluorescent
proteins highlighting the subcellular loca-
tion of several different key signaling mole-
cules (phosphoinositide-binding domains),
which function together with lipid and pro-
tein kinases and phosphoserine/threonine-
binding domains, to control a wide variety
of cellular events. These are the kinds of
molecular interactions that could be studied
using breakpoint model analysis. Courtesy
of Seth J. Field and Michael Yaffe.

e —
X

Tajkhorshid and Wang watched as ADP was
pulled down into the cavity of the AAC protein. In
this graphic, the AAC structure is outlined in black.
ADP molecules at different stages of the 100 ns simu-
lation are shown in colors ranging from pink to red—
pink represents ADP’s starting position and red
denotes its final binding state. The strongest region of
the protein’s positive electrostatic potential is shown
in blue mesh. Courtesy of Emad Tajkhorshid.

known as “survival stimuli.”
The researchers then manipu-
lated the model to drive the activ-
ity levels of the proteins outside of
their  experimentally  observed
ranges. When the model could no
longer computationally fit one of the
signal variables, it would stop making
predictions. This “breaking point” high-
lighted the protein that caused the fail-
ure. Thus, the technique acts as a sort of
high-throughput screen, revealing new
hypotheses about proteins previously

thought to have well-defined roles
within the cell. The team then verified
these hypotheses experimentally, lead-
ing to surprising new insights about
how the signaling proteins communi-
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cate. “Signaling networks are so compli-
cated right now that common sense
doesn’t always hold true,” Yaffe says.

“The thing that makes me really stop
and pay attention is the methodology,
which I found of special note,” says
Raphael Levine, PhD, distinguished
professor of chemistry at the University
of California, Los Angeles. “Instead of
trying to see if the model can predict
something new, they tried to drive it to
say something which they know it
shouldn’t say. As a result, they were suc-
cessful in finding some new biology.”
—By Kayvon Sharghi

Diagnosing Cell Circuitry
To biologists, a computer’s mother-
board may just look like highways of cir-
cuitry connecting various chips. But if
they focus harder, they might see a model
for disease, according to new research.

Just as a single corrupt circuit can
foul a computer’s operation, a faulty
molecule can upset a healthy body. “If
your body is not functioning correctly,
then the molecules inside your cells are
causing the problem,” says Effat
Emamian, MD, president and CEO of
Advanced Technologies for Novel
Therapeutics in New Jersey.

The parallels between signal trans-
duction pathways in a cell and circuit
networking in a motherboard inspired
Emamian’s team to identify defective
cell pathways in the same way that
engineers inspect faulty circuits. This
technique, known as fault diagnosis,
can pinpoint the molecules that are
most critical to a cell’s function.

Such an accurate assessment may
lead to more precise medicines. Most
new drugs in trial are toxic, Emamian
says, because they often target mole-
cules essential for cell function. Fault
diagnosis can reveal safer molecules to
target. The work appears in the October
21, 2008 issue of Science Signaling.

Lead author Ali Abdi, PhD, associate
professor of electrical and computer
engineering at the New Jersey Institute
of Technology, helped test Emamian’s
theory. Abdi re-envisioned three previ-
ously studied cell pathways as electronic
circuits: tumor suppressor p53, cell
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A simple model of the caspase3 network (top) shows the various regulatory molecules and
their relationships to each other. Depending on which regulatory molecules are active or
inactive, caspase3 will induce cell death. This network can be re-envisioned (below) as an
electronic circuit after organizing previous knowledge of the molecules’ relationships using
Boolean logic. Algorithms applied to this circuit can predict molecules to which a pathway'’s
signal is most vulnerable. Reprinted with permission from Abdi A, et al., Fault Diagnosis
Engineering of Digital Circuits Can Identify Vulnerable Molecules in Complex Cellular
Pathways, Science Signaling, (2008) 1(42):ra10.

death regulator caspase3, and a nerve-
cell network called CREB. His recon-
structions used binary language to char-
acterize a molecule’s state in its pathway
as “active” or “inactive.” Relationships
between molecules were organized into
decision-making  operations  using
Boolean logic where each relationship
contains only two possible values—on
or off. This allowed the researchers to
write algorithms predicting which mole-
cules were critical to a pathway’s smooth
functioning. The algorithms confirmed
what was known about p53 and cas-
pase3, but they also revealed new criti-
cal molecules in the CREB network.
The approach is a good start for quick-
ly identifying essential points in cell net-
works, says Kevin Janes, PhD, assistant
professor of biomedical engineering at
the University of Virginia. But while
Boolean logic can make good approxima-
tions, it may oversimplify the relation-
ships for some networks, he says. For
example, Emamian’s approach doesn’t
allow consideration for graded responses
between “active” and “inactive.” “But it’s
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not a fundamental flaw,” Janes adds.

The team acknowledges these limi-
tations in its Science Signaling paper.
The next step, Emamian says, is to
focus on larger networks, and not nec-
essarily just signaling pathways. “We
can analyze metabolic pathways, or
pathways that also have several critical
enzymes playing in the whole game.”
—By Emmanuel Romero

Cancer’s Signature—
Written in Blood

When it comes to deciphering the
health of the body, the blood carries a
potential mother lode of protein clues.
Given the ease of extracting blood, such
proteins could serve as efficient health
barometers. But it’s tough to distinguish
between the multitude of proteins natu-
rally found in blood and those that are
secreted into the blood—including those
secreted by diseased tissue such as cancer.
Their signal may get swamped by the
many other proteins present in blood,
thwarting efforts to discover useful infor-
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“Figuring out which proteins are secreted
into the blood is like searching for a needle
in a big, big haystack,” says Ying Xu, PhD.
“This [algorithm] sorts through all that hay.”

mation. Now, scientists have developed
an algorithm that sorts through the mul-
titude, expediting the search for blood-
based cancer biomarkers.

“Figuring out which proteins are
secreted into the blood is like searching
for a needle in a big, big haystack,” says
Ying Xu, PhD, professor of bioinfor-
matics and computational biology at
the University of Georgia. “This [algo-
rithm] sorts through all that hay.”

To develop their algorithm, Xu and
his colleagues began by scouring the liter-
ature for all proteins known to be secret-
ed into the blood, regardless of their ori-
gins. They then analyzed the amino-acid
sequences of these proteins to identify
common features, such as signal peptides,
transmembrane domains, solubility, and
secondary structure. They discovered 18
features that were powerful predictors of
blood secretion, and used them to train a
computerized classifier.

This microarray shows genes that differ in
regulation between cancerous and non-
cancerous lung tissue. Ying Xu'’s classifier can
predict which of the proteins made by these
genes may be useful as blood-based bio-
markers. Courtesy of Ying Xu.
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When the researchers applied the
classifier to other data sets, it could dis-
tinguish proteins secreted into the
blood from all other proteins in the
blood with more than 80 percent accu-
racy. The results appear in the October
2008 issue of Bioinformatics.

Xu and his colleagues are now using
microarrays to identify differences in
gene expression levels between cancer-
ous and non-cancerous stomach tissue.
Using their classifier, they can then sift
through the data to zero in on genes that
produce proteins that are most likely to
be secreted into the blood, followed by
validation with mass spectrometry.

“We’ve already identified proteins
that are elevated during different stages
of stomach cancer,” Xu says. “Typically,
in order to find out what stage it’s in,
you’d have to actually cut the patients
open and do a biopsy. Our markers
could be the first markers to provide
information about cancer stage.”

By applying his biomarker discovery
pipeline to a range of cancers, Xu ulti-
mately hopes to identify general biomark-
ers that apply to any cancer. He envisions
doctors detecting various cancers at early
stages with a simple blood test.

