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Third, a collaboration among biologists, physicians,
computational scientists and bioengineers could produce a
digital human—a computational model of human form and
function with the complexity and range of behaviors 
similar to a real human. A digital human would be used to
study the mechanisms of disease, design biomedical
devices, and predict the outcome of treatments. It could be
used to teach anatomy, test drugs, and probe the basis of
human behavior. A moon shot for sure.  

These are just three examples that come from work in
my own laboratory and from the mission of Simbios, a
National Center for Biomedical Computing based at
Stanford University. I encourage each of you to develop
your own personal moon shots. As leaders and participants
of an effort to build an infrastructure that enables 
biomedical computing on a broad basis, it is incumbent
upon us to define clear and challenging goals that will 
dazzle the world. ■■

Moon Shots in Biomedical
Computation
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GuestEditorial
g u e s t  e d i t o r i a l

BY SCOTT DELP, PhD

The world changed when Neil Armstrong set foot on
the moon in 1969. Humans could survive outside
the earth’s atmosphere! Science and engineering

could achieve great things! And the nerds at the Mission
Control Center in Houston were so cool. As I watched this
event on TV, my brothers and I decided to order our first
Heathkit, an educational electronics kit, launching us as a
family of nerds.

The project of putting a man on the moon was a 
powerful, galvanizing force in science and engineering. The
goal was challenging and clear and captivated the minds
and hearts of the American public. Achieving the goal
required an extremely talented and dedicated team.

Today, science needs more moon shots—projects that
achieve important breakthroughs through the heroic efforts
of many people. Projects that captivate the public and
inspire a new generation of kids to pursue science and 
engineering.

What is a moon shot for biomedical computation?
Fortunately, plenty of projects could fit the bill.  In my own
spectrum, three come to mind. The first would provide sim-
ulations that improve treatment outcomes for persons with
movement disorders. Young children with cerebral palsy, for
example, undergo a variety of orthopaedic and 
neurosurgical procedures to improve their mobility.  While
some experience dramatic improvements in their func-
tional capacities, others are left with weak or dysfunctional
limbs. Developing computational models that represent the
neuromuscular system with sufficient accuracy to predict
the outcome of these interventions and provide consistent
positive results for individuals with movement disorders is a
scientific and engineering challenge not unlike going to the
moon. The development of these models would require 
collaboration among biologists, physicians, computational
scientists, and bioengineers across the globe. While I was
thrilled by the television images of one giant step for
mankind, this could not compare to the thrill of watching a
child taking his or her first steps unencumbered by disease.

A second moon shot is designing life. Almost nothing
in biology is currently designed. By contrast, almost every
complex product we use is designed with simulations.
Dishwashers, cars, aircraft, and cell phones are all designed
in software before they are implemented in physical reality.
Working together, biologists, computation scientists, and
design engineers could apply the same engineering capacity
to design proteins, molecular machines, implantable
devices, and drugs. That would be a moon shot. The ability
to engineer and design biology would change the world. Photo by NASA
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“Sloppy” Systems

Biology
Systems biologists seek to model many

complex biological interactions all at
once. Typically, they input tens or even
hundreds of variables to produce predic-
tions about a system—for example, how a
cell might react to an environmental 
signal, or how an animal might respond
to a drug. But, researchers have now
found, many systems models are 
strikingly vulnerable to even small
changes in the variables, according to a
recent analysis of 17 such simulations. 

“This pattern we see is universal,” says
Ryan Gutenkunst, PhD, who 
performed the research under James
Sethna, PhD, a professor of physics at
Cornell University. “It’s common among
all these models.” The work was 
published in PLoS Computational Biology
in October 2007.

Typically, modelers scan the literature
or perform experiments to define the
parameters of a system. But, Gutenkunst
notes, such experimental data might not
reflect biological reality. For example, an
enzyme may function differently in a test
tube than it does in a cell. And although
scientists knew some models were 
sensitive to parameter variation, the
extent of the problem was elusive. 

To test how well models deal with
varying parameters, Gutenkunst and his
colleagues collected 17 systems biology
models, including the yeast cell cycle, 
circadian rhythms, and others, from the
literature and an online database. All 17
examples were vulnerable to producing
inaccurate predictions when parameters
changed only a small amount.
Gutenkunst and his co-authors say this
means the models are “sloppy,” which

doesn’t necessarily mean bad. “Sloppy’s  a
descriptive word for the fact that there’s
all this wiggle room,” he says. 

The traditional approach to modeling
is akin to basic arithmetic: If every 
number on the left-hand side of an 
equation (i.e., the parameters) is known,
then the answer (the prediction) is 
calculable. Gutenkunst and his 
co-authors support an alternative more
like algebra: There are unknown 
variables on the left-hand side, but using
a known answer on the right, it’s 
possible to work backwards to define
them.

“You can still get good useful 
predictions out of these models,”
Gutenkunst says. He suggests plugging in
real-life information—the right-hand side
of the equation—and searching for 
parameters that give the correct result.
For example, modelers could use experi-
mental data on how yeast grow to 

determine what parameters will work on
the left-hand side of their cell-cycle equa-
tion. The researchers found that even if
they can’t define the parameters precisely,
they still get useful predictions.

While the algebra approach to 
modeling is not new, the notion that
“sloppiness” pervades biological 
modeling will apply to many researchers,
says Nathan Price, PhD, a systems 
biologist at the University of Illinois 
at Urbana-Champaign. “What they
argue is that it’s not even very 
worthwhile to try to know all these
parameters in advance,” Price says. “It’s
a very broad message.”
—By Amber Dance, PhD

Turning Therapeutic
Antibodies into 

Better Drugs
The word “antibody” conjures images

of our bodies fighting off bacteria and
viruses. But because they can latch onto
their targets with great precision, 
antibodies are also used to treat 
non-infectious diseases such as cancer.
Researchers at Massachusetts Institute of
Technology have now designed a 
computer algorithm that manipulates
antibodies to predict which forms 
will bind their targets more tightly.
These predictions are then confirmed in

In these diagrams of model input,
the best predictions result when
the input parameters (colored
points) are within the central
ellipse. The red points in (B) repre-
sent what happens when all
parameters are measured accu-
rately. In (C), the blue points show
how the predictions can become
inaccurate when even one 
parameter is off. In (A), working
backward from real data to 
constrain parameters results in all
of the yellow points staying within
the ellipse, where predictions are
most trustworthy. Courtesy of Ryan
Gutenkunst.

“Sloppy is a descriptive word for the fact 
that there’s all this wiggle room,” 

says Ryan Gutenkunst. 
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the laboratory. The group’s work could
lead to significantly improved antibody-
based drug design. 

“Part of the effectiveness of an 
antibody-based drug is related to how
tightly it binds its target,” explains Bruce
Tidor, PhD, professor of biological 
engineering and computer science at
MIT. He co-authored the work with K.
Dane Wittrup, PhD, professor of chem-
ical engineering and bio-engineering at
MIT, and  Shaun Lippow, PhD, the
paper’s lead author and a joint graduate
student of both Tidor and Wittrup at the
time the work was done. The research was
published in the October issue of 
Nature Biotechnology. 

Like all proteins, antibodies aren’t
rigid; they are more like Play-Doh than
wooden building blocks. It doesn’t take
much to affect an antibody’s shape. For
example, substituting any of the amino
acids strung together in a protein chain
may alter its final folded shape 
markedly. Such changes, in turn, impact
how strongly the antibodies bind to other
molecules.

The biggest challenge in antibody-
based drug design has been tweaking
amino acid sequences to obtain that
‘just-so’ fit with the target. Traditional 
methods miss many possible amino-
acid changes that might make the altered
antibody bind more tightly. MIT’s
approach, combining computational
structure analysis and experimental lab
chemistry, may provide the missing link. 

The computer algorithm works by first
modeling the physical interactions that
make a particular antibody latch onto its
target. It then rapidly identifies all 
possible amino-acid substitutions for that
antibody and calculates which of those
changes will tighten binding. Researchers
can introduce mutations that improve
antibody function but might never arise
naturally or with conventional 
techniques, and they can predict the
effectiveness of these mutations. 

The researchers experimentally 
verified their model on a drug called
cetuximab (trade name Erbitux®, used to
treat colorectal cancer). With guidance
from the computer program, they 

synthesized a new version that binds 10
times more strongly to its target, a 
molecule called epidermal growth factor
receptor. They also created a revised 
version of an antibody (D44.1) that is 
useful in laboratory experiments.  It has a 
140-fold improvement in binding affinity. 

“This represents an interactive 
collaboration between calculation and
experiment,” says Tidor. “The ability to
have tight feedback cycles between 
predictions and testing was essential to
our success in this work.” 

Janna Wehrle, PhD, program 
director of the biophysics branch at the
National Institute of General Medical
Sciences, is enthusiastic about the new
model. “Dr. Tidor and his team have
developed a method that will allow
much of the design work to be done on
the computer, saving months or years in
the lab,” she says.
—By Alissa Poh

Protein Structure
Prediction: 

Getting it Right 
When nature folds an amino acid

sequence into a protein, it usually knows
that just one conformation is the right
one. But when a computer tries to do the
same thing, it often predicts multiple 
possible shapes. Now, a team of scientists
at the University of Washington, led by
biochemistry professor David Baker,
PhD, have made a significant advance
toward predicting which of the multiple 
structures is correct. They also accurately
predicted a small protein’s structure 
without relying on X-ray crystallography.

To predict a protein’s structure,
researchers must find the arrangement
of the individual amino acids that repre-
sents the lowest energy form. It’s kind of
like gravity, notes Baker. “If you drop a
ball on a hill, it rolls to the bottom of the
hill.” For proteins, that spot represents
the most settled overall shape, a compact
blob of amino acids linked into helices
and sheets. In the past, it was hard to 
figure out when a predicted structure
truly reached its lowest possible energy,
not just an intermediate step.  “If you

The high specificity of antibodies makes them valuable as drugs, but the conventional process
of developing antibody-based drugs is tedious. MIT’s new computational approach identifies
all possible amino-acid changes in a particular antibody, such as D44.1 (depicted above), pre-
dicts the binding strengths of any introduced mutations (a), and models the 
structures of these mutations (b – f). With this approach, researchers can design a customized
antibody that binds more tightly to its target. Courtesy of Bruce Tidor. Reprinted by 
permission from Macmillan Publishers Ltd: Nature Biotechnology 25, 1171-1176 (2007).
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drop a ball on a bumpy landscape, it may
get stuck in a [higher] valley,” Baker says.

