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BY SCOTT DELP, PhD 
Principal investigator for the Mobilize Center and 

the James H. Clark Professor of Bioengineering and 
Mechanical Engineering at Stanford University

This Special Issue shows that Big (Data) Science matters in 
biomedicine. It matters not only to the researchers doing it, but 
to the entire research community and, more importantly, to the 

advancement of science and the improvement of health.

Published by the Mobilize Center, an NIH Big Data to Knowledge Center of Excellence 1

From the Editor

 1 Weinberg, A.M. 1967. Reflections on Big Science. The M.I.T. Press,  
Cambridge, MA. 182 pp.

BIG (DATA) SCIENCE MATTERS

In 1967, when nuclear physicist 
Alvin Weinberg1 coined the term 
Big Science, he was most interested 

in launching a concentrated effort to 
develop nuclear technologies. But he 
anticipated that large-scale approaches 
to biomedicine would also be productive. 
In fact, they have been—from the War 
on Cancer in the 1970s, to the Human 
Genome Project of the 1980s and 1990s, 
and The Cancer Genome Atlas and 
ENCODE projects of the 2000s. 

Since Big Science projects require significant fund-
ing, there has long been a perceived tension between 
big research efforts and smaller ones. But I would argue 
that this is a false dichotomy. Big Science efforts like 
those listed above have boosted our fundamental under-
standing of biomedicine (to the benefit of the entire 
biomedical research community) and produced scien-
tific tools and methods that have had a multiplier effect 
when distributed and used by the research community 
in projects big and small.

Biomedical computation has also had some “Big” 
initiatives, including the National Centers for Biomedical 
Computing (NCBCs), which flourished from 2004-2014 
and the current Big Data to Knowledge (BD2K) Centers 
of Excellence, which were funded for four years starting in 

the fall of 2015. Compared with the NCBCs, the BD2K 
Centers are more focused on a single mission: extract-
ing knowledge from big data. At the same time, because 
there are 13 BD2K Centers rather than 7 NCBCs, their 
coverage of biomedical data science, and indeed the entire 
spectrum of biomedicine is more thorough (see pages 4-5 
for a graphic showing the Centers’ pan-NIH impact). 

Just two and a half years into their four-year grants, 
the BD2K centers are already proving their value. This 

Special Issue of Biomedical Computation Review offers 
a glimpse at how Big Data Science can transform the 
biomedical research landscape in ways that benefit the 
research community and increase our knowledge and 
understanding of biomedicine. 

In The FAIR Data-Sharing Movement: BD2K Centers 
Make Headway, you will read about the ways various 
BD2K Centers are establishing state-of-the-art method-
ologies for making data findable, accessible, interoperable 
and reusable. Fulfilling these goals is essential if biomedi-
cal researchers are going to make use of big data sources 
to advance biomedical knowledge. And the BD2K 
Centers are at the forefront of making that happen.

In this issue’s other feature story, Text Mining: How 
the BD2K Centers are Making Knowledge Accessible, you 
will see how top-notch computer scientists are bring-
ing their text-mining tools to bear in biomedicine. From 
Chris Ré and his team at the Mobilize Center to Jiawei 
Han and his colleagues at the KnowEnG Center, the 
level of excellence is nothing short of remarkable.

And then there are the four UnderCurrents in this 
issue, each describing how the BD2K Centers are making 
a difference in targeted areas of biomedicine. You’ll read 
about how BD2K Centers are harnessing the vast stream 
of data coming from wearable sensors to improve health; 
how large-scale collaborative BD2K projects are deepen-
ing our understanding of brain diseases; how the Centers 

are striving to map the universe of drugs, predict drug 
responses and adverse reactions, and develop tools for 
drug repurposing; and how BD2K researchers are using 
data to detect and predict disease onset and progression. 

This Special Issue shows that Big (Data) Science mat-
ters in biomedicine. It matters not only to the research-
ers doing it, but to the entire research community and, 
more importantly, to the advancement of science and the 
improvement of health. It’s a perfect fit for the NIH mis-
sion: to uncover new knowledge that will lead to better 
health for everyone. 
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BD2K
Centers:

CEDAR  
Center for Expanded Data 
Annotation and Retrieval

MISSION: To make data 
submission smarter and faster, 
so biomedical researchers and 
analysts can 
create and 
use better 
metadata. 

HEART BD2K  
A Community Effort to Translate 

Protein Data to Knowledge: 
An Integrated Platform

MISSION: To advance cardiovascular 
medicine through innovations in data 
science platforms and tools to enlist 
community 
contributions 
in Big Data 
computing.

KnowEnG:  
A Scalable Knowledge Engine for 

Large-Scale Genomic Data

MISSION: To transform the 
way biomedical researchers 
analyze their genome-wide 

data by integrating multiple analytical methods 
derived from the most advanced data mining 
and machine learning research.

BDDS 
Big Data for Discovery 

Science Center 

MISSION: To take 
an “-ome to home” 
approach toward 
streamlining big 

data management, aggregation, 
manipulation, integration, and the 
modeling of biological systems 
across spatial and temporal scales.

BDTG  
Center for Big Data in 

Translational Genomics

MISSION: A partnership 
coordinated by UC Santa Cruz 
to create scalable infrastructure 

for the broad 
application of 
genomics in 
biomedicine.

THE MOBILIZE CENTER  
The National Center 

for Mobility Data 
Integration to Insight

MISSION: To overcome the 
challenges of analyzing large data sets that 
describe human movement and to improve 
human movement across the wide range of 

conditions that limit mobility. 