Bo Huang, PhD, a post-doctoral fel-
low at Vanderbilt University, hopes to
use Xu’s classifier to find biomarkers for
breast cancer. “These results provide a
powerful method to discover potential
biomarkers, not only for cancers but also
for many other diseases,” Huang says.
—By Lizzie Buchen

Blurring Data for
Privacy and Usefulness

Hospitals with research agendas
share a common problem: how to use
medical records for research while pro-
tecting patient privacy. One approach—
the data-protection equivalent of blur-
ring the face of an anonymous source on
television—has now been tested using

real-world data. The results, which show
promise for protecting privacy without
rendering the data set useless, appear in
the September/October 2008 issue of
the Jownal of the American Medical
Informatics Association.

“It’s not a theoretical problem,” says
Khaled El Emam, PhD, associate pro-
fessor at the University of Ottawa and
Canada Research Chair in electronic
health information, who collaborated
with Fida Kamal Dankar, PhD, on the
paper. “We're trying to protect privacy,
but we need the tools.”

Just as the nightly news renders the
faces of anonymous sources unrecogniz-
able, the approach known as k-anonymi-
ty blurs distinctive variables to reduce
the risk that someone could trace
patients with distinctive characteristics.
For example, the approach might cut
birthdates down to birth years. And eas-
ily identifiable outliers—the octogenari-
an in a college town, the teenager in a
retirement community—are omitted.
The remaining information contains at
least k data points that look identical,
where 1/k is deemed
an acceptable
level of risk.
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That works in theory, but the actual
risk depends on the type of data set and
what an intruder wants from it. A prose-
cutor digging up dirt on a defendant
would try to re-identify a specific person
in the database. A journalist trying to
discredit an organization’s data-security
procedures would also only need to re-
identify one person, but it wouldn’t mat-
ter who. El Emam set out to test whether
k-anonymity works in both circum-
stances. His findings: k-anonymity cor-
rectly predicts the risk of re-identifying
one specific individual with minimal
harm to the value of the database (the
prosecutor example). But using k-
anonymity to protect against re-identify-
ing an arbitrary person (the journalism
example) is unnecessarily strict and com-
promises the research quality of the data.

Since researchers choose k based on
statistical theory, El Emam suggests data
custodians run test cases to verify if the
k is sufficient, or if it’s overprotective, as
in the journalism example, before mak-
ing the data available to researchers. If
needed, the number of groupings of k
identical data points could then be
adjusted to ensure that the actual risk
approximates the theoretical risk of 1/k
and, in this way, keep the risk accept-
ably low while preserving data.

“What is needed are the steps to
turn this article into a practical tool
that custodians can use in conjunction
with researchers,” says Joan Roch, chief
privacy officer for Canada Health
Infoway in Montreal, Quebec.

El Emam says he plans to continue
exploring actual risks in various data-
security scenarios: “It’s a big problem,
and we’ve solved part of it.”

—By Stephanie Pappas

Modular Modeling

Biological models can quickly
become as complex as the systems they
represent. And minor changes can
necessitate a complete rewrite of the
model. But researchers may soon snap
their models together like LEGOs, using
a new programming language called
Little b, which uses modularity to sim-
plify biological modeling. Eventually,
the authors hope to turn Little b into an

“I've given Little b the power to
reason about biological objects,”
Aneil Mallavarapu says.

easy-to-use tool for biology labs.

“I think that as an everyday tool, it
[Little b] is going to be kind of like the
microscope,” says Aneil Mallavarapu,
PhD, lead developer of Little b and a
senior research scientist in systems biol-
ogy at Harvard Medical School. “We’re
essentially building a new kind of gel, a
new type of microscope for the lab.” The
work appears in the June 2008 issue of
the Journal of the Royal Society Interface.

Biologists traditionally create models
to describe unique systems, such as the
development of fruit fly embryos or the
actions of a phosphorylation cascade on
gene transcription. Such computational
models are usually based on lists of the
system’s properties, which detail every
molecular interaction in the

build entire virtual cells or virtual plants
collaboratively, increasing their ability
to study their projects in silico.

While the idea of breaking down bio-
logical systems into modular chunks
may seem logical, Little b may not arrive
in the lab immediately, says Birgit
Schoeberl, PhD, a senior director of
research at Merrimack Pharmaceuticals,
Inc, in Cambridge, Massachusetts. “I’'m
excited about the concept and what I
see, but in my own experience, it isn’t
straightforward,” Schoeberl says. “I
think it’s not quite ready for non-
developers. I hope he keeps developing
it, or someone takes it on to keep
working on the idea.”

—By Molly Davis [

system. This allows researchers
to tailor models to the precise
questions being asked, but it
also constrains the model’s use-
fulness, because it can only
probe into one area.

Little b strives to break down
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biological systems into modules
that can be used regardless of
the specific context, such as
“nuclear export” or “membrane
localization.* It then defines
those parts in a mathematical
language. Researchers can use
Little b to put together assorted
modules to describe their sys-

wurs lasgiape

tem; Little b then uses those

symbolic modules to write out
executable code that a scientist
could use in a simulation pro-
gram like MATLAB. “I've
given Little b the power to rea-
son about biological objects,”
Mallavarapu says.

Mallvarapu is excited about
the possible use biologists might
make of Little b. He would like
to see the language help uncov-
er the complex pathways
involved in diseases. He hopes
that researchers will eventually
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Little b is based on a core language, which includes
the Lisp language it was created in (green) and the
knowledge base, symbolic mathematics and syntax
modules that allow Little b to reason about biological
systems. It also includes modular libraries that
describe specific biological interactions, and transla-
tors that can generate code used in simulations. Blue
areas exist within the current framework; yellow
areas are currently under development or are envi-
sioned for future work. Reprinted with permission
from Mallavarapu, A, et al., Programming with mod-
els: modularity and abstraction provide powerful
capabilities for systems biology, Journal of the Royal
Society Interface, online publication, July 23, 2008.
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fter four years, the seven National

Centers for Biomedical Computing
(NCBCs)—established largely to
build a national biocomputing
infrastructure—have, as one might
expect, produced an impressive
array of computer tools. >

CBC UPDATE:
Shedding New Light On
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ut it's the Centers’ wide-ranging impact on

biomedicine that takes center stage. From AIDS
to diabetes, prostate cancer or schizophrenia, the
NCBCs are changing the landscape of disease research
by shedding new light on biological complexity.

“The impact on biology and medicine hap-
pened faster than anyone expected,” says Russ
Altman, MD, PhD, co-principal investigator
for Simbios, the National Center for Physics-
based Simulation of Biological Structures,
an NCBC grantee at Stanford University.

And that impact springs from the way the
NCBC:s function, says Andrea Califano, PhD,
who heads the National Center for
Multiscale Analysis of Genomic and
Cellular Networks (MAGNet) at Columbia
University. “Developing new tools in the con-
text of solving specific scientific, biological or
medical problems is what I think has allowed

the NCBCs to successfully penetrate the
broader community with tools, techniques and
methodology,” he says. “We’ve shown what
can be accomplished by applying these tools
to biological problems.”

And while the specific breakthroughs enabled
by NCBC tools varies with the tool being used or
the disease being studied, it is clear that they are
all helping researchers approach the complex sys-
tem that is the human body. “Dealing with
complexity is the essential challenge of this
century in biology,” says Scott Delp, PhD,
co-PI for Simbios. “And you can’t do it with-
out computers.”

“Developing new tools in the context of solving
specific scientific, biological or medical problems is
what | think has allowed the NCBCs to successfully

penetrate the broader community with tools,
techniques and methodology.” says Andrea Califano.

Califano: “one dritical thing we hope to accomplish is to create a new
breed of biologist trained both in computational and experimental sciences.
You already see evidence of this in some labs. Now, as never before, some of
the projects enabled by the NCBCs have computation and experimental biolo-
gy playing hand in hand rather than in a pipeline fashion. That is also reflected in the
tools that we generate. Unlike other platforms, geWorkbench was created for an experimental biol-
ogist who wants to learn enough computational biology to be able to analyze data. It's easy and
intuitive to use, and the researcher doesn’t have to learn complex scripting languages. The empha-
sis has been on enabling experimental labs to use more and more computational tools. Across the
entire set of activities at MAGNet, the real aim is to fuse the two disciplines and to create a really
interdigitated boundary between the computational and
experimental life sciences.”