For a number of years, the Baker
team’s primary tool for predicting 
protein structures has been
Rosetta@Home, a program that relies
on a staggering amount of computing
power.  “We employ the computers of
about 150,000 volunteers,” Baker says.
Volunteers install Rosetta@Home on
their computers. It runs like a screen
saver while the computer is otherwise
idle.  The program calculates many 
possible structures for an amino-acid
chain and sends promising structures to

the researchers.  A central computer
then searches for the lowest-energy 
structure, in which the chain curls up
most comfortably.

His team’s new research, published
online in Nature on October 14, 2007,
describes a major refinement to
Rosetta@Home that searches for a way
out of  “energy valleys.” The team 
fine-tuned how Rosetta analyzes the
toughest protein sections. If the program 
consistently predicts the same folded
shape, the answer is probably correct.
But when Rosetta churns out many 
different solutions, the program now
recalculates those error-prone regions in
search of the lowest possible energies—
and more robust final shapes.

The refined method makes it easier
to get useful data from traditional 
protein-structure experiments, in which
researchers blast X-rays at protein 
crystals.  Baker’s lab also used the
method to predict an accurate structure
for a small protein (112 amino acids)
with no X-ray data, an achievement
noted in a Nature commentary as “a real
breakthrough.”  

The new research is “a significant
milestone in the development of 
methods to model protein structure
from amino-acid sequence,” comments
John Moult, D. Phil., a professor of
computational biology and biophysics 
at the Center for Advanced Research 
in Biotechnology in Maryland.   

Rosetta@Home's clan around the
world savors the success.  As volunteer
Antony Magnus wrote in an online
message board: “I crunch for Rosetta
because I believe in this project whole-
heartedly.” Volunteers interested in 
participating in Rosetta@home can sign
up at boinc.bakerlab.org/rosetta.
—By Erin Digitale, PhD

Extinct Sabercat 
Brought to Life

Wildlife biologists can watch a lion
stalk its prey, but paleontologists must
examine fossils to understand how the
extinct saber-toothed cat hunted.
Researchers now have modeled an
American sabercat's skull with software
designed for stress testing in engi-
neering, building the highest resolution 
vertebrate animal model to date.  They
found that the sabercat’s massive teeth
belied a surprisingly weak bite. 

On a computer, “you can crash test a
biological design,” says Colin McHenry,
a doctoral candidate at the University of
Newcastle, and lead author of the work.
His team built a virtual sabercat skull
that could display the effects of stress
down to cubic millimeter resolution.
Stress resistance indicates how hard the
cat could bite and which muscles con-
tributed the most force.  The study
appeared in the October 9, 2007 issue of
the Proceedings of the National Academy
of Sciences.   

Despite more than 150 years spent
studying sabercats, scientists have yet to
agree on the animal’s biting power and
the relative importance of head and neck
muscles.  In recent years, researchers have
turned to computer simulations to 
reconstruct the musculature of extinct
animals. They use the finite element
method (FEM), a system originally
designed to test aeronautical designs
under stress.  Until now, FEM studies fea-
tured animal skulls modeled as though
bone has the same strength and density
throughout—which it doesn't. And they
didn't account for moving jaws.

To create a more lifelike simulation,
McHenry’s team used a standard medical
imaging technology, computed tomog-
raphy, to build high-resolution FEM
models of sabercat and (for comparison)
lion skulls.  The individual elements that
make up this 3D model mimicked 
realistic bits of bone with different
strengths.  The team then added 
musculature, estimating the sabercat’s
muscle sizes and strengths from the
skull’s geometry. After subjecting both

Using Rosetta@Home, a program that
runs on the personal computers of
150,000 volunteers worldwide, David
Baker’s team predicted the structure of a
112-amino-acid protein from scratch.  The
predicted structure (gray) closely mimics
the true protein structure (in color).

“I crunch for Rosetta because I believe
in this project wholeheartedly,” 
says blogger Antony Magnus.
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The next step is to account for the
way bone responds to pressure from 
different directions, a method called
anisotropic modeling, says Lior Horesh,
PhD, a post-doctoral research fellow in
Emory University’s department of math-
ematics and computer science. Horesh
calls the team's research “one good step
forward.”

McHenry and his colleagues soon will
apply FEM modeling to biomedical 
questions, including mechanical 
evaluation of surgical planning proce-
dures and stress-testing of prosthetic
devices.  “I think the medical community
can learn a lot from paleontologists and
biologists,” he says.
—By Hayley Rutger

models (sabercat and lion) to the forces of
struggling prey and the pull of the 
animal’s own muscles, they mapped the
resulting stresses.    

The sabercat skull generally handled
forces poorly, while the lion skull 
took them like a tank.  The researchers 
concluded that the sabercat didn’t 
land powerful bites, and that the jaw
muscles may have required help from
the neck muscles to puncture prey.
These results support existing arguments
that sabercats killed with piercing 
canine tooth bites, but there was still
debate about the bite force, says
McHenry.  The sabercat probably bit
one-third as hard as a comparably sized
lion, the team concluded.

Center of Mass 
Controls Balance

Bumped from behind, a person may
step forward to avoid falling. Perhaps her
arms fly out as well. To the untrained eye,
these movements seem like the result of
the brain controlling individual nerve
and muscle reflexes.  Yet an elegant new
model of balance control suggests the
brain only cares about one thing: the
body’s center of mass. This possibility,
modeled for the first time, could help
rehabilitation experts design better treat-
ments to suit the specific needs of each
balance-impaired patient. 

“People had theories about the center
of mass being important, but they 
hadn’t actually demonstrated in a causal
sense that it was critical,” says Lena Ting,
PhD, assistant professor of biomedical
engineering at Georgia Institute of
Technology and Emory University and
co-author of the work published in the
October 2007 issue of Nature
Neuroscience. “We’ve shown that the
nervous system controls the arms and legs
to regulate center of mass motion.”

Neuroscientists have tested a variety of
hypotheses such as whether balance 
originates from motions of the head 
or the ankle.  But these hypotheses have
not consistently predicted which 
muscles would spring into action when a
person loses balance.  Ting’s previous
experiments found that the only way to
foretell muscle reaction accurately was 
to monitor the direction of the fall, 
not individual joint angles.  This 
suggested that the body’s reflexes during
a fall involve a higher level of control: If
the center of mass is off-kilter, the 
nervous system will act to bring it back 
to balance.

To explore this idea in action, the
researchers placed cats on a moving 
platform that made them lose their 
balance.  The team also induced sensory
damage in the cats that triggered 
balance-control problems.  A computer
simulation created by the researchers 
accurately predicted the reactions of the
cats’ muscles based on the motions of
their centers of mass.

A high-resolution model of a lion’s skull (A) shows little stress compared to a model of an
American sabercat skull (B) when researchers apply lateral forces to simulate thrashing prey.
Twisting forces (C) and forces pulling forward on the canine teeth (D) also illustrate the 
stresses a sabercat might have encountered while killing animals. Courtesy of Colin McHenry. 
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In addition, the cats with sensory
damage regained balance within a few
days.  They used different sensory path-
ways to do the same balancing tasks,
resulting in unique patterns of muscle
activity.  While these muscular adjust-
ments were clinically “abnormal,” they
were close to optimum for the balancing
task at hand.  This result should earn
notice from balance rehabilitation 
professionals, Ting says; they now have
an accurate, unique goal toward 
which they can aim each patient’s 
rehabilitation efforts.

Ting's group has provided an attrac-
tive, simple model of posture control, says
Fay Horak, PhD, a senior scientist at the
Neurological Sciences Institute of the
Oregon Health & Science University.
“The big implication is that something
this complicated, that involves many,
many joints and muscles, could be con-
trolled by the nervous system regulating a
single parameter,” she says.

Horak believes researchers need more
data before applying Ting's results to
humans with balance disorders.  Ting
concurs, noting that her team has 
started using the moving platform to test
human balance reactions. 
—By Jane Liaw

A Model of Epstein—
Barr Virus

During our lives, most of us will come
in contact with the Epstein-Barr virus,  
commonly known as that bane of
teenagers, infectious mononucleosis.
Now, a new simulation mimics the virus’s
infection cycle on the tonsils, shedding
some light on how the infection spreads. 

“The actual biology is so comp-
licated,” says David Thorley-Lawson,
PhD, professor of pathology at Tufts
University who co-leads the project with
Karen Duca, PhD, a biophysicist for-
merly at the Virginia Bioinformatics
Institute (now at Kwame Nkrumah
University, Ghana). “But what we got out
of the simulation looks remarkably like a
real infection.” They and others devel-
oped the Pathogen Simulation (PathSim)
model published in the October 2007
issue of PLoS Pathogens. 

The potential benefits of modeling
infection seem endless. Scientists can raise
the viral load in ways that would be un-
ethical in humans; and insight into the
dynamics of infection could lead to novel
therapies. But the question remains: Do
the models truly replicate how infection
spreads in the body?

Until now, most computer modeling
only reproduced general properties of the
immune system, or involved the use of 
differential equations to provide more 
specific insights, such as with some HIV 
models. Using a well-studied virus like
Epstein-Barr as a guide, Thorley-Lawson
and colleagues believed they could create 
a model that rivaled the sophistication 
of HIV models while remaining 
comprehensible to nonspecialists.

“One of the main goals was to have
models that biologists could look at and
say, ‘Oh, I get that,’” says Thorley-Lawson.

To accomplish this goal, the researchers
created a ring of tonsils—the point of
attack for Epstein-Barr virus—on a 
virtual grid.