ENIGMA:  
 Enhancing Neuroimaging 

Genetics through Meta Analysis

MISSION: To bring together 
researchers in imaging genomics to 
understand 
brain 
structure, 
function, 
and disease, 
based 
on brain 
imaging and genetic data. 

bioCADDIE*
Biological and HealthCare 

Data Discovery and 
Indexing Ecosystem 

MISSION: To 
develop a 
prototype 
data discovery 
index that will 
enable finding, 

accessing and 
citing biomedical big data. 
* bioCADDIE received a Data Discovery 
Index Coordination Consortium (DDICC) 
Award through the BD2K program
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CPCP  
Center for Predictive Computational Phenotyping

MISSION: To developing methods for modeling 
and predicting thousands 
of phenotypes to advance 
biomedical science and improve 

human health.

PIC-SURE
Patient-Centered Information 

Commons: Standardized Unification 
of Research Elements

MISSION: To create a massively scalable 
toolkit to enable large, multi-center Patient-
centered Information Commons (PIC) at 
local, regional, and 
national scale, 
where the focus 
is the alignment 
of all available biomedical data (genetic, 
environmental, imaging, behavioral, or 

clinical) per individual. 

MD2K  
Center of Excellence for Mobile Sensor Data-to-Knowledge

MISSION: To develop Big Data 
solutions to quantify physical, 
biological, behavioral, social, 
and environmental factors that 
contribute to health and wellness 
in daily life.

LINCS 
Transcriptomics

Broad Institute LINCS Center 
for Transcriptomics

MISSION: To develop comprehensive 
signatures of cellular states that 
can be used by the entire research 
community to understand protein 
function, small-molecule action, 
physiological states and disease states.

BD2K-LINCS-DCIC
LINCS-BD2K Perturbation 

Data Coordination and 
Integration Center

MISSION: To construct a 
high-capacity scalable 
integrated knowledge environment enabling 
federated access, intuitive querying and 
integrative analysis and visualization  
across all LINCS resources and many 
additional external data types from  
other relevant resources.

CCD
Center for Causal 

Modeling and Discovery 
of Biomedical Knowledge 

from Big Data

MISSION: To find meaningful 
relationships in big data that lead to new 
insights into health and disease.
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The data science tools and methods developed 
by the BD2K Centers—from clustering algorithms 
to data integration approaches, text mining, and 
image analysis—are valuable across the entire 
field of biomedicine, benefiting virtually all of the 
NIH Institutes.  

Here we show the impact of the tools and research 
of the BD2K Centers for 13 of the Institutes. Center 
names are stacked atop each Institute to which that 
Center’s work relates. A few specific examples are 
also highlighted in text and more examples  
are provided in an online interactive graphic at  
http://bcr.org/uploads/bd2kimpact.html.

BDTG curated 3,000  
BRCA variants to deliver 

better information to 
patients through the  

BRCA Exchange

KnowEnG experimentally 
validated 23 predictions 
of genes associated with 

specific cancer drugs

CPCP combined genetic 
and personal data to 

stratify breast cancer risk 
for improved targeted 

detection and diagnosis

NCI
National Cancer Institute

bioCADDIE

Mobilize

LINCS-Transcriptomics

BDTG

CEDAR

MD2K

BDDS

CCD

CPCP

KnowEnG

NIDDK
National Institute of  

Diabetes and Digestive  
and Kidney Diseases

bioCADDIE

HEART-BD2K

Mobilize

LINCS-Transcriptomics

BDTG

PIC-SURE

CEDAR

MD2K

BDDS

CCD

CPCP

The Mobilize Center  
is improving the diagnosis 

of diabetes through  
the integration of  

omics data with data  
from commercial  
activity monitors

NHGRI
National Human Genome 

Research Institute

bioCADDIE

LINCS-Transcriptomics

BDTG

PIC-SURE

ENIGMA

CEDAR

BDDS

CCD

CPCP

BDTG captured the 
diversity of the human 
genome sequence in 
a rich mathematical 
structure, the Human 

Genome Variation Map 
(HGVM—see back cover)

CCD integrated and co-analyzed 
multiple complex variables 

from the same tissue to better 
understand how how idiopathic 
pulmonary fibrosis progresses 
spatiotemporally in the lung

Heart-BD2K used KnowEnG tools 
to uncover novel patterns among 

8,368 proteins relevant to six 
main categories of heart disease

MD2K deployed its mCerebrum 
platform for processing data 

from multiple sensors in seven 
field studies (smoking, eating, 
oral health, cocaine use, and 

congestive heart failure)

NHLBI
National Heart, Lung  
and Blood Institute

bioCADDIE

HEART-BD2K

BDTG

CEDAR

MD2K

BD2K-LINCS-DCIC

CCD

KnowEnG

CPCP

BD2K CENTERS’ 
PAN-NIH IMPACT
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 ENIGMA develops 
new methods for 
analyzing images 

including DTI (diffusion 
tensor imaging), 

resting-state fMRI, and 
electroencephalograms 

(EEG)