Andrea Califano, PhD, is the principal investigator for the National Center
for Multiscale Analysis of Genomic and Cellular Genomics (MAGNet) and
professor of biomedical informatics at Columbia University.

“® MAGNet
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Here, following a few years of hard work, the
NCBC PIs reflect on what they’ve accom-
plished so far, how they’ve gained traction in
the research community, and what their goals
are going forward.

NCBC TooLs: ENABLING DISCOVERY
ACROSS THE DISEASE SPECTRUM

From the start, each NCBC’s tool and
infrastructure development goals were driven
by a cluster of specific biological problems—
commonly referred to in NCBC parlance as
the “driving biological problems” or DBPs.
After a few years, these DBPs were replaced by
a new set of DBPs, ensuring that the tools
would be suitable for multiple purposes. That
strategy has worked.

“To a certain degree, the tools and biology
are push-pull kinds of associations,” says Art
Toga, PhD, principal investigator for the
Center for Computational Biology (CCB)
based at the University of California, Los
Angeles. “The tools get developed because you
couldn’t do something without them. And vice
versa, you get this tool and you decide to pose
new questions. You end up pushing and pulling
so that both are advanced.”

Thus, NCBC tools that were developed to
address one biomedical problem have proven
to be broadly useful. For example, at i2b2—
Informatics for Integrating Biology and the
Bedside—an NCBC based at Harvard, tools
developed to allow the use of medical record
systems for clinical research initially focused
on diseases such as asthma, obesity and
depression. Now, however, these tools have
been adopted at 18 large academic health
centers with no apparent limit on the number
of diseases that can be studied, says i2b2 prin-

Kikinis: “we are developing algorithms and a plat-
form—the NAMIC kit—for analysis of diagnostic

images. | think that platform will be one of our major
accomplishments. It is free and open source with a

very liberal license, and it will continue to be devel-
oped. That will continue for a long time. So our goal is
to develop enabling technologies and make them accessi-
ble. That will be one of the legacies of the center.”

cipal investigator Zak Kohane, MD, PhD.
And imaging tools originally developed by

CCB and the National Alliance for Medical

Image Computing (NA-MIC) to study schiz-

ophrenia in the brain are

now proving useful in study-

ing many other brain dis-

eases, as well in prostate can-

cer (at NA-MIC) and cardio-

vascular disease (in CCB’s

case). “You can begin to see " | I
how the shape-modeling Deallng Wlth

approach [we've developed] : :
is applicable to a whole range com p | exrty N th €
of biological problems,” says

Toga of CCB. essential challenge
Similarly, OpenSim, a soft- .

ware program developed by Of th IS Ceﬂtu I'y

Simbios to study human ) )

movement and movement dis- N b 1O | Ogy, a

orders, was first used to con-

duct research into one of the
Simbios DBPs, cerebral palsy, SayS SCOtt Delp

but is now being used more 1 /
broadly. Indeed, it has been And yOU can't

adopted by more than one : :
thousand individuals working do It Wlthou-t
on any number of problems I
including  osteoarthritis, CompUterS
Parkinson’s disease and stroke.

This is the vision of the
NCBCs—to provide the under-
lying computational tools that
will advance the field of medi-
cine and biology, across a spec-
trum of diseases. As Mark Musen, PhD, of the
National Center for Biomedical Ontologies
(NCBO) at Stanford, says, “We're enablers.
We are providing the foundation by which

Ron Kikinis, PhD, is the principal investigator for the
National Center for Medical Image Computing (NA-MIC) as
well as director of the Surgical Planning Laboratory of the
Department of Radiology, Brigham and Women's Hospital
and Harvard Medical School, and professor of radiology at
Harvard Medical School.
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investigators can do research that will impact
human health. Our goal is to create the kinds of
tools that would be valuable to everybody.”

Ron Kikinis, PhD, head of NA-MIC, con-
“We will not solve cancer but we will
provide the people who are fighting cancer
with better tools to fight their fight,” he says.
“And the DBPs will use these tools and pro-
mote those tools into their communities—so
that makes it possible for lots of different dis-
eases to be addressed.”

Brian Athey, PhD, co-PI for the National
Center for Integrative Biomedical Informatics,

curs.

“The tools get developed
because you couldn’t do
something without them.
And vice versa, you get this
tool and you decide to pose
new questions. You end up
pushing and pulling so
that both are advanced,”
Art Toga says.

Center for
Computational
Biology (CCB)
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Toga: "Our hope is to continue to integrate what we know about the brain in a way
that allows us to ask questions such as: ‘How does the brain change throughout a per-
son’s life?’ These sorts of emerging questions are provocative. And we can only ask
them because of computation. So by the end of our ten years,
we really hope that our center produces new research pro-
grams that can continue to evolve in accord with the basic
thrust of the NCBCs. Because you know, it doesn't finish. They
haven't finished mapping the earth yet and there’s only one of those!
How can anyone possibly suggest we will ever finish mapping the
human brain when there are billions of them? So we'll continue to layer
on what we already know without throwing away our previous efforts.”

centered at the University of Michigan, agrees.
While his center’s tools have contributed to a
better understanding of type 2 diabetes and
prostate cancer progression, the tools’ reach
extends much farther: “We’re opening doors to
new research,” he says.

NCBC CHALLENGE:
PUTTING IT ALL TOGETHER

For the last thirty years, biology has been
about breaking things down into their funda-
mental parts to understand them. “But things
don’t work as independent parts,” says Delp.
“Theoretical and computational biology let
you put things back together to understand
the whole system.”

Several of the NCBC PIs cite the re-
assembling of biological pieces as a major
focus of their efforts. For example, literally
thousands of experiments have looked at how
elements of the neuromuscular system (mus-
cles, joints, connective tissue) operate inde-
pendently. But, Delp says, looking at those
elements separately doesn’t tell you how peo-
ple move. OpenSim lets researchers put the
pieces together. “When you can code the
details accurately in a computer framework,
then you can understand how the system
works,” Delp says.

Likewise for the brain, says CCB’s Toga.
Brain researchers have typically focused on
only one variable at a time—for example,
electrical activity, blood flow, distribution of
receptors, gene expression patterns, or cortex
morphology. But, Toga says. “All of these
brain changes are happening in concert.” To
understand the brain requires re-integration of
these events. CCB, Toga says, is providing the
tools, mechanisms, and strategies to put things

Arthur Toga, PhD, is the principal investigator for the Center for
Computational Biology (CCB), and a professor of Neurology and
Director of the Laboratory of Neuro Imaging at the University of
California, Los Angeles.
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HYPEREnLl c Working together NCBC researchers creat-

ed iTools—a way to manage the descrip-
tion of computational biology data, tools,
and services. Using the iTools hyperbolic
viewer a researcher can displays all of the
activities of the NCBCs organized by Center
(as shown here) or by activity. iTools also
lays the groundwork for interoperability
among diverse biomedical computing
tools. Reprinted from Dinov, ID, et al., 2008
iTools: A Framework for Classification,
Categorization and Integration of
Computational Biology Resources. PLoS
ONE (2008) 3:(5):e2265.

back together. “Observations from one project
in 2007 can be combined with other observa- vae,re enablers " |\/|al'|< M usen SayS
tions in another laboratory using different

subjects and techniques in 2008,” Toga says. ”\Ne are prOV|d|ng the foundatIOﬂ by

“That transition in science is revolutionary,

and the computational strategies that enable — \\/[|Ch in\/estigators can do research that

it are only now beginning to emerge.”