During the simulation, the virus 
infected cells at about the same rate it
does in a person. “This suggests we’re not
missing huge parts of the biology,” says
Michael Shapiro, PhD, co-lead author
and lecturer in pathology at Tufts.

Already, the model has helped explain
a clinical puzzle. Several years ago,
Thorley-Lawson and his team found that
when Epstein-Barr causes infection in
vivo, only 0.5 to 1.0 percent of the host’s
B cells—key sentinels of the immune 
system—replicate the virus. At the time,
the researchers didn’t know why that
replication rate was so low. 

Biomedical engineer Lena Ting (right)
prepares to measure how a volunteer's
muscles react when her balance is dis-
turbed by a moving platform.  Courtesy
of Georgia Institute of Technology.

The PathSim model predicts that 
infection begins on the lingual tonsil (at
the base of the ring) and spreads evenly
(increasing red color) to the other tonsils
through the bloodstream, instead of
spreading through the ring directly from
one tonsil to the next.  Courtesy of David
Thorley-Lawson.
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When an almost identical proportion
of the model’s B cells were active at the
same stage in PathSim, Thorley-Lawson
and his colleagues increased the number
of B cells replicating the virtual virus to
see what would happen. This tinkering
“killed” the virus’s host by overwhelming
it with infected B cells. According to
PathSim, the virus has honed in on the
speediest possible replication rate while
still keeping its host alive—thus ensuring
its further spread. 

“This is a very nice first step,” says
Alan Perelson, PhD, a biophysicist at
Los Alamos National Laboratory. He
acknowledges that as PathSim becomes
more complex, it will rely on more bio-
logical assumptions. Still, he says, “The
model looks like it’s driving some new
experimentation.”
—By John Cannon

A Digital Human Could
Advance Medicine

Science and medicine have fractured
the human body into pieces: the cardio-
vascular system, the immune system, the
endocrine system. Now a European 
initiative seeks to put the jigsaw puzzle
back together by developing a computer
model of a complete human being. The
Virtual Physiological Human (VPH)
would encompass all the knowledge we’ve
gathered, from genetic interactions to 
systems biology, into one integrated 
digital package.

“If you thought the genome project
was big work, this is probably a million
times more complicated,” says Marco
Viceconti, PhD, scientific officer of the
Strategy for The EuroPhysiome (STEP), a
coalition of leaders from research, 

industry, and clinical practice who hope
to create the virtual human. “This is not
something you will ever finish.” 

In recent years other groups have
begun digital modeling of various human
processes, including two other worldwide
projects to assemble our physiome—a 
complete description of human physiolo-
gy. To prevent fragmentation, all projects
are communicating under an umbrella
organization called the World Integrative
Research Initiative. They will share 
technology and computer infrastructure,
and will agree on common terminology.

Researchers in the VPH initiative,
funded by the European Commission,
plan to build the virtual human piecemeal
by linking each model as it’s 
created. A brain aneurysm model is
already under way. If clinicians could 
predict which aneurysms are unlikely to
rupture, they might avoid unnecessary
brain surgeries. Scientists working on the 
project (called @neurIST) are gathering
genetic and metabolic data from patients
with aneurysms, which they will feed into
a computer model to develop a 
predictive algorithm. 

Candidates for other initial projects
include disease models for diabetes and
osteoporosis. The European Commission
is running an evaluation process to select
projects for funding starting in early 2008.

It may take at least a decade before a
complete virtual human exists, but
Viceconti hopes some pioneering applica-
tions such as the aneurysm model will

soon deliver benefits. An early goal is
reducing the costs and risks of drug 
development by first testing drugs on a 
virtual patient to gauge harmful side
effects. Eventually, physicians could use
the virtual human for better diagnosis and

treatment by programming it with a
patient’s specific data, yielding a unique
assessment of how certain drugs might
affect him or her.

“There’s a very strong focus in the
EuroPhysiome on modeling for clinical
applications,” says Peter Hunter, PhD,
director of the Bioengineering Institute at
the University of Auckland and represen-
tative of the IUPS Physiome Project, one
of the other international physiome 
initiatives. He sees the EuroPhysiome as 
complementary to his project.

A strong spirit of international collabo-
ration will help the EuroPhysiome 
succeed, says Viceconti. “This is definitely
a team science exercise.”
—By Madolyn Bowman Rogers, PhD

The Virtual Physiological Human will
integrate digital modeling at all 
levels—genetic, cellular, tissues,
organs, and systems—into one 
complete package that will be useful
in medicine and research. Courtesy
of Serge Van Sint Jan, Université
Libre de Bruxelles.

“If you thought the genome project was big
work, this is probably a million times more
complicated,” says Marco Viceconti of the

Virtual Physiological Human.

NewsBytesNewsBytes
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Virtual Genomic Scans
with Real Data

Trying to find the genetic causes of a
human disease requires lots of data.
These days, researchers scan the
genomes of people who do and don’t
have a particular disease and look for
genome-wide associations between a 
particular disease and a gene or genes.
But they’d like to know if their findings
are statistically valid. Moreover, the 
variety of disease models currently in use
have led to debates over which work
best. Now, researchers have developed a
new tool that they hope will help resolve
these issues and will also work with any 
genotyping platform in use. Their 
software generates large simulated 
populations using present-day genetic
information from specific populations.

“The main challenge is working out
how you draw from real data to mimic
what you expect to happen in a disease
model situation,” says Fred Wright,
PhD, a biostatistician at the University
of North Carolina and senior author of
a study published online in September
2007 in the journal Bioinformatics.
“Because of that, we developed a
method that’s simple, almost dumb, in
the way it approaches it.”

Current statistical simulations either
work backward to generate genetic 
“histories” that might give rise to 
present-day forms, or else they go 
forward, simulating genetic data from
the distant past until the present day.

To present a more accurate 
simulation grounded in real data,
Wright's method—called HAP-SAMPLE—
now offers a third option: using data
from a real population to generate a
large sample set against which genes of
interest can be checked. Because the

data already contain realistic historic
mutations, there’s no need to let the
population evolve (developing new
mutations) over time.  Instead, HAP-
SAMPLE generates simulated popula-
tions solely by meiosis and its associated
crossovers—it’s that simple.

The real genetic data is supplied by
HapMap, an international database 
that catalogs 10 million common 
genetic variations (single nucleotide
polymorphisms or “SNPs”) within three 
populations—Caucasian European,
Chinese /Japanese, and Nigerian. 

HAP-SAMPLE is potentially valuable
to researchers who have identified a 
possible gene-disease association and
want to see how it would play out in 
a larger population. For example, would
the same SNP still be a significant 

contributor to the disease of interest in a
larger population? By comparing the
resulting simulated data against known
SNPs, they can figure out how good their
statistical methods are.  

"HAP-SAMPLE is great because it
takes real data as the template for the 
simulation,” says Marylyn Ritchie, PhD,
a computational geneticist at Vanderbilt
University, whose lab developed a com-
plementary simulation tool.  Still, she
adds, HAP-SAMPLE’s usefulness is 
limited by HapMap’s small chromosome
pool: Fewer than 400 people represent
the three populations. For some
researchers, having a real data template
might not overcome the problem of 
limited population size, Ritchie cautions.

“What they’re asking for is just a
broader population base,” Wright
responds. His team does plan to augment
HAP-SAMPLE soon with updates from
other genetic databases.
—By Massie Santos Ballon

HAP-SAMPLE simulations accu-
rately reflect population ancestry
and how often different SNPs are 
inherited together. At the top, we
see that for the disease gene in
question, three distinct popula-
tions (AFR= Nigerian samples;
EUR= Caucasian European sam-
ples, ASIAN= Chinese/Japanese
samples) are only mildly different
from one another. The heatmap at
bottom plots SNPs against one
another based on their chromo-
somal positions. Areas of 
brightness (white is strongest)
indicate SNPs that are likely to 
be co-inherited in the Caucasian
European data. Courtesy of 
Fred Wright.

HAP-SAMPLE is potentially valuable to
researchers who have identified a possible

gene-disease association and want to see how
it would play out in a larger population.



Winter 07/08 BIOMEDICAL COMPUTATION REVIEW 9www.biomedicalcomputationreview.org

Homing in on the
Minimum Genome

Scientists have long wondered how
many genes are necessary to support life.
This knowledge could be used to con-
struct new forms of artificial life to effi-
ciently produce better biofuels or drugs.

Now, computer scientists are using
hypothetical synthetic bacteria to screen
out inessential genes as a way to home 
in on the “minimum genome.”  The 
remnants, they hope, should make good 
candidates for synthesizing artificial
organisms and reduce the number of
costly experiments required to achieve
that goal. 

“If your hypothetical organism does
not survive the simulation, the chances
are high that it would not survive in 
reality,” says Roberto Marangoni, PhD,
professor of bioinformatics at the
University of Pisa and senior author of
the study in the September issue of PLoS
Computational Biology. 

Scientists plan to build the minimum
genome by culling unnecessary genes
from Mycoplasma genitalium, a 
bacterium with one of the smallest
known genomes. At just 521 genes,
Mycoplasma’s genome is about one 
fiftieth the size of the human genome.
In an earlier attempt to find an 
"essential" set of genetic instructions
(published in 2006), J. Craig Venter,
PhD, of the J. Craig Venter Institute,
and his colleagues shaved that number
from 521 to 382 by disrupting each 
gene one at a time. They excluded from 
their hypothetical minimum genome 
all the genes whose disruption did not
kill the bacteria.  

Eventually, if lab scientists try to
build artificial life from scratch, testing
potential minimum genomes would 
be a time-consuming and expensive 
trial-and-error process. Researchers 
will need a way to increase the chances
of hitting the right set of genes on 
an early try, Marangoni says.

To address that problem, Marangoni
and his team created a computer 
simulation to test the viability of 
theoretical bacteria with a variety of 

possible minimum genomes.  They 
gathered all chemical reactions known 
to take place inside Mycoplasma and 
ran recurring simulations of all of 
these reactions, assuming different 
sets of genes were present.  The team
looked for genomes that, over the 
course of many repeated reactions, 
produced a life-friendly balance of the
reaction products in the cell.  The 
simulations of some virtual creatures
resulted in wildly fluctuating chemical
levels, or levels that bottomed out 
almost immediately—conditions that
would not sustain actual life.  