NIbib
National Institute of  
Biomedical Imaging  
and Bioengineering

bioCADDIE

Mobilize

BDTG

ENIGMA

CEDAR

MD2K

CCD

CEDAR developed the CEDAR 
Workbench for authoring 
metadata. It is used by 

the Immunology Data and 
Analysis Portal

PIC-SURE established a prototype 
user-interface to simplify analysis 
of NHANES (National Health and 
Nutrition Examination Survey) 

data through a RESTful API

NIaid
National Institute  

of Allergy and  
Infectious Disease

bioCADDIE

BDTG

PIC-SURE

ENIGMA

CEDAR

CPCP

To test the efficacy of 
interventions to increase 
children’s activity levels, 
the Mobilize Center is 

developing new techniques 
to automatically monitor and 

classify activity, sleep, and 
sedentary time in children 

NIchd
National Institute  

of Child Health and  
Human Development

bioCADDIE

Mobilize

BDTG

ENIGMA

CEDAR

BDDS

CCD

bioCADDIE  
built dataMED, a 

prototype data discovery 
index designed to do 
for data what PubMed 

does for the biomedical 
literature

nlm
National Library  

of Medicine

bioCADDIE

HEART-BD2K

Mobilize

BDTG

ENIGMA

CEDAR

CCD

The Broad LINCS Center 
for Transcriptomics and 

Toxicology developed rich 
annotations for over 400 
small molecules actively 

being studied by the 
toxicology community

NIehs
National Institute  
of Environmental  
Health Services

bioCADDIE

HEART-BD2K

Mobilize

LINCS-Transcriptomics

BDTG

PIC-SURE

CEDAR

CCD

BDDS evaluated 
and confirmed the 

accuracy of machine-
learning methods in 
the classification and 

prediction of Parkinson’s 
disease from a large 

and unique archive of 
imaging, genetics, clinical 

and demographic data.

NInds
National Institute of  

Neurological Disorders  
and Stroke

bioCADDIE

Mobilize

BDTG

ENIGMA

CEDAR

BDDS

CCD

KnowEnG

NImh
National Institute  
of Mental Health

bioCADDIE

Mobilize

BDTG

ENIGMA

CEDAR

MD2K

CCD

KnowEnG

ENIGMA researchers at 
340 institutions are poring 

through magnetic resonance 
imaging (MRI) scans, along 
with corresponding clinical 

and genetic information from 
pooled datasets, to identify 

structural features that 
associate with psychiatric 
disorders and to crack the 
genetic code underlying 18 

brain diseases

NIa
National Institute on Aging

bioCADDIE

HEART-BD2K

Mobilize

BDTG

ENIGMA

CEDAR

BDDS

CCD

CPCP

The Mobilize Center is 
developing statistical 

methods to analyze data 
from commercial activity 

trackers and apps and 
longitudinal research studies 

to unravel relationships 
between physical activity 

and age, environment, and 
disease status.

BD2K-LINCS-DCIC’s 
Harmonizome integrates 

data from 66 online 
resources into 71,928,954 

associations between 
295,496 attributes 

(e.g., organism, disease, 
function, structural 

feature) and all human 
and mouse genes  

and proteins 

NIGMS
National Institute of  

General Medical Sciences

bioCADDIE

HEART-BD2K

Mobilize

BDTG

CEDAR

BDDS

CCD

CPCP

BD2K-LINCS-DCIC
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under
currents

BIG DATA AND DRUGS:  
BD2K CENTERS SOLIDIFY EMERGING APPROACHES 

The Big Data era in biomedicine 
offers a grand promise: that by crunch-
ing vast quantities of multi-omics 
data through appropriate statistical 
analyses, researchers will gain a com-
prehensive understanding of health and 
disease that will lead to new, effective, 
and personalized treatment options. 

Current work in systems pharmacol-
ogy by several BD2K Centers offers a 
glimpse at that potential. Researchers at 

the BD2K-LINCS-DCIC are map-
ping the global space of responses of 
human cells to many drugs and other 
small molecules as well as exploring 
the universe of drug-induced adverse 
effects. Those at KnowEnG are ana-
lyzing multi-omics measurements in 
hopes of understanding drug response 
in cancer patients. Meanwhile, the 
PIC-SURE Center is standardizing 
procedures and developing open-source 

tools for drug repositioning research. 
Taken together, BD2K Centers’ 

systems pharmacology work solidifies 
a set of high-quality approaches to the 
field, giving hope that one day the grand 
promise of big data will be realized. 

Mapping the  
Drug Universe

By determining how various healthy 
and diseased cells respond to a wide range 

This fireworks plot displays the universe of cellular responses to drugs. Each spot represents one of 17,041 significant drug-induced gene expression signatures for 3,713 

drugs and other compounds applied to 63 cell lines in 3 time points and 51 dosages. Colors represent different cell types while the boxes indicate a few of the cellular

states induced by specific types of drugs. This visualization enables assigning function and mechanism to new small molecules, suggesting their potential to serve as 

drugs. Courtesy of the Ma’ayan Lab and the BD2K-LINCS-DCIC.
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of perturbations (by drugs and other 
chemical compounds in varying doses; 
reagents that mutate, activate and deac-
tivate genes; and changing the micro-
environment), researchers could perhaps 
map the universe of cellular phenotypes 
and drug responses. That is one goal of the 
NIH’s Library of Integrated Network-
based Cellular Signatures (LINCS) 
program. Now in Phase II, the LINCS 
program has generated a vast quantity of 
gene expression, proteomic and epi-
genetic data, and the LINCS-DCIC (a 
BD2K Center) is building that map.

“We are interested in mapping the 
chemical space to the cellular phe-
notype space through the molecular 
signature space, and that will give us a 
global view of cells, all their states, how 
they respond to small molecules, and 
then how those match to cellular phe-
notypes and diseases and drugs,” says 
Avi Ma’ayan, PhD, principal investiga-
tor of the BD2K-LINCS-DCIC. 