MAGNet hopes to provide a similar service W||| impact human health Our goal
at the genetic and cellular level. Very few dis- ’
eases are caused by a single gene, Califano says. iS to create .the k| ﬂdS Of tOOlS _tha_t

Usually a complex interplay of genetic and epi-
genetic factors is involved. “But what has been

lacking is a framework for integrating genetic, wWOou |d be Valuable to eve rybOdy ’

Musen: “We are thinking about what it would mean to be able to move biomedical

knowledge from prose to machine-processable format. The long-term vision is to create the

infrastructure and tools so that biomedical literature could be intelligible to both people and

machines. Ultimately this could allow intelligent computer-based agents to read the litera-
ture, to make associations between scientific contributions, and to
synthesize ideas from the literature. That would obviously change the
way we do science in a very profound way. But there are lots of baby
steps until we can do that.”

Mark Musen, MD, PhD,

is the principal investi- P

gator for the National ‘\I//
Center for Biomedical Ontologies e :\
(NCBO) and professor of medicine at Stanford NATIONAL CENTER FOR 7

University School of Medicine. B] O M E D | CAL ONTO LOGY
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epigenetic, functional and structural data—and
getting an answer that can really dissect dis-
ease,” he says. MAGNet’s goal is to establish
such a framework and to show that the frame-
work can integrate data in meaningful ways for
several diseases. “We already have proof of con-
cept for glioblastoma multiforme—a cancer
that produces the worst possible prognosis in
patients,” Califano says. The results for that
work will be published in the next few months.
“This kind of proof of concept in a disease is of
course important, but at the same time the
methodology becomes universal.”

NCBGCs:
MORE THAN THE SUM OF THEIR PARTS
The NCBCs are also working together in
various ways to ensure that they have a broad
impact. In some ways this is a surprise, say the
NCBC PIs, because the NIH cast such a wide
net—with centers that cover ontologies, simu-
lations, clinical systems, systems biology and
imaging. “Given the breadth of the needs and
the solutions to biomedical computing prob-
lems,” says Kohane, “it wouldn’t have been sur-
prising if there had been no overlap and the syn-
ergies had been fewer.”

“What bioinformatics was five years ago is frankly
just a glimmer of what it is today,” Brian Athey says.
"It's exploding into something much more robust.

And that's going to continue for a while.”

NCIBI is also integrating many different
high-throughput data types to better understand
complexity. “We do not yet understood the full
complexity of the architecture of the human
genome,” Athey says. “Only 2 percent of the
genome are ‘genes’ and we’re learning more and
more that the other 98 percent are doing
things.” To tackle that problem, he says, com-
putational biology is making huge strides. “What
bioinformatics was five years ago is frankly just a
glimmer of what it is today,” Athey says. “It’s
exploding into something much more robust.
And that’s going to continue for a while.”

Center for Biological Information.
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Athey: "There's much more work to do to figure out how to use systems biology more
effectively to understand disease and its complications. The daunting complexity of biological
systems is becoming more and more clear. To gain an understanding of that complexity, we
need an integrative approach that's iterative and that allows the integration of many different
kinds of data types around hypotheses and models. The abundance of high throughput data we're
presented with from next generation sequencing, and what that’s revealing about the transcriptome
and alternative splicing, and all the components we haven’t yet annotated—
it's just astounding. It's literally changing our basic understanding of cells and
their complexity and function. And, frankly, it's changing what our understand-
ing of a gene is. So there’s a lot of work to do. I think that's
the theme. And each success brings on new challenges.”

Brian Athey, PhD, is the principal investigator for the National Center for
Integrative Biomedical Informatics (NCIBI), associate professor of biomed-
ical informatics at the University of Michigan, and director of the Michigan

Yet the NCBCs have found overlap and
have helped each other. For example, the i2b2
center collaborated with NCIBI around Type 2
diabetes, Kohane says. And NA-MIC nicely
complemented i2b2’s major depression DBP by
correlating patient imaging with what was
being seen genetically. Similarly, ontologies
from NCBO have been helpful to CCB in con-
structing their brain atlas; and CCB and
Simbios have used some of NA-MIC’s visuali-
zation tools.

Even though the NCBCs might be develop-
ing different tools, Califano says, “when you

BioMEDICAL INFORMATICS
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tackle a biological problem you must tackle it
from several angles.” So for example, MAGNet
and NCIBI have several DBPs that focus on
analyzing genomic data as a way of studying
neurodegenerative diseases, diabetes or cancer.
But these same diseases also need to be studied
using data from large cohorts, which ties in to
what i2b2 does at Harvard to use medical
records to study large populations. It also ties in
to the ontology work of Mark Musen, Califano
says, because ontologies provide an essential
foundation for other work. And, he says, when
you look at the actual problem you’re trying to
understand, all sorts of issues related to physical
modeling also come up. Indeed, according to
Altman, eventually cellular physics will
become an essential piece of systems biology.

“The reality of why all the centers come
together is precisely around the biology,
Califano says. “We develop all the different
techniques and infrastructure to tackle biology
problems, but when you actually want to tack-
le one of these problems, you require all of
these approaches.”

And those multiple tools also need to be kept
organized. So one key activity that has united
all the centers, says Musen, is the creation of an
online tool that allows biomedical software
resources to be easily identified and searched
online. Called Biositemaps, the tool, seeded
with information about the NCBC tools, can
inform search engines about software available
from any organization that creates a simple
Biositemap file as described on the site
(http://www.biositemaps.org). NCBO is provid-
ing the ontology behind the tool but, Musen
says, “It’s a product of all the NCBCs that would
not have been possible without the cooperative
involvement of all the different centers.”

Kohane: “within the ten-year time frame, the goal would be to
establish a kind of scientific ecosystem around the country where we
can use entire healthcare systems as a unit of study. We'll be able to look

at reproducibility across multiple academic health centers to see if we're seeing, for example, the
same adverse drug events (so that we can push early warnings to prevent such events); or com-
pare efficacious therapies; or compare whether we have reproducible findings in genomics or pro-
teomics across populations. This approach will allow us to do research in a more cost-effective
way. And although it sounds venal to talk about cost, cost is a key rate-limiting factor in large pop-
ulation studies. So if we can do clinical research, including genomic measurements in populations
of 10,000 to 100,000, that's really a game-changer.”

Isaac Kohane, MD, PhD, is the principal investigator for Informatics for
Integrating Biology and the Bedside (i2b2), as well as Lawrence J.

Henderson Associate Professor of Pediatrics and Health Sciences and -
Technology at Harvard Medical School, and Chair of the Informatics I
= =

Program at Children’s Hospital, Boston.
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NCBCs: BENCH TO BEDSIDE
Whether casting a wide net to enable
research in lots of areas is enough to render the
NCBC:s successful remains to be seen. Curing a
disease would be better. “If we actually success-
fully did a big population study and discovered

" Adoption by companies

is one indication that what
we're doing will eventually make
a difference to clinical practice,”

Ron Kikinis says. “We are
not yet at that point, but

| have these early indicators.

something important or successfully calculated
how to design a vaccine or predicted a new drug
for a specific disease, then we’d be bringing our-
selves to the next level,” says Kohane. “We’d be
solving a biomedical problem of true health rel-
evance. In fairness, I think we’re all trying to get
there, but we're not there yet.”

“The challenge is,” says Delp, “that it takes
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Delp: “The goal is twofold, really. One, that
we'll produce a set of tools that are ubiquitous
in biomedical research so that every investiga-
tor who is interested in how physics affects bio-
logical function will have SimTK-based tools as
part of their laboratory. The second objective is
that we and others will use those tools to make new
discoveries that enhance human health.”

time to build the tool, teach people how to use
it, get it adopted, make a discovery and then
translate that into clinical care.” Currently, says
Delp, “OpenSim is only halfway down that
pipeline and is just beginning to see the first
examples where new discoveries will enhance
human health.”

Kikinis says NA-MIC’s tool kit is
similarly poised for bedside use. He’s
beginning to see the first signs—such
as questions at seminars, and email
inquiries—that companies are inter-
ested in it. “Adoption by companies is
one indication that what we're doing
will eventually make a difference to
clinical practice,” he says. “We are not
yet at that point, but I have these
early indicators.”