Some previously proposed minimum
genomes failed this test.  These creatures’
energy supplies went to zero very quickly,
Marangoni says, which is probably what
“killed” them.  

Marangoni’s work is promising, but not
the final word, says Arcady Mushegian,
PhD, director of bioinformatics at the
Stowers Institute for Medical Research,
“There will have to be more computer 
estimates of genes and how they fit 
together in the metabolic puzzle,” he says.
“And of course ultimately the actual 
organism should be engineered.”
—By Rachel Tompa, PhD

Scientists hope to create synthetic organisms using the minimal gene set 
possible to sustain life.  They plan to base this minimum genome on that of the 
bacteria Mycoplasma genitalium, which has a paltry set of 521 genes.  In this graphic,
each of Mycoplasma’s genes is a colored bar. Courtesy of Hamilton Smith and John
Glass, J. Craig Venter Institute.

NewsBytesNewsBytes
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Simulating a Scaffold 
for Bone Growth

Designing a scaffold, the internal
structure that helps patients regenerate
bone, is a delicate balancing act. The 
scaffold must be strong enough to 
protect the injury, porous enough to
allow nutrients to pass through, and 
fast-dissolving enough to make room for
new tissue. Now, using a 3-D computer
model, scientists have simulated stem
cells growing within a scaffold to predict
which combination of these properties
will produce the most bone.

“It’s the first 3-D computational work
that takes account of stem cells” in 
scaffold design, says senior author
Patrick J. Prendergast, PhD, a 
professor of bioengineering at the
University of Dublin, Trinity College.

Patients rely on scaffolds to support
bone regeneration after surgeries such as
bone grafts, cartilage repair, or tumor
removal that requires bone to be cut
away. Most scaffolds are either made of
gels, which tend to be weak, or stiffer
materials such as coral, which may not
completely dissolve. In the past, 
scientists evaluated scaffold materials by
testing them on animals. At the same
time, computational biologists devised
algorithms predicting how a patient’s
stem cells might differentiate into new
types of tissue during healing. But until

now, no one had simulated the scaffold
alongside the stem cells as a way of
improving scaffold design.

Prendergast’s group created a 3-D
computer lattice model of a scaffold,
then planted “seeds” inside the lattice to 
represent the patient’s stem cells. In
their simulations, the cells multiplied,

spread, and eventually transformed into
bone, cartilage, or connective tissue
depending on the strain and fluid 
pressure affecting each cell.

Meanwhile, the program tracked the
progress of the scaffold as it slowly 
dissolved and became more porous, 
clearing room for new tissue. The 
scientists tried various combinations of 
scaffold properties and tested the system
under high and low load-bearing 
conditions to simulate injuries in 
different parts of the body. A leg bone,
for instance, bears more load than an
arm bone and might heal differently.

The researchers found that the 
scaffold only works if it has the right 
balance of pore size and disintegration
rate. If both are too high, “It won’t be

long before the whole thing dissolves
away,” says Prendergast. They also found
that the load on the area changes how
scaffolds perform, suggesting that 
scaffold designers should tailor their
materials for specific patients and body
parts. The work appears in the
December 2007 issue of Biomaterials.

Studying the interplay between cells
and synthetic materials is promising
because most people focus on only one,
says Christopher Jacobs, PhD, director
of the Cell and Molecular Biomechanics
Laboratory at Stanford University. “I
think that’s a very creative concept,” he
says. The work needs to be verified with
further experiments, says Jacobs, but
could potentially direct the design of 
better scaffolds that both offer enough 
support and dissolve completely into 
the body.

Toward that end, Prendergast and his
colleagues plan to simulate blood vessels
growing in scaffolds, which can affect
bone regeneration.
—By Roberta Kwok ■■

Granulation tissue (red), a mixture of tissue matrix and cells that develops early in wound healing, fills a bone regeneration 
scaffold (green) that’s 50 percent porous. Zooming into small portions of the tissue, we see a lattice (grey) containing stem cells,
which multiply and develop into new tissue (blue) that replaces the dissolving scaffold. Courtesy of Damien P. Byrne. This article
was published in Biomaterials, Volume 28, Damien P. Byrne, Damien Lacroix, Josep A. Plannel, Daniel J. Kelly, Patrick J.
Prendergast, “Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate:
Application of mechanobiological models in tissue engineering,” p. 5544-5554, Copyright Elsevier (2007).

“It’s the first 3-D computational work that
takes account of stem cells” in scaffold

design, says Patrick J. Prendergast.
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utwardly, the Biomedical Computation at Stanford
(BCATS) conference resembles other academic
conferences:  Researchers converge to hear about

the latest developments in their field and to exchange ideas
with colleagues.  But behind the scenes at BCATS, you find
an unusual situation—students, and not faculty, are the ones
in charge.  

For the last eight years, students have organized this
annual conference where Stanford University students and
post-doctoral fellows share their latest research in the field
of biomedical computation.  The quality and breadth of the
research represented at BCATS draw hundreds of 
individuals from across the campus and the community.
And the latest BCATS, held on October 27, 2007, at
Stanford University was no exception.

Leighton Read, MD, a partner in the life sciences group
at Alloy Ventures, says, “BCATS is one of the highest 
quality one-day conferences I can think of and it’s because
it’s student-run.”  Alloy Ventures, a venture capitalist firm,
has supported BCATS every year since its inception in
2000. It’s not just the quality that attracts sponsors, though.
BCATS “touches on everything we do,” emphasizes Read.   

Scott Delp, PhD, a professor of bioengineering and
mechanical engineering at Stanford University and one of
the principal investigators of Simbios, another organization
that sponsors BCATS, agrees.  “Simbios is one slice of 
biocomputation at Stanford,” Delp points out, “but
BCATS is the whole pie.  I think it’s really important not to
lose that breadth.”

This year BCATS had ten student speakers and 51
poster presenters.  And the research topics spanned the
field:  prediction of cancer genotypes from imaging data;

automatic generation of machine-readable summaries of
biomedical literature; blood velocity detection with a new
ultrasound transducer; simulation of bone growth in 
tennis players.         

Though working on seemingly unrelated problems, the
students share a general interest in biomedical 
computation. And BCATS brings them together to 
discover their commonalities. For example, Karen Sachs,
PhD, a post-doctoral student at Stanford and this year’s
winner of the BCATS Best Talk Award, is a computational
biologist who works in immunology.  “The types of 
interactions I have with computational biologists are very
different from those I have with immunologists and that’s
very valuable to me,” she says.   

For the student organizers—Annie Chiang, PhD, Yael
Garten, Jen Hicks, Marc Schaub, and Marina Sirota—the
conference was valuable in ways they hadn’t anticipated.
They learned firsthand about the peer review process and
managed a large budget.  They also became much more
familiar with the biomedical computational research going
on at Stanford.  

And then there’s that euphoric feeling that comes from
creating something that has impact.  Chiang says there is a
“sense of pride to have brought forth all these interactions
and collaborations.” ■■

SimbiosNews
s i m b i o s  n e w s

BY JOY KU, PhD

BCATS: Not Your Usual Biomedical
Computation Conference

O

WANT TO FIND OUT MORE ABOUT BCATS?
The BCATS website (http://bcats.stanford.edu) lists abstracts and information from all previous BCATS 

conferences, and provides information about next year’s event.  If you are interested in helping next year, e-mail the
organizers at bcats-2007-organizers@lists.stanford.edu.

BCATS WINNERS
Five individuals received the Outstanding Poster Award this year:  Gilwoo Choi (abdomi-

nal aortic 3D deformations);  Rebecca Taylor (bone growth modeling in tennis players);
Gennadiy Chuyeshov (stereo imagery for guidewire localization during endovascular 
interventions);  Melinda J. Cromie (effects of posterior cruciate ligament removal in total
knee arthroplasty); Aaron S. Wang (image-based models of blood flow in the human upper
extremity arteries).

You can check out their posters, along with Karen Sachs’ award-winning 
presentation on “Learning Signaling Pathway Structures from Single Cell Measurements of
Network Subsets,” at http://biomedicalcomputationreview.org/4/1/posters.html.

Simbios is a National Center for 
Biomedical Computing located 
at Stanford University.
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BY KATHARINE MILLER

LIFE IN MOTION
Simulation 

from Particles 
to People



F
rom atoms and molecules to insects,

dinosaurs, and humans, computa-

tional researchers are finding that

much of life can be understood in

mechanical terms. Indeed, the machines of life

are well-tuned.   

“Because nature has evolved forms that 

naturally have the desired functions, you don't

have to bend over backwards to steer, control

or coerce the structures to do their jobs,” says

Russ Altman, MD, PhD, chair of the bio-

engineering department at Stanford University.

“They do them naturally.” And that’s true at 

all scales, as computational researchers are 

discovering. 

At the most basic level, charged atoms push

and pull on one another to control the inner

workings of every living thing. Cellular

machines called ribosomes use ratchets and

springs to translate coded messages into the

workhorses of the cell: proteins. And small

movements made by these proteins act as 

cellular signals that give directionality and

function to developing tissues. Combinations of

tissues then produce appendages designed to

carry entire organisms, including humans,

through the natural environment. 

In a feedback loop with laboratory experi-

ments, computational simulations of life in

motion at every scale—molecular, cellular, 

tissue-level, and whole organism—are boosting

our understanding of the role mechanics plays in

controlling life. Such simulations were the focus

of the “Life in Motion” symposium sponsored by

Stanford’s Simbios Center and BioX Program this

past October. That symposium served as the

foundation for the ten stories presented here.
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"Everything that living things do can be 
understood in terms of the jiggling and wiggling
of atoms," said Richard Feynman in his seminal
1963 Lectures on Physics. Guided by the laws 
of physics, the atoms that make up the molecules
of life assemble themselves into essential forms 
to do a wide variety of tasks. 