At this point, Ma’ayan and his col-
leagues are building an interactive web 

page that will report—for many of the 
drugs studied by LINCS researchers—the 
pathways that a drug potentially targets, 
the genes that are up/down regulated, and 
other small molecules that are similar to 
that drug. “We’re trying to visualize this 
space of drug perturbations,” Ma’ayan 
says. The result is a plot of a network that 
reveals how small molecules in general 
affect gene expression and cluster into 
several responses associated with cellular 
phenotypes. In this global picture of what 
happens to cells when they are exposed 
to drugs, the space of responses is not 
infinite. “It’s likely going to be about 100 

states that can 
be well-defined 
and those states 
can be associ-
ated with disease 
states, and then 
you can use drugs 
to manipulate the system in the direc-
tion that you want,” Ma’ayan says.

This kind of map is a global goal for 
biomedical research in general, Ma’ayan 
says. “By pushing cells in different direc-
tions, drugs make a perfect case study.”

Predicting Drug Response 
Mayo Clinic cancer researchers associ-

ated with the KnowEnG Center are 
also perturbing cells but with a different 
goal: They are most interested in which 
cells die in response to chemotherapy 
drugs. “We know that the same drug 
given to different patients elicits different 
responses,” says Saurabh Sinha, PhD, 
principal investigator of the KnowEnG 
Center. “So this is just repeating that 
observation in a controlled setting in cell 

lines.” The resistant cells are the prob-
lem: “You’d like to know why they are 
resistant,” he says. So, for each individual 
cell line, the researchers also sequence 
the DNA and measure gene expression 
and methylation patterns before treat-
ment. The goal: to determine whether 
these high-dimensional data (millions 
of gene variants and DNA methylation 
spots as well as tens of thousands of gene 
expression measurements) can accurately 
predict whether a particular drug would 
or would not work on a particular patient. 

To tackle the computational and sta-
tistical challenges of relating multi-omics 

data to phenotype, KnowEnG researchers 
took several different lines of attack. One 
example: Even if they couldn’t accurately 
predict the response of each individual, 
could they at least identify the most 
important genes whose variation from 
individual to individual are predictive 
of the phenotypic differences? “It might 
not be a 90 to 100 percent accurate final 
model,” Sinha says, “but if we can identify 
the most significant genes related to the 
underlying biology, then we can follow up 
with more targeted biological studies.”

As another example, they set out to 
identify pathways (rather than individual 
genes) implicated in drug response. 
Genes tend to work together as part of 
complicated pathways of interaction. “Are 
there pathways triggered or not triggered 

leading to differences in the phenotype?” 
Sinha says. If so, then follow up stud-
ies can confirm findings and perhaps 
design drugs to target those pathways. 

A third strategy traced gene expres-
sion back to the transcription factor 
(TF) responsible for controlling that 
gene expression. “If we find that a whole 
bunch of genes are changing their expres-
sion levels in a particular individual, 
then it’s reasonable to hypothesize that 
these changes were regulated by some 
transcription factor,” Sinha says. Instead 
of predicting individual genes as key 
players, this approach predicts that one 

“We are interested in mapping the chemical space to the cellular phenotype space 
through the molecular signature space, and that will give us a global view of 

cells, all their states, how they respond to small molecules, and then how those 
match to cellular phenotypes and diseases and drugs,” says Avi Ma’ayan.

RELEVANT NIH INSTITUTES:

NCI, NHLBI, NIDDK, NINDS and all 
other disease-focused Institutes
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transcription factor is an important 
regulator of those key players. “This 
has the possibility of statistically 
reducing the noise,” Sinha says. 
And in fact they found that to 
be the case. “We were able to 
identify a small number of TFs 
for each drug that might play a 
role in drug response variation,” 
he says. And they experimen-
tally validated their results for 
several drugs by knocking down 
TFs and seeing the expected 
drug response changes. These 
results could also help in design-
ing appropriate ways to over-
come chemotherapy resistance.

The team is also working on the 
original problem of building a predic-
tor of drug response levels using all the 
multi-omics data with the intent of 
outputting a single number: the likelihood 
that the patient will respond to a drug. 

Predicting Adverse 
Drug Reactions

When some friends at the FDA 
approached Ma’ayan to see if the LINCS’ 
gene expression data could predict 
adverse drug reactions for a specified 
group of drugs, he gave a surprising 
response: “We can do it for all drugs.” 

Other researchers have tried to pre-
dict side effects from drug structure 
alone. Ma’ayan’s group integrated that 
structural information with LINCS 
gene expression signatures for 20,000 
compounds (including the subset of 
FDA-approved drugs) and showed that 
combining these two types of informa-
tion improved adverse drug event predic-
tions. “This can be helpful to the FDA, 
which could use computational methods 
to assess potential toxicity of new com-
pounds,” Ma’ayan says. LINCS-DCIC 
also developed a web portal for browsing 
and searching connections between small 
molecules and adverse drug reactions. 

Right now, Ma’ayan says, “This is 
ready as a suggestive tool, not as a pri-
mary approach.” With time, these kinds 

of computational approaches will 
become mainstream, he says. 

Drug Repositioning Tools
Several BD2K Centers are involved 

in the computational effort to discover 
new uses for existing FDA-approved 
drugs. This makes a lot of sense: Big 
data will likely prove useful in this effort, 
and computational drug repositioning 
can save a lot of money while benefiting 
many patients. At PIC-SURE, research-
ers in Chirag Patel’s lab have developed 
tools that will make it easier for anyone 
to do drug repositioning research. 

Frustrated that existing drug repo-
sitioning tools required specific data 
sources or formats, they created a tool 
called ksRepo that allows researchers 
to greatly expand the datasets usable 
to generate predictions about poten-
tial drug repositioning candidates. 