Migrating computational biology
from the bench to the bedside remains
a challenging goal for all the centers.
But, as Toga sees it, “I think these com-
putational strategies, which are the
hallmark of this program, are having a
' great effect on accelerating that.” CCB

is modeling the effect that HIV and
Alzheimers have on the brain. These

are diseases that will strike people we

all know, Toga notes. “So our work
immediately transforms a mathematical
problem [shape modeling] into some-

thing with obvious and immediate clinical
value,” he says. “And the time frame for doing
that is getting shorter and shorter and shorter.”
Kikinis summed it up succinctly: “What are
the NCBCs doing for biology? Everything.
That's by design, but now you can say that
they're actually delivering, and there’s a sense of
excitement. It’s clear that things are moving.” []

Scott Delp is co-principal
investigator for the National
Center for Physics Based
Simulation of Biological
Structures (Simbios) and a
professor of bioengineering
and mechanical engineering
at Stanford University.
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\ DOING IT/RIGHT

iomedical computing at academic

research centers has been compared to

a cottage industry. Lots of individuals
work away on their focused research projects,
generating useful algorithms. But quite often, the
knowledge gained is lost when researchers move
on to new projects. Yes, they might post their code
on Web sites. But is it useful to anyone else without
support and documentation? And how can people
find it in the first place?
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To overcome the cottage industry men-
tality, the National Institutes of Health
(NIH) is placing a greater emphasis on
dissemination as a piece of the National
Centers for Biomedical Computing
(NCBC:s) as well as for other grantees.

But what does it really take to turn
an impressive algorithm into a widely
disseminated, prolific computational
tool? The transition might be harder
than you think.

“Today, our software is very wide-
ly used, but it didn’t take off right
away. It took years,” says Klaus
Schulten, PhD, speaking about the
molecular dynamics simulator NAMD
(http://www.ks.uiuc.edu/Research/namd/)
and the molecular graphics viewer VMD
(http://www.ks.uiuc.edu/Research/vmd/),
which together have more than

“There’s a world of
difference between
developing code
for yourself and
developing code
that you want to
distribute,” says
Klaus Schulten.

100,000 users. “We went through a
long initial phase where we were close
to failure all the time.” Schulten is pro-
fessor of physics at the University of
[llinois at Urbana-Champaign and
director of the Theoretical and
Computational Biophysics Group at
the university’s Beckman Institute.

For a tool to spread, it takes more
than a good algorithm. From the start,

VMD Visuals: (top) secY protein, (lower left) fibrino-
gen protein,(lower right) polio virus particle. Picture
made by the molecular graphics software VMD.
Despite initial challenges, VMD is now a clear dis-
semination success story. The software is even used
in high school classrooms. Courtesy of: the
Theoretical and Computational Biophysics Group,
NIH Resource for Macromolecular Modeling and
Bioinformatics, at the Beckman Institute, University
of lllinois at Urbana-Champaign.

someone has to build “disseminability”
into the tool, with robust, flexible, and
extensible code. Then, someone has to
package the tool in a way that makes it
accessible to a wide audience. Finally,
someone has to publicize the tool, build
a community of users, and support and
maintain the tool.

In an ideal world, that “someone”
would include a team of people with
diverse skills—such as software engi-
neers, technical writers, and marketers.
But, in reality, it is often a scientist
moonlighting as all of the above. Tool
dissemination has traditionally been
underappreciated and underfunded,
making it hard for researchers to dedi-
cate resources to tools beyond what’s
needed for their science. Fortunately,
this situation is changing—with initia-
tives such as the NCBCs that recog-
nize the importance of tool develop-
ment and dissemination—but there is
still a long way to go.

So how do scientists manage to do it
right? Biomedical Computation Review
spoke to a panel of individuals who have
disseminated popular open source bio-
medical tools to find out what it takes to
succeed and how they pulled it off.

LAYING THE GROUND WORK

The ingredients for successful tool
dissemination have to be built into the
tool’s core from the start.

“You can’t assemble a software pack-
age out of a bunch of code that your
graduate students wrote trying
to get their theses done. It can’t
be an afterthought,” says
Nathan A. Baker, PhD, associ-
ate professor of biochemistry
and molecular biophysics at
Washington University in St.
Louis. “At some point in the
design process you say, ‘oh,
other people might want to use
this.” Baker wrote APBS—a
program that solves the Poisson-
Boltzmann equation for molec-
ular electrostatics—in collabo-
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ration with colleagues at the University
of California, San Diego; the program is
downloaded about 1000 times a month
(http://apbs.sourceforge.net/).

When Baker realized that APBS
offered something new that might be
widely useful, he says, “I took most of
what I'd written at that point and just
deleted it and started over.” A tool that
is going out to others has to be built
according to professional software
design principles, he says. The code
should be clean, bug-free, and robust;
and it should be built in a flexible, mod-
ular fashion so that others can add to the
tool and adapt it to their own problems.

“There’s a world of difference
between developing code for yourself
and developing code that you want to
distribute,” Schulten agrees. Establishing
the proof of concept takes 10 percent of
your time, whereas adhering to profes-
sional design principles takes 90 percent,
he says. “And it is almost impossible to
convince any normal scientist to spend
that 90 percent.” Professional program-
mers helped design VMD and NAMD,
and they were a key factor in the tools’
success, he says.

DRESSING YOUR TOOL FOR

Success: AcCcCEssIBLE, WELL

DOCUMENTED, WITH A GUI

To become widely used, tools also
have to be accessible—which means
open source, portable, well document-
ed, and user-friendly.

www.biomedicalcomputationreview.org
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ty also started voluntarily fix-
ing bugs and writing new mod-
ules and patches. “Everybody
benefits from the openness. So
I think overall it’s been an
incredibly positive experience
for us,” Lindahl says.
GROMACS follows the
GPL-style open source license,
which requires those who
adapt the software to make
their programs open source as

“Science is about getting things out
there,” says Erik Lindahl, PhD, associate
professor in the Center for Biomembrane
Research and the department of bio-
chemistry & biophysics at Stockholm
University in Sweden. “Unless you have
this great 10 million dollar idea that will
make you a fortune, the last thing you

well. Other tools in this article
follow the less restrictive BSD-style
license. “If I was starting from scratch,
I'd seriously consider going with this
completely open license,” Lindahl says.

“BSD actually worked out quite well
for us,” says Steve Pieper, PhD), founder
and CEO of Isomics, Inc., in
Cambridge, MA, and the dissemina-

Growing a Tool. The use of GROMACS software has spiked since 2000: There has
been growth every month in the number of citations to one or more of the three
GROMACS papers or the manual. Courtesy of Erik Lindahl.

Cytoscape is a software platform for
modeling molecular interaction net-
works that gets about 3000 downloads
per month (http://www.cytoscape.org/).

To be accessible, tools not only
have to be free but also have to work
on the computers that biologists are
using, says Thomas L. Madden, PhD,
a scientist at the National Center for
Biotechnology Information at the
U.S. National Library of Medicine.
Madden helped transform UNIX-
based BLAST into a tool that runs on
multiple platforms, including
Windows and Mac OS. BLAST is a
sequence alignment tool and an undis-
puted tool success story—the original
BLAST paper was the most highly
cited biomedical paper in the 1990s
(http://blast.ncbi.nlm.nih.gov/Blast.cgi).

“A lot of bioinformatics tools are

“You can't assemble a software package out of a bunch of code

that your graduate students wrote trying to get their theses done.

It can’t be an afterthought,” says Nathan Baker.

want to do is to limit access to your
work.” Lindahl is a primary developer of
GROMACS, a molecular dynamics sim-
ulation package developed at the
University of Groningen, which has
been cited more than 1000 times
(http://www.gromacs.org/).

When GROMACS was released in
the early 1990s, it was not open source—
academic users had to sign a contract
and industry users had to pay a fee. But
the licenses were a hassle and Lindahl
barely broke even paying for the secre-
tary to handle them, he says. “So, we
realized this wasn’t really very smart.”