Today, researchers can observe those molecules
interacting by simulating them on a computer.
Using this approach, known as molecular 
dynamics, computational researchers are going
beyond what experimentalists can do to 
understand the way life works at the nanoscale,
says Klaus Schulten, PhD, professor of physics at
the University of Illinois at Urbana-Champaign. 

Schulten and his colleagues have simulated
interactions among all of the atoms in a variety 
of biomolecular systems ranging in size from
water channels and lipoproteins (on the order 
of 105 atoms) to an entire virus particle (106

atoms) and, most recently, a bacterial flagellum
(109 atoms). 

“With computation, we can take experimental
data with limited meaning and, using what I call
a “computational microscope,” turn it into 
information about the chemical structure of the
system under investigation,” Schulten says. 

For example, when Schulten’s group simulated
the structure of a water channel, they learned 
that water molecules pass through the channel 
in a very specific orientation: oxygen first.  X-ray
crystallography—a standard experimental method
for studying atom arrangements—could not 
determine the orientation of the molecules,
Schulten says. “Computation gives additional
insight into the system.”

Sometimes Schulten and his colleagues beat
experimentalists to the punch. For example, in
1999, their molecular dynamics simulations of the
largest known protein, titin, explained how the pro-
tein gives muscles stretchability—under force, nine
hydrogen bonds are disrupted in a reversible way.

Three years later that finding was confirmed in a
lab. Likewise with ankyrin, a molecule that’s impor-
tant for hearing. Simulations showed that the pro-
tein was a very soft spring. “It was very stretchable
in the computer,” Schulten says. “Put a feather on it
and it stretches to the ground.” The computational
results were published before the experimental
results came in. “The lab researchers confirmed the
computational work,” he says.

Recently, Schulten’s group has been taking steps
toward simulating larger systems. “We’ve moved
from single protein sports in the cell to describing
team sports,” Schulten says.

This graphic shows several steps in a
coarse-grained molecular dynamics simu-
lation of a lipoprotein nanodisc assembly.
At the start, two semi-circular membrane
scaffold proteins (brown) are surrounded
by randomly scatttered lipids (small
tailed objects shown here in a different
color at each step in the simulation).
During a 10 microsecond simulation, the
lipids quickly glom together. The fusion
of these lipid micelles draws the two pro-
tein strands (brown) together eventually
forming a single lipoprotein particle. The
aggregation, driven by hydrophobic
effects, is followed by a much slower pro-
tein tertiary structure rearrangement.
Eventually the protein strands rearrange
themselves to form a double-belted nan-
odisc. Courtesy of Klaus Schulten.

JIGGLING MOLECULES
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Lipoproteins, which contain both proteins and
lipids, cannot be crystallized because there is so
much disorder in the lipids.  “To get a picture of
the molecule, you need the computer,” Schulten
says. But simulating the assembly of the lipoprotein
molecule at atomic resolution would have required 
simulations in excess of 100 milliseconds—more
than their computer could do. So the team 
simplified the system—a process known as coarse-
graining—to effectively cut down the number of 
elements.  A series of pictures showing the 
self-assembling lipoprotein appears on the 
previous page.  

Schulten’s team is currently using molecular
dynamics simulations to generate movement of a
bacterial flagellum. They’ve already created an 
all-atom model and simplified it using coarse 
graining. “Now we hope to rotate the entire 
flagellum around the base to see what kind of
motions we get,” Schulten says. “It’s a very 
challenging 10 microsecond rotational period, and
we’re not done yet.”

One of the challenges of simulating moving
particles is that movement takes time, and 
simulating over time requires significant compu-
tational resources. For example, with 20,000
processors, Schulten says he can simulate 100
nanoseconds of molecular movement a day; and
he needs 100 days to get to the microsecond level.

But Vijay Pande, PhD, associate professor of
chemistry and of structural biology at Stanford,
wants to cover longer time scales than the typical
nano- and micro-second simulation. He’s 
interested in processes that take milliseconds or
seconds—or even protein activation, which can
take minutes or hours.  “Our interest has been to
push as hard as possible into this area,” he says.
“If you have something that takes a millisecond

but you’re simulating it for 1,000 times less time,
you’ll probably be missing things.”  

Pande points to simulations of the headpiece
for the protein villin. Initially, simulations of all
possible future positions of each particle (known
as trajectories) lasted only a brief time-step with
gaps between. It was impossible to make sense of
what was happening. “Now that we have 
thousands of trajectories, each on these long time
scales, we can see what it looks like,” Pande says.
And the details matter: In a movie, the headpiece
folds, unfolds a bit, tries again, gets some things
right but maybe not all, unfolds a bit again, and
so on until eventually it makes its final shape. Yet,
says Pande, “Every step of the way it creates more
and more native-like structure.” 

“With computation, we 
can take experimental 

data with limited meaning 
and, using a “computational

microscope,” turn it 
into information about 
the chemical structure 

of the system under 
investigation,” says 

Klaus Schulten.

MOLECULAR MOVEMENT
TAKES TIME

“Typical simulations cover events happening in 
nano- and micro-seconds,” says Vijay Pande. “But when
I look at the events I want to go after, they occur more 

slowly—at milliseconds or seconds.”
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Perhaps the only general statement one can
make about protein folding, Pande says, is that
it’s a stochastic process, meaning it involves
chance or probability. “Trying to understand this
means we might want to rethink how we simulate 
dynamics,” Pande says. “The question is: if a
handful of trajectories don’t really describe the
system, how are we going to capture all the 
complexity and interest that even a small protein
molecule might have?”

So Pande suggests a paradigm shift. Instead of
running simulations evenly, giving each trajectory
equal attention, he proposes using Bayesian statis-

tical methods to figure out which areas really need
to be simulated longer in order to gain insight.
This can yield huge speed increases, making pro-
tein folding simulations 10 to 1000 times faster.  

To magnify that speed increase, Pande relies on
large amounts of computing power—specifically,
grid computing. He has 250,000 processors partic-
ipating in his distributed computing program,
including graphics processors like Sony’s
Playstation® 3—which he says give a 20 to 50 times
speed increase. By combining this with Bayesian
methods, “we hope to get millions times the speed
of what you can do with one computer,” he says.

The headpiece of villin, an actin-binding protein, makes for interesting molecular dynamics 
simulations because it is quite small and folds quickly. That speed allowed Pande’s group to obtain 
thousands of trajectories showing the headpiece folding and unfolding while continuing to make
progress toward its final state. Courtesy of Vijay Pande.
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The ribosome is a magnificent piece of cellular
machinery. It’s where the DNA code (carried by
messenger RNA) gets translated into useful 
proteins. Three different kinds of molecules move
through the ribosome during this process:  
messenger RNA (mRNA); numerous transfer
RNAs (tRNA) (each one carrying an amino acid);
and the growing protein that’s being assembled
from those amino acids. For each pathway through
the ribosome, unique mechanical features help
ensure an efficient and accurate process. 

Studying the dynamics of such a molecular
machine is a complex business. But by combining
cryo-electron microscopy, or cryo-EM, with an
array of interdisciplinary methods, researchers
have made tremendous headway. Joachim Frank,
PhD, professor in the School of Public Health and 
Biomedical Sciences at State University of New
York,  Albany, is one important contributor. 

Frank’s team starts with a soup of ribosomes
and other essential ingredients for translation
including mRNA, amino-acid-carrying tRNAs, 
various elongation factors, and amino acids. Using
antibiotics or other chemical means, the

researchers stop the translation process at a 
particular step. In this manner, all the ribosomes
in the sample are trapped in the same 
conformation—e.g., with tRNA snapped into 
place or not; or with mRNA in a particular stage 
of movement. The electron microscope then
makes tens of thousands of projections of these 
ribosomes that must be assembled into a single 
3-D map. “The job of the computer is to make
sense of all these projections,” Frank says. 

Although the resolution of the 3-D maps 
created with this cryo-EM approach is getting 
better and better, it’s still shy of atomic 
resolution. So Frank’s team then docks existing
crystal structures into the cryo-EM map. At this
point, Frank says, “We have only discrete stops
along the way. So we have to figure out what 
happens in between the snapshots.” Multiple 
interdisciplinary techniques then come into 
play: Kinetics data, molecular dynamics 
simulations, normal-mode analysis, single-
molecule FRET, and other approaches create a
more complete picture of the ribosomal molecular
machine in motion.

Here, the large ribosomal subunit is shown alone (the small subunit has been removed) in the process of
translocation.  On the left, three tRNAs sit in the three slots inside the ribosome: orange prepared to exit;
green in the middle; and pink having just arrived and in a position to link its amino acid to the growing
peptide chain. When (at right) elongation factor G (red) binds to the ribosome, it induces a ratcheting
motion—the small subunit (not shown) twists down and away, which causes the mRNA to shift over by
one codon. In addition, the three tRNAs shift toward their next position, as shown. When the subunits a
spot for a new tRNA to enter. Image courtesy of Joachim Frank and Haixiao Gao. 

THE RATCHETING, SPRINGING, 
EJECTING RIBOSOME
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Inside a cell, the cytoskeleton creates a scaffold
for essential activities such as cell migration, division
and signaling. To function well, it must be flexible
and stretchable. But we have a poor understanding
of how it works mechanically. 

To study the cytoskeleton’s mechanical proper-
ties, Roger Kamm, PhD, professor of mechanical
engineering and biological engineering at
Massachusetts Institute of Technology, uses both
experimental and computational approaches. 

As you increase strain on a cell, Kamm says,
cytoskeletal filaments get stiffer, a process known as
strain hardening. Eventually, these filaments reach a
critical point and there’s a sudden drop in 
stiffness; the material gets much more fluid-like. But
what, Kamm wondered, causes both the 
hardening and the drop?

To explore that question, Kamm and his 
colleagues developed an actin cytoskeleton in silico
consisting of a network of actin filaments in a 500

“We developed an actin cytoskeleton in silico,” says
Roger Kamm, “so that we can study mechanical

processes in a more systematic way where we can
probe things in detail.” 