In addition, concerned that computa-
tional researchers were each using a differ-
ent database to validate their drug reposi-
tioning methods, they developed repoDB, 
a set of standardized drug successes and 

failures drawn from DrugCentral and 
ClinicalTrials.gov. “It’s important to have 
a consistent benchmark set that everyone 
uses so you can say, ‘my method out-
performs this method using this same 
benchmark,’” says Adam Brown, a gradu-
ate student in biomedical informatics at 
Harvard Medical School and member of 
the PIC-SURE team. “Without that con-
sistency, you just cherry-pick the dataset 
that fits your story.” Many researchers were 
also calculating sensitivity and specificity 
without true negatives (failed drug candi-
dates). RepoDB addressed that problem as 

Big Data
and Drugs

LINCS-DCIC combined drug structural information with 

gene expression profiles to predict adverse drug reactions 

for the 20,412 drugs and small-molecule compounds 

profiled by the LINCS L1000 project. These bubble plots 

show distinctly different sorting pattern for the side 

effects when sorted by the system and organ affected 

(above) versus by drug similarity (opposite). The team 

also created a freely available web portal at http://maay-

anlab.net/SEP-L1000/ where each drug and adverse 

drug reaction has a dedicated page with a list of the 

relevant predictions and external links to relevant sites. 

Courtesy of the Ma’ayan Lab and the BD2K-LINCS-DCIC.
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well. “To our knowledge, it’s the only 
database that includes both approved and 
failed drugs,” Brown says. “This is some-
thing the field has really been missing.”

RepoDB will be particularly use-
ful in studies where researchers are 
trying to predict associations between 

all diseases and all drugs, Brown says. 
“Hopefully people will use it.”

In another effort to make drug repo-
sitioning research more reproducible, 
the Broad Institute’s LINCS Center 
for Transcriptomics and Toxicology 
(LINCS-Transcriptomics) is creating a 

novel comprehensive screening library 
called the Broad Drug Repurposing 

Hub. First they identified and 
created a physical collection 
of 5,000 compounds, includ-
ing more than 3,000 drugs 
of interest, and they curated 
them as a means of quality 
control. They then distributed 
them to anyone interested 

in screening them in their 
assays (gene expression, cytotoxic-

ity, proteomics and morphology). 
But there is a hitch: “It’s a hub to 
distribute reagents, with the price 
being contributing the data back so 

that others can use it,” says Aravind 
Subramanian, PhD, principal investi-

gator for the LINCS-Transcriptomics 
Center. The hub has already begun accumu-
lating curated, quality-controlled data that 
can be used for drug-repositioning research. 

Ultimately, identifying existing drugs 
that might cure or alleviate symptoms 
of rare diseases could give patients hope 
of a treatment. “That’s something I’m 
pretty passionate about,” Brown says. 
“It’s important to get good drug/disease 
pairs into the hands of clinicians.” 

BD2K Systems Pharmacology 
in Context

Plenty of systems pharmacol-
ogy research happens beyond the 
BD2K context, Sinha says. But 
the BD2K Centers have brought 
a big picture view to the field as 
well as a sense of gravitas: Doing 
this research well and reproducibly 
requires reliable data such as that 
generated by the LINCS program; 
well-designed and validated ana-
lytical tools such as those BD2K-
LINCS-DCIC and KnowENG 
are building; and quality controls, 
incentives for data-sharing, and 
standardized benchmarking and 
validation procedures such as those 
being modeled and made publicly 
available by PIC-SURE and the 
LINCS-Transcriptomics Center. 

detai ls

BD2K Drug Repositioning Tools

PIC-SURE:
ksRepo: a generalized tool that expands the datasets usable to generate predictions 
about potential drug repositioning candidates (freely available for download at  
https://github.com/adam-sam-brown/ksRepo)

RepoDB: a standard set of drug repositioning successes and failures that can be used to 
fairly and reproducibly benchmark computational repositioning methods.  
(freely available for download at  http://apps.chiragjpgroup.org/repoDB/) 

MeSHDD: uses MeSH-term enrichment to discover literature-based similarities between 
FDA approved drugs (interactive online app at http://apps.chiragjpgroup.org/MeSHDD/) 

Broad-Transcriptomics
Broad Drug Repurposing Hub: a best-in-class drug screening collection with more 
than 3,000 clinical drugs (https://clue.io/repurposing)
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BD2K CENTERS  
SIZE UP BRAIN DISEASE

About a year and a half ago, 
brain imaging researchers at 
the University of Southern 

California (USC) were shooting the 
breeze over salad and roast beef sand-
wiches when their lunch conversation 
took a turn. A skinny guy named Arthur 
Toga, PhD, confessed to his colleagues 
that he takes Lipitor—a common 
cholesterol-lowering drug prescribed to 
prevent heart attacks and strokes. Toga’s 
total cholesterol had climbed above 200, 
prompting his cardiologist to recommend 
the statin therapy. “He said, ‘this stuff 
should be in water like fluoride—there’s 
no harm to it. Everybody should take it,’” 
Toga recalls.

Others at the lunch table weren’t so 
sure: Because cholesterol is vital for brain 
health, they wondered if reducing cho-
lesterol with statin therapies could lead 
to cognitive problems—perhaps even 
increase the likelihood of dementia. 

Past studies looked for links between 
statins and Alzheimer’s disease risk 
but were either too small, with sample 
sizes in the hundreds, or dealt with 
limited types of data. And their find-
ings were mixed. “Nothing seemed 
definitive,” says Toga, who runs USC’s 
Laboratory of Neuro Imaging and 
leads BD2K’s Big Data for Discovery 
Science (BDDS) Center there.

It’s a common problem, as such analy-
ses require huge numbers of brain images. 
Big data offers a solution: With enough 
images and associated data, perhaps some 

of the uncertainties of brain research 
will fade—helping the field more effec-
tively diagnose and treat brain disease. 