When they moved GROMACS to
open source, their user base quickly
jumped from 1000 to 5000 and contin-
ued to climb from there. The communi-
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tion core PI for the NCBC NA-MIC
(National Alliance for Medical Image
Computing). The NA-MIC toolkit
includes visualization software: VTK,
ITK, and Slicer (http://www.na-
mic.org/Wiki/index.php/NA-MIC-
Kit). The BSD license has allowed
medical imaging companies to incorpo-
rate bits and pieces of the software into
their equipment—which gets the tech-
nology out where it can directly benefit

patients, Pieper says.
Cytoscape—which also follows the
BSD license—has similarly been incor-
porated into several commercial soft-
ware applications, says Trey G. Ideker,
PhD, associate professor of bioengi-
neering at the University of California,
San Diego, and on the Cytoscape board
of directors.

only made for Linux or Unix, but we've
had just as many downloads of the PC
version of BLAST as the Linux ver-
sion,” he says. “I think you can figure
that just about every lab has a PC. So |
don’t think you can underestimate the
importance of that.”

Once users have a tool in-hand, if it
is technically difficult or poorly docu-
mented, they are likely to seek out
something easier to
use. The main




“Unless you have this great 10 million dollar idea that
will make you a fortune, the last thing you want to do
is to limit access to your work,” says Erik Lindahl.

reason scientists flock to commercial
alternatives for open source software is
not because of superior performance
(often the opposite is true), but because
of a great user interface and great docu-
mentation, Lindahl says. Open source
tools often fall short on these aspects.
“I'm a sucker for good documentation.

ages—and then good luck reading the
documentation.”

To help make the documentation
more user-friendly, several of our inter-
viewees advocate “learn by example”
tutorials, which lead users step-by-step
through common research problems.

Many potential users are also

deterred by the lack of a graphical
user interface (GUI). For example,
Baker says of APBS: “It’s no worse
than the other command-line compu-
tational biology tools. But I would say
that maybe 80 percent of our audi-
ence would prefer to interact with it
in some other way.”

If there are not clear
PDFs with graphics, I'm
extremely unlikely to
use it,” says Raymond
R. Balise, PhD, a bio-
statistical programmer
at Stanford University,
who wuses the open
source statistical pack-
age R, which has hun-
dreds of thousands of
users  (htep://www.r-
project.org/). But the
best programmers are
usually not the best
writers, he says. “So
you have brilliantly
designed elegant pack-

Cytoscape Pathways (Including background image on
page 21). Pictures generated from Cytoscape, software
for visualizing complex molecular interaction net-
works. Cytoscape follows a “non-viral” open source
license, which allows companies to incorporate the
software into their own commercial tools. Many
companies now rely on Cytoscape as a critical part of
their tools. Courtesy of: Vuk Pavlovic and Benjamin
Elliott, the University of Toronto.
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Similarly, R is a great tool for mathe-
maticians and statisticians who are used
to difficult programming languages, but
telling physicians or biologists to “learn
to program” just doesn’t fly, Balise says.
To make tools accessible to a wider audi-
ence, you need to wrap a nice GUI
around the package and build in checks
and balances to alert users if they’re
doing something wrong, he says.

Tool developers often resist these
steps for fear that they will have to sacri-
fice power and flexibility for usability.
An easy-to-use GUI-based interface is
too constraining for research-driven
tools, such as R and Bioconductor, that
need to keep up with the cutting edge of
science, says Martin Morgan, PhD, a
core developer for Bioconductor, an R-
based tool for analyzing high-throughput
genomic data that has tens of thousands
of users (http://www.bioconductor.org/).
These tools may never be a satisfactory
solution for a general audience, says
Morgan, who is also a staff scientist and
director of the Bioinformatics Shared
Resource at the Fred Hutchinson Cancer
Research Center in Seattle, Washington.

But usability can evolve, even if the
tool was designed for expert users. For
example, community developers have
spontaneously added GUIs onto several
programs—including R Commander for
R, and PyMOL and VMD plugins for
APBS. Core developers may also revisit
usability as a tool matures. For example,
BLAST’s core developers have become
more focused on ease of use in recent
years, particularly for the BLAST web-
page interface, Madden says.

In rarer instances, developers con-
sider usability from the start. This was
the case with GenePattern, says Jill
Mesirov, PhD, director of computa-
tional biology and bioinformatics and
chief informatics officer at the Broad
Institute of MIT and Harvard.
GenePattern is an analysis program for
genomic and proteomic data, which
also captures users’ steps in a repro-
ducible pipeline; the package, released
in 2004, already has thousands of users
(http://www.broad.mit.edu/cancer/soft
ware/genepattern/).

From the beginning, GenePattern’s
developers recognized that they were tar-
geting two audiences: “We have a num-
ber of computational scientists who do a
lot of their own coding. We also have a
lot of bench biologists who want to do
analyses but don’t want to write code.
And why should they?” Mesirov says.
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Power Surge. The number of active computers running Folding@home has surged since 2000. Courtesy

of: Vijay Pande, Stanford University.

So, they developed the program to
be modular and flexible for expert users,
including allowing it to interface with
standard programming languages such
as MATLAB, Java, and R; but they also
provided a point-and-click GUI.

“I think it really is the non-pro-
gramming community that has made
the package so popular,” she says. “We
get emails from both types of users,
and we get really effusive ones from
the non-programming users, because
they say ‘Wow, this really lets me use
all these sophisticated tools and I can
do it on my own,” Mesirov says.

CONNECTING TO
YOUR AUDIENCE

The next step in tool dissemination
is the actual dissemination—connect-
ing the tool to users. This means not
only getting the word out about the
tool but also “selling” it.

“There is a mentality that if the tool is
good enough it will speak for itself,” says
Stanford University’s Joy Ku, PhD,
director of dissemination for Simbios and
its tools, including SimTK Core, a toolk-
it for physics-based biological simulations
(http://simtk.org/home/simtkcore), and
OpenSim, a package for modeling mus-
culoskeletal movement (http://simtk.org/
home/opensim). But, in many cases,
particularly for complex tools, you
really need active outreach to show
people how the tool applies to them

and how to use it, she says.

Outreach often starts with a publi-
cation that announces the tool. In the
early days, people discovered BLAST
primarily through the publication and
word of mouth, Madden says. BLAST
solved a key problem, so it was obvious
how it was useful. Nowadays, “light-

“I'm a sucker for good
documentation. If there
are not clear PDFs with
graphics, I'm extremely

unlikely to use it,”
says Raymond Balise.

weight” outreach on the web can also
go a long way, he says. You can reach
many potential users with little cost
through newsgroups, email lists, blog-
gers, and even random web searches.
“One thing that worked very well
for us is the web,” Schulten agrees,

speaking about VMD and NAMD.
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“That really was a godsend because it’s
basically like we have a shop and our
shopping window is the web.” he says.
“It’s so easy to do and you reach so
many people.”

Non-programming users of GenePattern send
effusive emails, says Jill Mesirov, “because they

Cilk Arts, focused heavily on web out-
reach. They posted benchmarks com-
paring their software with other FFT

implementations; added FFTW links
on websites that list FFT programs, as

say ‘Wowy, this really lets me use all these

sophisticated tools and |

To promote FFTW (“the Fastest
Fourier Transform in the West”)—a
general-purpose tool that performs
Fourier transforms, which are often
used in molecular dynamics simula-
tions—creators Steven G. Johnson,
PhD, assistant professor of applied
mathematics at MIT, and Matteo Frigo,
PhD, chief scientist and founder of

can do it on my own.

well as on sites that catalog free-soft-
ware projects (such as freshmeat.net
and directory.fsf.org); advertised on
mailing lists; created their own mailing
list; and answered questions on online
discussions about FFTs, including pro-
viding links to FFTW and other free
FFT software.