THE STRETCHING CYTOSKELETON

The results have answered important questions
about how the ribosome works, including the
processes known as tRNA selection and trans-
location. In tRNA selection, the ribosome must
choose among twenty different tRNAs each attempt-
ing to deliver a different amino acid package to the
growing peptide. How does the ribosome choose the
right one accurately? Frank’s cryo-EM analysis shows
that the tRNA undergoes a conformational change
when it enters the ribosome to try out its match: it
gets bent into a molecular spring with high energy.
Only with a match between the tRNA anticodon
and the mRNA codon does the spring snap into
place. “tRNA makes an enormous move going into
its place in the ribosome,” Frank says. 

The work also elucidated the process of how
mRNA and tRNA move through the ribosome
(translocation). When elongation factor G (EF-G)
binds to a site between the ribosome’s large and
small subunits, the small subunit moves in a ratch-
eting motion to one side and (after EF-G departs)
back again. “There is an enormous movement of
the bridges that connect the two subunits,” Frank
says. As a result, mRNA shifts over by one codon
and, at the same time, tRNA moves stepwise from
one of three positions to the next. 

“The ribosome’s dynamic properties follow
from the molecular architecture,” Frank says. And
that's something Vijay Pande has thought about in

his investigations of the polypeptide’s exit 
tunnel through the ribosome. Pande wonders why
the growing protein departs through the 
center of the ribosome and what interactions occur
along the way. 

To investigate, Pande began by considering tun-
nels generally. His team simulated a helical peptide
inside different sized nanotubes with a small number
of water layers.  The result: “Most people would
expect that you’d have a more stable helix in the
smaller tube because you’re removing the unfolded
states,” he says. “But there were fewer helical residues
and more protein-hydrogen bonds.”  His hypothesis—
in such a small space, water denatured the protein!  

“Thinking about water is really important,”
Pande says. “If you didn’t think about it explicitly
here, you’d have gotten the opposite result.” 

Taking that idea to the ribosome, Pande’s 
simulations show that protein helices mostly remain
coiled inside the ribosomal tunnel. Currently, his
group is simulating whether the polypeptide interacts
with the ribosomal tunnel on its exit journey.
“Perhaps the ribosome itself goes through some
changes during the process,” he says. “Even residues
down at the end of the tunnel might affect what’s
going on higher up.” Results are expected soon. 
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nanometer cube. And because strain hardening only
occurs in experimental networks with cross-linking
proteins, they threw two cross-linkers into the sim-
ulation—one that connects the filaments in paral-
lel, and another that joins them at right angles.
“The nice thing is that we can start simple and add
in different types of cross-linkers as we go,” he says.
Taking a slice through the cube, the network
appears reasonably similar to that seen in slices
through real cells. 

Kamm’s group then modeled the in silico matrix
with and without shear stress. The key result:  “At

higher concentrations of cross-linking protein, you
get this dramatic strain stiffening behavior,” Kamm
says. On the other hand, he didn’t see the 
catastrophic drop in stiffness seen experimentally.
For this, the cross-links need to rupture under
force, an effect that is now being incorporated into
the model.  

Eventually, Kamm hopes this kind of iterative
research using experimental and computational
approaches will lead to a better understanding of
how forces are transmitted across the cell 
membrane and within the cell.  

A simulated cytoskeleton shown without
(left) and with (right) shear stress applied.
The green filaments (at right) are the ones
that "feel" the sheer stress. Courtesy of
Roger Kamm.

ONE-WAY TISSUE
Many types of cells and tissues develop a kind of

directionality called cell polarity: certain events 
happen toward one end of the cell or tissue. When
disrupted in humans, a variety of disorders may
result: congenital deafness, respiratory diseases
involving cilia, neural tube defects, and even cancer.

To study cell polarity, some researchers turn to
the little hairs that grow from the distal (far) side of
each cell on flies’ wings. “How does a single cell in
the midst of thousands of cells, identify the distal
side?” asks Claire Tomlin, PhD, professor of 
aeronautics and astronautics at Stanford University

and professor of electrical engineering and 
computer sciences at the University of California,
Berkeley.  To address that question, Tomlin uses
mathematical models to bridge from molecular
level understanding to tissue-level effects.

A fly’s wing hairs form between 18 and 34 hours
after the pupa forms. Before 18 hours, key proteins
in the cell are homogeneously distributed. After
that, they localize—two (Dsh and Fz) to the distal
side and two (Pk and Vang) to the proximal side.
The hairs form where Dsh concentrations are 
highest. But various mutants exhibit unusual 

The hairs on a fly’s wing grow from the distal side of each cell (the side away from the fly’s body), 
displaying what’s called planar cell polarity. Courtesy of Claire Tomlin.
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characteristics. For example, mutant cells with no
Fz grow more than one hair from the cell’s center.
In addition, wild-type cells surrounding those
mutants grow hairs pointing toward the mutants,
suggesting some sort of signaling between cells. 

Jeff Axelrod, PhD, associate professor of
pathology at Stanford University, proposed a 
feedback model among the various players to
explain this and other mutant outcomes. But the
model was controversial. Some felt it couldn’t
explain certain phenomena such as why cells that 
over-express Pk produce increased Dsh at the
boundary.   

Enter Tomlin who developed mathematical
models to determine if Axelrod’s model was 
plausible. She used continuous partial differential
equations to represent the observed diffusion.

Simulations of various knockout scenarios 
produced results just like those seen in the lab.
Even the controversial result was captured:
Overexpressing Pk brought more Dsh to the
boundary. The lesson, Tomlin says: “Feedback can
be nonintuitive.” Here, it turned out that 
overexpressed Pk led to overcompensation by the
rest of the feedback loop.  

Tomlin’s model also performed remarkably well
in a blind challenge. A researcher in England asked
her to attempt a variety of “funky” knockouts. After
the simulations were complete, he showed her his
lab results for the same experiments. They all
matched. “It supports the plausibility of the model,”
Tomlin says. “And as we get more and more 
information from experiments to guide our model,
our model can also help guide experiments.”

In this model of a fly’s wing,
some cells (in the center of
this image) contain a non-
functioning clone of the gene
“frizzled.” As a result, hairs
(white triangles) grown from
neighboring cells point
toward the Fz-deficient cells.
Courtesy of Claire Tomlin.

“We’re using a mathematical model to bridge the gap
between a molecular-level hypothesis and its 

tissue-level effects,” says Claire Tomlin.
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SWIMMING LARVAE IN THE
NATURAL WORLD

On a larger scale, some researchers study  entire
organisms moving in their natural environments.
“They evolve in the messy natural world,” says
Mimi Koehl, PhD, professor of integrative biology
at the University of California, Berkeley. “So we
should look at how organisms interact mechanical-
ly with the world around them.” 

Koehl has studied how crabs move in and out of
water (they crouch lower and wider in water) and
how lobsters gather odors from the environment

(they flick their antennules to “sniff” the sur-
rounding water). Recently, she teamed with some
engineers to study whether sea slug larvae have any
control over where they land on the sea floor.
Ocean currents carry these microscopic larvae, but
these creatures need to land on a coral reef in order
to metamorphose into their adult form.

“What if you’re really tiny and not a great 
swimmer,” Koehl asks, “How can you recruit a 
suitable habitat?”

A computational larval sea slug (blue) finds its way to a coral reef by swimming when it senses no coral
aroma (in black filament) and sinking when it senses such cues (in red water). As a result, the larva follows
a spiralling path that enhances the chance of landing on the reef. This model was built by simulating realistic 
turbulence and waves in a laboratory wave tank. The black branching structures at the bottom of the image
are corals exposed to turbulent flow. The yellow and orange filaments swirling around in the 
water above the corals are fluorescent dye leaching off the surfaces of the corals (just as the aroma of corals
leaks out of corals in nature). A thin optical slice of the dye (aroma) plume is illuminated by a thin sheet of
laser light. The brighter and lighter the dye in this image, the higher its concentration.  The aqua line is the 
simulated trajectory of a microscopic larva of a sea slug carried in turbulent water flow. The trajectory was
calculated using a computer simulation of the larval behavior (in odor-free water it swims; in water with
coral-aroma it sinks) as well as the water movement (waves and turbulence), and the changing field of 
filaments of aroma swirling around in the water. Photo by M. Reidenbach; trajectory calculated by J. Strother.
Courtesy of Mimi Koehl.
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In a laboratory dish, Koehl’s collaborator,
Michael Hadfield, PhD, at the University of
Hawaii, had seen that chemical cues can trigger sea
slug larvae to settle on the bottom. But in nature
where they drift over coral reefs, they have to con-
tend with turbulence and waves. Wouldn’t the
coral odors be washed away and wouldn’t larval
behavior be overwhelmed by the ambient flow,
Koehl wondered? 

To mimic the conditions in nature, Koehl and
her colleagues measured water flow over coral reefs
and then worked with Jeffrey Koseff, PhD, and
Matthew Reidenbach, PhD, at Stanford
University to recreate a coral reef in a wave tank,
complete with realistic wave movements and 
turbulence. They painted a fluorescent dye on the
model corals to represent chemical cues released
from coral surfaces. As the fluorescent dye 
dissolved into the water column, the researchers
shined a skinny sheet of laser light vertically
through the dye plume so that they could look at
how the dye was distributed in the water on the
fine scale that would be encountered by a tiny
larva. The fine slice revealed that the fluorescent
dye wasn’t merely a diffuse cloud. It was made up
of fine filaments swirling around with odor-free
water.  “A tiny dot the size of a larva is going to be
in no odor, then odor, on-off, on-off as he swims
around through this plume,” Koehl says.

What do larvae do in response to this situation?
In filaments of odor-free water  they swim; in 
filaments containing coral aromas (above a 
threshold concentration) they turn off their cilia,
pull in their swimming gear, and sink. When larvae
exit the cue, they resume swimming.