More Data Yield  
More Definitive Results

Toga and USC colleague Judy Pa, 
PhD, decided to tackle the Alzheimer’s 
question with a big-data approach. They 
put their computers to work comb-
ing through clinical and brain-imaging 
data from more than 2,100 participants 
enrolled in various studies at 40 research 
centers. The goal: look for relationships 
between statin use, brain structure and 
Alzheimer’s disease status. Since the 
literature on statins and Alzheimer’s 
is murky, says Pa, “we did not know 
where the results would take us.”

The number crunching revealed 
a surprise: Statin use does appear 
to raise Alzheimer’s risk but only 
in women. The findings have been 
submitted for publication.

This is just one example of the types 
of analyses made possible by the rise of 
big data. “If you don’t have enough data, 
you can’t possibly do something like 
this,” Toga says. Traditionally, research-
ers start with a hypothesis and then go 
collect data to see if it supports the idea. 
But in the realm of big data, “we have the 
opportunity to not articulate a hypoth-

esis,” Toga says. “Rather, we say to the 
data collection, tell me about yourself.” 
Then they let machines sort through 
huge volumes of data and see what 

trends, relationships and other interesting 
features emerge. Even when research-
ers come in with certain ideas they hope 
to test, adds Pa, there are many more 
questions that can be asked of the data.

Recently BDDS researchers posed 
a particularly tough question: Using 
large quantities of complex, heteroge-
neous data from multiple centers and 
studies, can computers learn to identify 
which people have Parkinson’s disease?

To find out, the team used data from 
the Parkinson’s Progression Markers 
Initiative (PPMI). This $60 million 
observational study launched in 2010 to 
find biomarkers for Parkinson’s disease, 
which afflicts about 10 million people 
worldwide. PPMI has collected data and 
samples from nearly 1,000 participants—
some with Parkinson’s, some without—
at 33 clinical sites in 11 countries. 

The PPMI has gathered many 
kinds of data in vast quantities, includ-
ing brain scans; medication histories; 
genotypes; and exam results reflecting 
answers to questions such as whether 
the person has cognitive issues, dif-
ficulty smelling, or the ability to pass a 
finger tapping test. All that informa-
tion gets codified. Also, because people 
join the study at different stages of 
disease, the computer has to learn to 
assess differences in disease severity.

To further complicate matters, the 
machines need to recognize differ-
ent notations for the same informa-
tion. “Somebody might code sex as 

With enough images and associated data, perhaps some of the uncertainties of brain 
research will fade—helping the field more effectively diagnose and treat brain disease.
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‘M’ or ‘F,’ ‘0’ or ‘1,’ ‘man’ or ‘woman,’ 
or ‘male’ or ‘female.’ A computer has 
no idea that those are all the same,” 
Toga says. “You have to teach it.” 

The training seemed to work. Several 
machine-learning methods in the BDDS 
study—published August 2016 in PLoS 
ONE—correctly classified people as 
having Parkinson’s or not with greater 
than 95 percent accuracy, sensitivity 
and specificity. Previous studies using 
machine learning and data-mining meth-
ods to recognize Parkinson’s reported 
just 70 to 90 percent sensitivity. 

The ultimate goal is to train com-
puters to predict who’s on the verge of 
Parkinson’s in advance of symptoms, Toga 

says, in order to be 
able to slow disease 
progression—simi-
lar to how doctors 
nowadays prescribe 
statins to people 
with high cholesterol 
hoping to prevent future heart disease.

Cracking the Brain’s 
Structural and Genetic Code
In the field of neuroimaging, research-

ers are studying brain scans to identify 
structural features that associate with 
neurological and psychiatric disorders. 
The Enhancing Neuroimaging Genetics 
through Meta-analysis (ENIGMA) 

Consortium goes further and tries to look 
for the genetic underpinnings of these 
phenotypes and diseases. Because gene 
effects tend to be subtle, teasing them out 
requires huge datasets amassed and ana-
lyzed with a global team-science approach. 
Since its launch in 2009, ENIGMA has 
rallied more than 800 scientists at 340 
institutions in 35 countries to crack the 
genetic code underlying 18 brain diseases. 

The ENIGMA consortium has published the world’s largest neuroimaging studies 

of bipolar disorder and major depression. In separate studies, ENIGMA research-

ers observed significant cortical thinning associated with both illnesses. Bipolar 

disorder (top) was associated with widespread thinning of frontal, temporal, and 

parietal regions, whereas major depression (bottom) was associated with thinning 

in paralimbic regions. Scientists are now working to quantify the similarities and 

differences between these psychiatric illnesses thanks to harmonized brain mea-

sures derived by the ENIGMA consortium. Image courtesy of Christopher Ching, 

Paul Thompson, and the ENIGMA Bipolar Disorder and Major Depressive Disorder 

Working Groups.

RELEVANT NIH INSTITUTES:

NIMH, NINDS, NHLBI, NIA, NIBIB, 
NIDA, NHGRI, NICHD, and NIAAA
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Poring through magnetic resonance imag-
ing (MRI) scans, along with correspond-
ing clinical and genetic information from 
pooled datasets, ENIGMA researchers 
can analyze cohorts 10 to 30 times larger 
than a typical neuroimaging study.