“Eventually, people began posting

I
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Building a Pipeline. The GenePattern tool helps expert and non-expert users analyze genomic and pro-
teomic data, while capturing the steps in a reproducible pipeline. The tool was built with non-expert
users in mind, which has been a major factor in the popularity of the tool. Reproduced from Reich M,
GenePattern 2.0, Nature Genetics (2006) 38:500-501, supp. fig. 1.
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questions specifically about FFTW, and
it was especially important to respond
to these—having a support presence
on public forums reassures people that
the software works and is actively
maintained,” Johnson says.
FFTW is now downloaded
about 10,000 times a month
(http://www.ffew.org/).

Active mailing lists and
online forums help draw in new
users, support existing users,
and build a sense of communi-
ty. “I frequently get much bet-
ter support from open source
mailing lists than you get from
vendors,”  Lindahl  says.
Answering emails about the
tool also goes a long way: “We've
received over 10,000 email messages
about FFTW over the past 10 years, and
responded to a large fraction of them,”
Johnson says.

Beyond the web, more “heavy-
weight” outreach includes training ses-
sions, workshops, and conferences. For
example, Simbios and NA-MIC as well
as other NCBC:s hold training events at
conferences and stand-alone work-
shops for developers and general users.
Cytoscape developers run tutorials at
the major bioinformatics conferences
and some major disease conferences.
It’s hard to convince scientists to spend
time running training sessions rather
than improving the tool, Pieper says.
So, it’s important to involve people
who are specifically interested in and
passionate about teaching, he advises.
R, Bioconductor, and Cytoscape hold
their own annual conferences (funded
primarily by corporate sponsors and
paying participants), which help adver-
tise the tools as well as bring developers
together. “There’s definitely a commu-
nity, and the whole mentality of work-
ing as an international team is huge for
R,” Balise says.

High school teachers and college
professors also promote tools in their
classrooms. With VMD, “it became so
user friendly that it could actually
trickle down to college and high school
education,” Schulten says. “We were
very fortunate that these outreach
efforts were essentially ripped out of our
hands. So now there are many efforts,
and we just happily receive the news.”

Distributed computing efforts are all
about outreach, since researchers must
convince the general public to down-
load and run their tool. Coverage in

www.biomedicalcomputationreview.org



the popular press (Time, CNN, and the
New York Times, for example) helped
generate buzz for Folding@home
(http://folding.stanford.edu/), a distrib-
uted computing project at Stanford
University led by Vijay Pande, PhD,
associate professor of chemistry.
Distributed computing also uses com-
petition to stir up interest—partici-
pants collect points based on the
amount of computing power they con-
tribute. Capturing the high score is
reminiscent of holding the high score
on Asteroids at your local video arcade
back in the eighties, but this is on a
much grander scale, Pande says. “It’s
something on a very high profile site,
where you can be number one out of
hundreds of thousands.”

Competitions are something we’d
like to explore, Ku says. Already,
Simbios runs a traditional grant compe-
tition for seed projects, which gener-
ates interest in and awareness of their
center. “Ultimately you’re only going
to fund a small percentage of appli-
cants, but all the applicants have to
become familiar enough with what
you're doing,” she says. A similar
approach could be used for software.

So, which of these outreach efforts is
most effective? Until this year, we've
just been going by an intuitive feel for
what works, Ku says. But, in an effort to
improve dissemination, they collected
eight months of data on how people
find their software project repository
Web sites, simtk.org. The breakdown
is: 29% word of mouth; 25% publica-
tions and conferences; 24% web search;
13% mailing lists and newsgroups; 9%
other mechanisms (including use in the
classroom, Biomedical Computation
Review, and links on other Web sites).
Word of mouth leads the way, but it
accounts for less than one-third of
hits—so more active outreach is vital.

MAKING IT HAPPEN

Successful tool dissemination can be
lengthy and costly, and it requires
diverse skills, such as programming,
writing, marketing, and teaching. So
how do scientists support these efforts?

“Up to now it’s frequently been the
case that you're kind of moonlighting,”
Lindahl says. “One problem both in
Europe and in the States is that it’s
hard to get funded only for software
development.” Many tools are support-
ed using bits and pieces of resources
scrounged from science-driven grants
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R Gallery. Community developers have written so many graphical programs for data visuali-
zation in R that it’s hard to keep track of them; here the programs are cataloged visually for
easier access. Contributions from the community have been critical to R’s growth and success.
Screenshot from the R Graph Gallery, http:/addictedtor.free.fr/graphiques.

“One problem
both in Europe
and in the States
is that it's hard
to get funded
only for software
development,”
says Lindahl.

as well as many hours of volun-
teerism—from professors, graduate stu-
dents, postdocs, and community mem-
bers. Under this piecemeal model,
there’s no money to hire professional
programmers let alone technical writers
or outreach coordinators. Lindahl says
he’d “nudge” postdocs to turn code
they wrote for their research into for-
mal GROMACS modules. Pande says
he and his graduate students have to
work 60 to 70-hour weeks to keep
Folding@home going. “It’s just a lot of
work to be running something like
this,” Pande says. Johnson says he and
Frigo did most of the legwork for FFTW
themselves over the vyears, despite
many other time commitments.

Tool upkeep and dissemination are
also undervalued when it comes to
academic promotion—making it even
harder to justify dedicating scarce time
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and resources to these endeavors.
“Academic credit for maintaining
software is not the same as producing
publications,” says BioPerl developer
Jason E. Stajich, PhD, Miller
Research Fellow in the department of
plant and microbial biology at the
University of California, Berkeley.
BioPerl is a programming toolkit for
processing sequence data. It has been
cited more than 500 times
(http://www.bioperl.org/wiki/Main_Page).
Stajich worked heavily on BioPerl
before and during his graduate studies
but, as he transitions to a faculty posi-
tion, he needs to focus more on his sci-
ence; and many other developers are
in the same situation. “We’d like to do
more outreach, but it requires a criti-
cal mass of people who actually have
time to do that,” he says.

To augment the piecemeal model of
tool dissemination, some groups have
formed non-profits. For example,
Stajich and his colleagues formed the
Open Bioinformatics Foundation,
which provides infrastructure for
BioPerl and related projects, such as
BioJava and BioPython. Similarly, the
Cytoscape Consortium provides an

n’t happen. It would be like, as with most
previous funding, an afterthought in
some grant: ‘Oh, and by the way, I guess
we'll keep this tool limping along.”

As part of the NCBCs, Simbios and
NA-MIC have specific funding for tool
maintenance and dissemination. “One
of the things that’s great about the
NCBC program is that there’s funding
to do actual training events,” Pieper
says. Finally, Schulten has had long-
standing (two decades of) tool-specific
funding through an NIH P41 grant—
which specifically funds technology
development. These funds allow him to
hire professional programmers and run
training events.

MEASURING SUCCESS
AND REFLECTING ON FAILURE

The final step in tool dissemination
is evaluation—measuring how well the
efforts are going.

“It is extremely difficult to measure
the popularity of a free software project
like FFTW,” Johnson says. Citations
provide a rigorous measure of success,
but these take time to accumulate. So,
our interviewees also track softer meas-
ures including: registered users, down-

into obscurity—but it is wasteful and
reflects poorly on the biomedical com-
puting community. “There’s a huge
amount of resource that goes into
making these things, and so much of it
is just lost.” Bourne says.

Fortunately, funding agencies and
journals are beginning to acknowledge
the importance of tool upkeep and dis-
semination. In the past few years, the
National Science Foundation (NSF)
and NIH have “come around to the
idea that software is not something to
be dabbled with,” Pande says. Lindahl
has also noticed an increase in tool-
specific funding. Journals could also
help alter the reward system, Bourne
says. PLoS is contemplating a software
section where papers will only be pub-
lished if the software is deposited in an
open source archive such as source-
forge.net or bioinformatics.org. Online
journal editors or readers could simply
add a comment to papers when the
software is no longer available, Bourne
says. “That would sort of be a black
mark against the author, so I think that
might encourage the author to make
the software available longer.”

Even with more incentives and

In the past few years, the National Science Foundation (NSF)
and NIH have “come around to the idea that software is not
something to be dabbled with,” Vijay Pande says.

umbrella for the institutions involved
in Cytoscape core development. The
non-profit model can help with logis-
tics, including accepting donations and
running conferences.