One question remained: Does this behavior help
larvae to land on the reef? To study this, James
Strother, an undergraduate physics student at
University of California, Berkeley, worked with
Koehl to create a computational model of larvae
over a reef. Mathematical larvae were placed in the
video records of dye swirling over corals in waves.
The larvae were programmed to sink if surrounded
by a cue concentration greater than a pre-deter-
mined threshold, and swim if immersed in a lower
cue concentration. The larva’s velocity depended on
its swimming or sinking speed plus the velocity of
the waves and the effect of turbulence. “It’s carried
by the fluid but also sinking or swimming by its own
volition,” Koehl says. 

In the simulation, the researchers saw larvae 
following a spiraling trajectory, eventually landing
on the reef. When they calculated the trajectories of
thousands of larvae they found the settlement rate
into the reef increased about 30 percent because of
the larvae’s sink/swim behavior. Larval behavior
made a statistical difference to larval survival.  “Even
if you’re a tiny, weak swimmer, you can bias how the
environment moves you,” says Koehl.

CRAWLING CREATURES UNPLUGGED

Running creatures with two, four, and six legs
veer toward stability. Indeed, they seem mechanical-
ly designed to cope with varied and unpredictable 
terrain and to recover from trips and jolts that 
disrupt them along the way. 

To understand how runners achieve such 
stability, one might assemble a model of multiple
skeletal supports, hundreds of muscles and millions
of neurons. But that would be an extremely complex
model with many variables. Moreover, it would be
hard to make any general statements about what’s
going on.   

So the system should be simplified down to its
essence, says Robert Full, PhD, professor of 
integrative biology at the University of California,
Berkeley. But that essence should be anchored in a
realistic physical representation of an animal. 

The essence of running—distilled down to a 
simple, dynamical system in one plane—can be 
represented by a pogo stick. “It’s a mass sitting on
top of a spring,” Full says. “And it’s the same for
two, four, six or eight-legged animals.”

In addition to a vertical springing motion, 
running involves movement in the horizontal
plane, Full says. He collaborated with a math 
colleague at Princeton to produce a spring-mass
model that bounces side to side as well as up 
and down. Then they perturbed the model. 
The result: heading, velocity, orientation and 
rotational velocity all remained stable. “This is a
passive mechanical self-stabilizing system with
almost no neural feedback,” says Full. “The 
stabilization is built into the tuning of the 
mechanical system.”



His team then tested the spring by gradually
adding physical characteristics of animals—first legs,
then a simple muscle model and some damping,
and finally some programmable leg and hip 
positions that could control joint torque. Each 
addition revealed a new characteristic—stabilization
with respect to inertia, then speed, then stride. The
lesson: animals opt for a combination of speed and
stride frequency based on stability. “The most 
stable region is where the animal actually 
functioned. It didn’t venture into the unstable
regions,” Full says. 

A postdoc in Full’s lab went on to produce a 
variety of hopping models and learned that two
legs add lateral stability; three increase stability in
all directions.  “Morphology makes a big difference
with respect to control,” Full says.

The next step was to add a model of neural 
control.  Full's team had experimented with real
animals—cockroaches wearing jet packs or tripping
over a step—and found that little neural control was
needed to respond to perturbations.  So they
expanded their model to inclu de only a very sim-
ple neural control model:  an oscillator (one for the
whole system or one for each leg) coupled to a mass
supported by legs.

This modeling and animal experimentation
inspired the design of a physical model, a robot.
The insert-like robot consisted of six springy legs
coupled to a body without any external neural sens-
ing.  Yet, surprisingly, it is remarkably stable and
can negotiate varied terrain, including climbing
steps.  Most of the control resides in the body and
not the brain, Full says. 
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At top, a cockroach moves across irregular 
terrain containing obstacles three times its leg
height. At bottom, a biologically-inspired 
hexapedal robot successfully traverses a 
scaled-up version of the same landscape 
without any sensory control.  From Koditschek,
et al., Arthropod Structure & Development 33
(2004) 251–272 with permission from Elsevier.
Courtesy of Robert Full.

“Morphology makes a big difference with 
respect to control,” says Robert Full.
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RUNNING DINOSAURS

John Hutchinson created these muscle-activated models (from left to right above) of an ostrich, elephant and
Tyrannosaurus rex in order to compare their running ability. When a typical living animal runs fast, the
ground reaction force (at midpoint stance) peaks at about 2.5 times body weight. Hutchinson looked at how
much muscle the living animals would need in order to sustain that force. He found that birds—small and
large—all had enough muscle to run. In addition, large birds such as the ostrich could run quickly because
they have big muscles, good muscle leverage and use straight legs, which give them a mechanical advantage.
Elephants could also run.  But T. rex doesn’t appear to have been able to sustain a ground reaction force of
2.5 times body weight. Courtesy of John R. Hutchinson.

Like Full, John Hutchinson, PhD, a lecturer at
the Royal Veterinary College, University of
London, uses simplified models to understand 
animal movement. But that’s in part because he
has to: The animals he studies are extinct.  

Specifically, he’s interested in theropod
dinosaurs, a group that walked on only two legs
and includes the largest bipeds that have ever lived.
Living animals appear to have a speed limit—at a
certain size, getting bigger no longer means getting
faster. Hutchinson wants to know: Was this true
for Tryrannosaurus rex? Could this massive
dinosaur run? 

Empirical data give limited information about
dinosaur locomotion. Skeletons can tell researchers
what positions the animals couldn’t take—for 
example, poses that would disarticulate the knee.
Footprints allow some estimates of dinosaur
speeds. And comparisons to living animals also give
some clues. However, in the case of T. rex, “There
are no six ton bipedal land animals alive today,”
Hutchinson says. 

So he uses computer modeling and simulation to
go beyond what he can see in fossils, footprints, and
analogous live animals. 

Initially, he created a simple model to determine
how much muscle mass it would take for T. rex to
sustain the ground reaction force of normal 
running (2.5 times body weight). “No matter what
posture we put into the model, T. rex could not have
carried enough muscle to run quickly—even if you
gave it incredibly big muscles,” Hutchinson says.
According to the model, T. rex would max out at no
more than 15 to 25 miles per hour.

Next, he created more complex 3-D models. He
started with 6 million possible poses and then 
eliminated the unlikely ones based on principles of
how living animals move. For example, he imposed
reasonable limits on such things as limb bending,
muscle mass, and the size of the moment arm about
each joint. After carving down the possibilities, 3000
poses (.05 percent) remained that could sustain 1.5
times body weight (at the boundary between walking
and running). These were fairly straight-legged
poses, like those seen in living large mammals. 



Jessica Hodgins, PhD, professor of computer
science and robotics at Carnegie Mellon
University, has no problem gathering ample data
about her subjects: humans. But, like Hutchinson,
she relies on a process of elimination to rule 
out unlikely human movements in favor of 
realistic ones. Her goal: to create better computer 
animations of people and make it easier for 
casual computer users to create such animations.
Ultimately, she'd like to see her work have 
some practical impact. For example, it might 
help clinicians plan and implement physical 
therapy programs.  

In 1995, Hodgins made her first efforts to 
simulate human motion. She relied on models 
of simple springs that were proposed in the 
biomechanics literature at the time; her own 
observations of people; and a healthy dose of 
intuition. The resulting animations weren’t 
terrible, but it was easy to see they weren’t 
realistic. “Our standards for human motion 
are really high,” she says. “We know when 
something’s wrong.”

But this early effort taught Hodgins something:
human control laws are hard to design. It’s not
enough to get the physics right. Accurately 
determined forces impacting a rigid body do not
automatically produce an appealing human 
character. Moreover, they make everyone look the
same. “We don’t have a language for stylistic sub-
tleties,” Hodgins says. 

She decided she needed to know more about
how people move. So, starting in 2000, Hodgins cre-
ated a motion capture lab. By placing numerous
reflective markers on an individual person in
motion and capturing the 3-D locations of those
markers, she created a database of possible move-
ments for a number of ordinary people as well as
some professionals such as gymnasts and clowns. 

Hodgins and her PhD student Alla Savanova
could then organize the data in a different
sequence to create an animated figure that moves 
in ways different from the original subjects.  “A 
few examples of a given behavior can be 
generalized to quite different examples of that
behavior and still look realistic,” Hodgins says.

He then used this model to simulate T. rex at the
midpoint in a walking stride and asked the 
computer: How much ground reaction force could
have been produced at the foot per one unit of mus-
cle force?  It’s a measure of mechanical advantage.  

What he found: As the T. rex posture gets more
erect, the mechanical advantage goes up until it
reaches a plateau. “It’s possible that perfectly
straight legs aren’t that much better than a little bit
of bend in the legs,” he says.

For dinosaurs, so much is unknown—the 
   posture, the moment arms, and the dimensions of
the animal’s muscles and bodies. But, Hutchinson
says, “The unknown values have to be within some
range….So perhaps it doesn’t matter what we
assume, but what we do with an assumption and
how much we vary it.  The modeling tools make all
this careful inquiry possible; otherwise we'd just be
left guessing.”
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“The modeling tools
make all this careful

inquiry possible; 
otherwise we'd

just be left guessing,”
says John Hutchinson 

of his T. rex models.

ANIMATING REALISTIC PEOPLE
ON THE GO
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For example, using limited motion capture 
data, she can realistically animate a person 
following a randomly chosen circuitous path while 
avoiding various unexpected obstacles. To do this,
she takes each pose from the motion capture data
and puts it into a graph data structure: Similar poses
and velocities land in similar locations on the graph.
She can then search the graph for a path that
approximates where the person is walking along 
a specified route. “Any path through this graph
should produce natural motion,” Hodgins says. 

This procedure was quite efficient, but Hodgins
made it even more efficient by reducing the 
number of possible poses to only those that 

look natural, and then interpolating between them.
The physics are still correct for the full behavior, but
the only motions the character can make are select-
ed from a smaller set of possible motions. 

Comparing animations based on the full motion
capture data set with animations based on the low
dimensional set, there’s almost no difference. “So
we’re getting a lot of generality out of limited data,”
Hodgins says.