In some cases, ENIGMA research-
ers have found that boosting sample size 
for MRI-based data is enough to gain 
insight—even without considering genet-
ics. For example, in a January 2017 study 
in the American Journal of Psychiatry, an 
international team found that children 
and adults with obsessive-compulsive 
disorder (OCD) have distinct patterns 
of subcortical abnormalities. Whereas 
smaller brain imaging studies in OCD 
produced mixed results, the conclusions 
were clear when the ENIGMA team 

pooled 35 sets of structural brain scans 
from 1,759 healthy controls and 1,830 
OCD patients—about a sixth of whom 
were under age 18. Compared with 
healthy peers, children with OCD had a 
larger thalamus, a brain area important 
for sleep, consciousness and higher-order 
brain processing. However, in adults 
with OCD, greater volumes were mea-
sured in other brain regions—namely, 
the hippocampus and the pallidum, an 
area important for motivating rewards 
and incentives. These results are in line 
with the developmental nature of OCD 
and suggest that further research on 
neuroplasticity—the brain’s ability to 
reorganize and form new neural connec-
tions throughout life—could be useful.

Combining datasets, as well as 
separating children and adult subgroups, 
also proved important in a May 2016 
Molecular Psychiatry study that revealed 
cortical differences in people with depres-
sion. The analysis pooled MRI scans 

from 7,957 healthy people and 2,148 
depressed patients at 20 sites around the 
world. Compared to controls, adults with 
depression—but not children—had thin-
ner cortical gray matter in the orbitofron-
tal cortex, anterior and posterior cingu-
late, insula and temporal lobes. Depressed 
adolescents had different brain abnormal-
ities—namely, lower surface area in fron-
tal regions as well as primary and higher-
order visual, somatosensory and motor 
regions. The large sample size allowed 
the researchers to distinguish effects in 
children versus adults, suggesting that 
depression correlates with brain structure 
distinctly during different stages of life. 

Several recent ENIGMA papers 
focus more squarely on identifying gene 
variants that underlie fundamental 

brain features and specific diseases. An 
international team undertook a mas-
sive study of more than 32,000 adults at 
52 sites. In a paper published October 
2016 in Nature Neuroscience, the research-
ers reported identifying seven genes that 
not only regulate brain volume, memory 
and reasoning but also seem to influence 
Parkinson’s disease risk. And in study of 
people with schizophrenia, ENIGMA 
scientists found that certain measures of 
volume and thickness in affected brain 
regions correlate with gene variants known 
to confer disease risk. They also found 
that schizophrenia shares some of these 
neurogenetic signatures with other psy-
chiatric disorders. These findings appeared 
October 2016 in Molecular Psychiatry.

And it’s not just about pooling data. 
Each ENIGMA analysis gets vetted 
by one of 30 working groups—teams 
of neuroscientists, imagers, geneticists, 
methods developers and others devoted 
to a specific disease or subfield of study. 

“Rather than just download the data… 
you have a community to help you 
really dig into a question,” says Paul 
Thompson, PhD, professor of neurol-
ogy at USC and principal investigator 
for the ENIGMA BD2K Center. 

He compares the situation to want-
ing to become better at chess. “Let’s 
say someone says, ‘I really want to be a 
world-class chess player. I’ve bought all 
the pieces. In fact, my home is full of chess 
pieces,” Thompson says. But to improve at 
chess, “I would say they need to be with 
people who are really active and playing 
a lot of chess. Really, what’s going to take 
the science to the next level is working 
with a large team of experts. The data is 
a requirement but not the clincher.”

Researchers can propose new stud-

ies by joining the monthly phone calls 
held by each working group. The calls 
update members on the group’s ongo-
ing projects and offer a chance for people 
with new ideas to thrash them out.

A Networked Brain: 
Discovering Causal 

Relationships
Beyond structure and genetics, the 

brain can also be viewed as a network. 
Another BD2K Center—the Center 

for for Causal Modeling & Discovery of 
Biomedical Knowledge from Big Data 
(CCD)—renders big data as networks. 
And it connects the network’s nodes, or 
variables, not with mere lines but arrows. 
“Our business is computer algorithms 
that will find causal relations from mea-
sured data,” says Clark Glymour, PhD, 
a professor of philosophy at Carnegie 
Mellon University (CMU) who leads 
the CCD group focused on the brain. 

The basic algorithm was developed 

BD2K Centers Size 
Up Brain Disease

“Really, what’s going to take the science to the next level is working with a large 
team of experts,” Thompson says. “The data is a requirement but not the clincher.”
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by a CMU graduate student. It could 
handle 15 to 20 variables—features that 
take different numerical values over 
time. About five years ago, with care-
ful programming Glymour’s team got 
it to run on a few hundred variables. 
And with further improvements last 
year the algorithm, called Fast Greedy 
Equivalence Search (FGES), now runs 
in about 12 hours on a million variables.

As one test case, CCD decided to 
apply the FGES algorithm to the rest-
ing state brain. Much of their work 
uses data from functional MRI (fMRI), 
which approximates neural activity as the 
amount of energy consumed by thou-
sands of tiny subregions of the brain over 
time. Generally fMRI produces a full 
image of the brain every few seconds over 
a 15 to 20 minute period. And it can be 
easily performed on many individuals. 
Highly scalable algorithms are required 
to make sense of the large quantity of 
data produced by a typical fMRI-

based research study. “What the fMRI 
work does is give us a really, really hard 
case for making the best algorithms we 
can,” says Glymour. In a recent study 
posted to bioRxiv in August 2016, CCD 
researchers analyzed resting-state fMRI 
data from one healthy adult, 60 people 

with autistic spectrum disorder, and 60 
with schizophrenia. Applying the FGES 
algorithm to the reams of scan data 
produced causal networks that depict 
different patterns of brain connectivity in 
normal versus neuro-atypical individuals. 
But beyond provid-
ing potential 

diagnostic information—for example, 
being able to distinguish healthy indi-
viduals from people with autism—the 
connectivity patterns could help research-
ers sort autism cases into different 
subgroups. “These conditions are almost 
certainly not single monolithic diseases. 