Other tools in this article have
managed to obtain tool-specific fund-
ing, which was likely instrumental in
their success. For example, APBS,
GenePattern, and some members of
the Cytoscape Consortium have been
funded through NIH’s RO1 program for
“software development and mainte-
nance” (which has been available
since 2002). GROMACS has also
obtained recent funding through the
European Union. The funding gives us
the ability to reply to user requests
within 24 to 48 hours and to develop
tutorials, Baker (of APBS) says.
“Without that funding, that just would-

loads, mailing list subscribers, mailing
list activity, Web site visits, conference
attendees, and the number of plugins
added to a tool.

This article focuses on tools that
succeeded. But, for every success story,
many more tools have failed. In a
recent editorial in PLoS Computational
Biology, founding editor-in-chief
Philip E. Bourne, PhD, a professor of
pharmacology at the University of
California, San Diego, and his col-
leagues describe their efforts to track
down 14 software programs (for parti-
tioning proteins into domains)
described in published papers. Eight
programs were not even accessible in a
usable form, let alone widely used and
popular. Given the difficulty of the
task and the lack of rewards, it’s not
surprising that so many tools languish
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resources, tool dissemination will still be
a challenge. Despite sufficient resources
and a proven track record in tool dis-
semination, Schulten says his latest
tool, BioCore (http://www.ks.uiuc.edu/
Research/biocore/), is teetering on the
edge of failure. BioCore is a collabora-
tive work environment for biomedical
research, supporting tasks such as co-
authoring papers and sharing molecular
visualization results. The program hasn’t
taken off yet, in part because scientists
are reluctant to try new technology, he
says. But Schulten is determined to
showcase the tool more and run more
training events. “We have to put more
energy into these efforts,” he says.

Success requires persistence, Lindahl
agrees. “Don’t give up in the begin-
ning. It takes a while to build these
communities.” []
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Under TheHood

BY KARTIK MANI, PhD

he recent surge of high-through-

put experimental data, such as

gene expression microarrays,
offers a profound opportunity to gain a
more detailed understanding of the
genes involved in the progression of
disease. While initial analyses of these
data used statistical techniques to iden-
tify genes capable of distinguishing dis-
ease tissue from normal (biomarkers),
researchers are now turning to the
analysis of gene interaction networks to
address this problem.

Gene interaction networks may be
developed from several sources includ-
ing manual curation, high-throughput
experiments (such as yeast 2-hybrid),
literature mining and reverse engineer-

ing algorithms. They can include many
different types of interactions as well
(complexes, regulatory, signaling, etc).
Integrating and analyzing all of this
information to discover genes relevant to
disease requires network-based algo-
rithms. Thus far, such algorithms fall
into three general (though not necessar-
ily mutually exclusive) categories. The
first predicts protein complexes, rather
than individual genes, associated with
the disease phenotype. The second iden-
tifies key regulators (transcriptional, sig-

DETAILS

Kartik Mani received his PhD in
Biomedical informatics at Columbia
University, working in the Multi-Scale
Analysis of Genomic and Cellular
Networks (MAGNet) Center under the

direction of Dr. Andrea Califano. His
research focused on the application of
interaction networks to gene-disease
association, and culminated in the
development of the IDEA algorithm
described above. He is currently
pursuing his MD at the Albert Einstein
College of Medicine in Bronx, NY.
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Network-based Approaches
to Prediction of Disease Genes

naling, or other), which control a large
set of genes differentially expressed in
the disease state. The third, the focus
here, relies on the fact that interaction
networks are themselves dynamic and
may change from a normal to disease
state. Thus, if one identifies interactions
that have actually changed between
phenotypes, one might then work back-
wards to identify genes that could prove
promising for further investigation.

We will detail two examples of the
third category, both of which inciden-
tally use an information-theoretic
approach. The first defines a concept
called synergy, which measures the coop-
erative effect of two variables on the
state of a third. The two variables in this

case are genes (Gl and G2), and the
third is a binary state variable represent-
ing disease or normal (D). Formulaically,
this can be represented as the difference
between 1(G1,G2;D) (the cooperative
effect) and the sum I(G1;D) + I(G2;D)
(the individual effects), where I is mutu-
al information. Biologically, synergistic
interactions imply that the combined
state of the two genes affects disease,
while individually the genes have a far
lesser or no effect. This algorithm com-
putes this quantity across all gene pairs
represented on the input microarray
data, and a “synergy network” is generat-
ed from the highest scoring interactions.
When applied to publicly available
prostate cancer data, this approach
showed the RBPI1I gene participating in
a large number of synergistic interac-
tions. This finding along with others
indicated that the progression of prostate
cancer is linked with oxidative stress and
inhibition of the apoptosis pathway, con-
sistent with previous hypotheses.

The second algorithm, Interactome
Dysregulation Enrichment Analysis
(IDEA), computes the mutual informa-
tion between two genes across a large,
diverse dataset, including or excluding

one particular disease phenotype (P).
Formulaically, this test is represented as
the difference (AI) between 1,(G1;G2)
and I, ,(G1;G2), where I, includes all
sample points, and I, » excludes the phe-
notype P. Biologically, a positive or nega-
tive Al implies that these two genes have
gained or lost an interaction in the phe-
notype P respectively (e.g., an oncogene
“loses” its ability to be regulated in can-
cer). The genes participating in a statisti-
cally significant number of these interac-
tions are then selected. When applied to
data from three primary B cell lym-
phomas, IDEA correctly predicted the
known oncogenes reported in the litera-

If one identifies interactions that have actually changed between phenotypes, one might
then work backwards to identify genes that could prove promising for further investigation.

ture (e.g., MYC in Burkitt’s Lymphoma),
as well as effector genes not identified by
differential expression analysis.

These network-based approaches,
along with others, have shown promise
in more accurately delineating the mech-
anisms of disease progression. Like any
new class of methods, however, there are
drawbacks. First and foremost, there is no
“gold standard” of gene interactions that
can be used, although the knowledge
base is growing rapidly. They often
require large training sets or sample diver-
sity to be effective, which may not always
be available. Lastly, computational com-
plexity may limit their applicability.

Nevertheless, the application of net-
works and these algorithms to the identi-
fication of disease-causing genes remains
an exciting new area of computational
biology. Expect to see several new net-
work-based approaches emerge as the
body of high-throughput and interac-
tion-based data continues to grow.
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SeeingScience

BY KATHARINE MILLER

Visualizing
Ventricular Fibrillation

nsynchronized twitching of the heart’s ventricles—known as ven-

l I tricular fibrillation—kills about 300,000 Americans yearly. Its

underlying cause: electrical spiral and scroll waves that

propagate through the heart. Simulation and visualization are
playing an important role in understanding that process.

In a novel approach to a review of the research, Flavio Fenton,
PhD, and Elizabeth Cherry, PhD, research associates in biomedical
sciences at Cornell University, simulated and visualized what’s cur-
rently known about how electrical spiral waves propagate through
the heart to cause tachycardia (rapid heart rate) and fibrillation.
The work was published in the December 2008 Visualization in
Physics focus issue of the New Jowrnal of Physics. [l

Cherry and Fenton simulated electrical spiral waves through
the three-dimensional heart. In the Java Applet of this 3-D
simulation, we see a so-called “mother rotor” spiral wave on the front
of the heart. Although this might suggest a single spiral wave that
would cause only tachycardia (rapid heart beat), the 3-D heart can be
rotated in the Java applet to show the breakup of the wave on the
back of the ventricles—a sign that this heart would begin to quiver or
twitch uncontrollably in fibrillation. When this happens, no blood gets
pumped to the body or lungs.

Images reprinted with permission from EM Cherry and FH Fenton,
Visualization of spiral and scroll waves in simulated and experimental
cardiac tissue, New Journal of Physics 70 (2008) 125016, Figure 33d
Java applet. Also visit http://thevirtualheart.org.