The team also worked to optimize the range of
possible movements. For example, a person
approaching an object to pick it up might bend over
too soon or too late, looking unnatural. To find the
most realistic options, Hodgins’ group did a 
significant amount of culling of non-optimal 
trajectories on the graph. “Optimal solutions look so
much more natural,” she says.  

But the movement of soft tissue is still missing
from these rigid body animations: Muscles don’t 
jiggle and feet don’t compress with each step.
Hodgins is now gathering data on such flesh and
muscle movements by putting 400 sensors all over
the bodies of weight lifters, belly dancers, and 

ordinary people with a variety of body types.
Eventually she hopes to add models of these data to
her animations.

Hodgins’ work is top down: grabbing data and
trying to mine it for the principles of human
motion. The other option is to find out how the 
system works from the bottom up.  “It will be nice
when we meet in the middle,” she says.

Jessica Hodgins captures the motions of living subjects and then manipulates them to produce realistic-look-
ing movements in new situations. These snapshots, taken from an animation, show a woman walking on a 
balance beam, leaping between stepping stones, ducking under a bar, and then seating herself in a chair.
Courtesy of Alla Safonova and Jessica Hodgins, Carnegie Mellon University.

“A few examples of a given behavior can be 
generalized to quite different examples of that behavior

and still look realistic,” says Jessica Hodgins. 
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STANDING UP, LEARNING, 
AND TAKING TRAINS

Virtual pedestrians move through this virtual train station by making autonomous decisions. They 
automatically negotiate tight spaces, observe social conventions (staying to the right), and queue up at the
ticket line. They know when their train will leave, and decide what to do while waiting—sit and read; watch
some performers; or grab a bite to eat. Each individual is constructed of several layers: biomechanics, sen-
sors, and a “brain” able to perceive and learn. Courtesy of Demetri Terzopoulos.

Demetri Terzopoulos, PhD, the Chancellor's
Professor of Computer Science at the University of
California, Los Angeles, takes a comprehensive 
“artificial life” approach to animating humans and
lower animals in a realistic manner. His characters
are built from a basic biomechanical framework in
which physics-based concepts such as joint torques
and gravity—and not motion capture data—control
movements.  On top of that, he uses machine
learning techniques to build in additional capabili-
ties—learning, perception, behavior, and cognition—
so that his characters can act autonomously.  

A simple example is that of an articulated 
skeleton that  tries to remain standing while being
pulled by a virtual rope tied to its middle.
Sometimes the skeleton falls; sometimes it stays up.
The yank is repeated until the character "learns"
which responses enable it to remain standing. After
this type of training, the character can react
autonomously, making a protective step to avoid a
fall, for example, or getting back up after tumbling
to the ground.

Terzopoulos' simulations go beyond just the
physics and locomotion to also mimic animal 
perception and behavior.  The models used in
these simulations have a biomechanical 
component, but also include a set of sensors and a

brain with motor control, perception, behavior,
and learning centers.  With this more complex
model, Terzopoulos and his students created a 
biomechanical model of fish that can learn how to
swim.  The fish also avoid collisions with other
fish, forage for food, and engage in more complex
behaviors such as mating. 

From this, Terzopoulos and his team developed
a formulation of learning as an optimization 
problem. "It's trivially simple," he says. "Even a
dumb animal can do it through trial and error." His
program trained an artificial shark to swim by 
finding the most energetically efficient way to move
given the physics of the environment (gravity in
water) and the limits of its physique (e.g., muscle
arrangement and strength). The shark begins by
twitching, but soon, says Terzopoulos, "It discovers
the proper gait given its body structure, and then
refines it until it becomes an efficient swimmer."

Most recently, Terzopoulos and his team have
applied their "artificial life" approach to human
characters in a virtual train station (a model of the
original Penn Station in New York City). Using the
same layers (locomotion, sensors and a brain, this
time including a cognition center), his team 
created a realistic simulation of several thousand
autonomous pedestrians commuting through the



station. "Each pedestrian is a highly capable 
individual with things he or she must do, such as
purchase a ticket and proceed to the correct train
platform at the appropriate time," Terzopoulos says.
It's then possible to sit back and watch the train sta-
tion dynamics on a large scale. "It's order and disor-
der at the same time," he says. "It's highly complex."

Eventually, Terzopoulos would like to create a
whole city of autonomous virtual humans. The
UCLA Urban Simulation Lab has created a
detailed 3-D model of Los Angeles. "Wouldn't it be
wonderful to populate it with as many people as
possible?" he asks.
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The UCLA Urban Simulation Lab has 
created a detailed 3-D model of Los Angeles... 

“Wouldn’t it be great to populate it with as many people
as possible?” Demetri Terzopoulos asks.

When researchers simulate life in motion, they rely on a powerful

rule of nature: Newton’s Second Law of Motion. At all scales, the basic

rule that force equals mass multiplied by acceleration (F=ma) helps 

predict how life moves.

Simbios, a National Center for Biomedical Computing at Stanford,

was founded on the premise that this commonality—F=ma—should

allow development of a common software toolkit for creating 

simulations at all scales of life. 

And that’s why the Simbios-sponsored “Life in Motion” symposium

brought together the ten researchers described here. “Its pretty

impressive that such a vast array of problems can be attacked with

essentially the same tool,” says Altman.

While highlighting the versatility of physics-based computer simula-

tion, the symposium also fostered cross-fertilization among different

disciplines that all use motion simulation. “This will help to build a

meta-community of scientists with a common interest in understanding

how biological matter moves, and how that motion can be simulated

in computers," Altman says. �
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Demise of the 
Common Cluster
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u n d e r  t h e  h o o d
Under TheHood

fter a hard day in “Lab,” it is rare to come home
with the feeling of actually having accomplished
anything tangible. Sure, the software I am 

developing has some new feature (with the accompanying
10 new bugs), and perhaps an algorithm is slightly more
likely to yield biological insight, but all in all, I’ve mostly
pushed and pulled electrons around. I often envy my
experimental collaborators, who at the end of the day have
some DNA in their Eppendorf, or a new plasmid that will
express a protein. Those are tangible, day-to-day results. 

The other day, however, I came home having the 
feeling of true accomplishment. We had spent the entire
day in the server room reorganizing our clusters and
servers: We pulled power and Ethernet cords, tightened
screws, and inserted RAM chips. But this might be the last
time I ever upgrade RAM on a rack mounted computer
because Amazon (yes, the online book store where you
bought the latest Harry Potter) now offers another option.

Until now, computing has been about machines—
a fixed cost. Labs buy a certain number of computers with
a new grant, and that is it. The number of jobs queued on
the hardware is highly correlated with conference 
deadlines, but most of the time, the hardware keeps itself
busy running daily cron jobs.

Now there is a new player in the game, it is called EC2
(for Elastic Cloud 2) and it is available at 
http://www.amazon.com/ec2 along with more Harry
Potter paraphernalia than I ever imagined. Amazon is the
first company to sell computing as a true commodity 
independent of hardware. Large companies like Google,
Amazon, Oracle and Microsoft are building data centers
all over the country to meet their own huge CPU needs.
But Amazon is the first to realize that their in-house 
technology (cheap commodity computing) can make them
money—probably a lot of money. 

EC2 offers cheap and simple pricing (10 cents per CPU
hour on a 3 GHz equivalent processor with 1.7 GB of
RAM, and 160 GB of storage). But perhaps more 
important for computational research, it will mean no
more queues before conference deadlines. Amazon will
worry about load balancing the world’s computing
resources; we’ll just pay for computation as we go. 

To those of you who are skeptical about scales and 
complexity, consider this: Overnight on July 21, 2007,
Amazon shipped 2.2 million pre-orders for the latest (and
final) Harry Potter novel. This is a company that has some
experience with load balancing.  Some will still say that
the loss in performance with the added layer of virtuali-
zation is unacceptable, and that interconnects between 
virtual machines will never be fast enough for their 
highly parallel problems. But I’m betting that, 
eventually, they’ll be buying CPU time too. The EC2
cloud already allows purchases of “large” instances 
(15 GB of memory, 8 CPUs, 1690 GB of instance storage,
64-bit platform) for 80 cents an hour. The price may
sound steep, but consider
the fact that you can create
1000 such instances almost
instantaneously for $800.
That’s some cheap super-
computing, IMHO. ■■

DETAILS

Alain Laederach, PhD, is a post-doc in Russ Altman’s 
lab at Stanford University. He recently accepted a faculty
position at the Wadsworth Center in Albany, NY, and he
is not now and has never been associated with Amazon
in any way!

You can reach him at alain@helix.stanford.edu
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ypically, researchers who simulate
life in motion—from particles to

people—start by describing the motion 
of each part of an object independently
of the other parts.  Additional equations
then limit the motion of one part 
relative to another. The result:
Computers must then solve a large 
number of awkwardly coupled equations.
That often means long simulation times
or, worse, equations that won’t  converge
to a solution.

To sidestep these problems, Michael
Sherman and his team at Simbios, a
National Center for Biomedical
Computing based at Stanford University,
developed a multi-body dynamics 
software toolset called Simbody. Simbody 
introduces the concept of a “mobilizer,”
which directly expresses a part’s 
movement, however complex, purely in
relation to another part. In this way,
fewer and simpler equations are needed
to simulate the part’s motion. ■■

Simulation Simplified

s e e i n g  s c i e n c e
SeeingScience

T Traditionally, researchers have used
five equations to describe knee
motion–one equation for each of the
ways a knee can move (forward and
back; side-to-side; and rotational)
and two equations to relate the
translation of the knee to its 
rotation. With Simbody, a single
equation, represented by the blue
line, can simulate the complex
motion of the knee. Courtesy of Ajay
Seth, PhD, of Stanford University. 

DETAILS

Simbody is part of the SimTK Core toolkit, an open-source C++ application
programming interface (API) to computational tools and algorithms for 
biological simulations. A workshop on using Simbody and the SimTK Core
will be held at Stanford University on March 20-21, 2008.  For more 
information, contact Blanca Pineda, bpineda@stanford.edu.

Pre-release source code for the SimTK Core toolkit, including Simbody, can be
freely accessed at http://simtk.org. A full release is planned for March 2008.
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