There are very likely to be multiple causes 
and types,” says Greg Cooper, MD, 
PhD, professor of biomedical informat-
ics at the University  of Pittsburgh and 
director of CCD. And if robust patterns 
were to emerge within the autism group, 

adds Glymour, “you could start 
looking for genetic dif-

ferences, let’s say, that 
might be behind 

the fMRI.”

Big 
Data and 

the Brain
As brain images 

and other data continue 
to accumulate, the tools 

developed by the BD2K 
Centers are setting the standard for high 
quality computational neuroscience. 
Using big data to discover how the brain 
works in health and disease is becoming 
routine, as researchers address questions 
raised over roast beef sandwiches from 
the comfort of a single workstation. 

CCD researchers used functional MRI (fMRI) 

data to build causal networks that depict 

different patterns of brain connectivity in 

normal versus autistic and schizophrenic 

individuals. They found that the networks 

of neuro-atypical individuals exhibited 

more fractionated and less controllable 

dynamics in the resting state brain. They 

even showed that disease severity was revealed 

by the global topology of the network itself. Here we 

see the graphical structure of the pattern of network 

connectivity in the resting state brain (from fMRI time 

series) aggregated over 10 individuals with schizophre-

nia. Reprinted from SJ Hanson, D Mastrovito, C Hanson, J 

Ramsey, C Glymour, Scale-Free Exponents of Resting State 

are Biomarkers of Neuro-Typical and Atypical Brain Activity, 

biorxiv.org, doi: https://doi.org/10.1101/068841 pursuant 

to Creative Commons license CC-BY-NC-ND 4.0.
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MOBILE HEALTH:   
BD2K CENTERS HARNESS SENSOR DATA 

Having already revolutionized fields 
ranging from communications 
to finance, mobile technology 

and data science are now poised to do the 
same for healthcare.

That, at least, is the promise of the 
burgeoning mobile health (mHealth) 
movement. Thanks to the proliferation 
of wearable biosensors capable of record-
ing everything from physical activity to 
blood oxygen levels—and the increas-
ingly sophisticated algorithms used 
to sift through the mounting pile of 
data—researchers are finding novel ways 
of diagnosing illnesses, predicting disease 
risk, and promoting healthier lifestyles.  

Moreover, two NIH Big Data to 
Knowledge Centers of Excellence—
the Mobilize Center and the Center 
Mobile Sensor Data-to-Knowledge 
(MD2K)—are paving the way for 
the entire mHealth community. 

“The research methodologies, algo-
rithms and devices these centers are 
developing—not to mention the train-
ing opportunities they provide—are 
creating a foundation that will make 
it easier for others to produce robust 
mobile health research,” says Scott 
Delp, PhD, professor of bioengineer-
ing at Stanford University and principal 
investigator of the Mobilize Center.  

Disease Detection  
with Smart Devices

Some Mobilize Center researchers are 
leveraging consumer products that are 
already used by large numbers of people. 
Jessilyn Dunn, PhD, a postdoctoral fellow 
at Stanford University, recently evalu-
ated the possibility of using commercially 
available wearables to gather and ana-
lyze health-related information in ways 
that aren’t normally done in the clinic.

As reported in an article published 
in January 2017 in PLoS Biology, Dunn 

and her colleagues, including Michael 
Snyder, PhD, professor of genetics at 
Stanford and director of the Center for 
Genomics and Personalized Medicine, 
performed several different experi-
ments using a variety of wearables. They 
found that two commonly used tools 
provided most of the information they 
needed: a smartwatch capable of detect-
ing heart rate, skin temperature, and 
activity; and a smartphone capable 
of reporting activity and location. 

When combined with the occasional 
use of a wearable oxygen sensor, these 
devices collected much of the same 
information that would ordinarily be 
recorded in a doctor’s office once every 
year or so. In this case, however, the data 
were gathered regularly—often continu-
ously—over a lengthy period: one study 
participant was monitored for two years, 
while an additional 43 participants were 
monitored for an average of 11 months.

Reconciling the different data formats 
used by competing companies wasn’t easy, 
especially when manufacturers periodi-
cally changed the way they packaged the 
output from their products. As a result, 
Dunn says, the team spent a lot of their 
time cleaning the data and “making 
sure that everything was kosher from 
one iteration to the next” to ensure they 
were “comparing apples to apples.”

Participants also underwent 
blood testing on a regular basis. This 
allowed the researchers to unearth 
several interesting findings that 
were lurking in the sensor data.

For example, the researchers retro-
spectively detected the onset of a viral 
infection—in this case Lyme disease—in 
one subject based solely on elevated skin 
temperature and unusual heart-rate pat-
terns. This prediction was confirmed by 
the presence of Lyme bacteria antibod-
ies in his blood. Delving more deeply 

into the subject’s data, the researchers 
identified several other periods of illness 
during which similar abnormalities in 
temperature and heart rate were accom-
panied by the presence of an inflamma-
tory biomarker known as high-sensitivity 
C-reactive protein in his blood.

Based on his data, the researchers 
developed an algorithm, called Change-of-
Heart, that identified instances of illness 
amongst several other participants before 

they reported symptoms, based solely 
on abnormalities in their heart rates. 

Eventually, that kind of predic-
tive capability could allow sensor-based 
systems to warn people of an impending 
illness even before they feel sick—enabling 
an algorithm to tell you to “run to your 
local pharmacy and pick up some cold 
medicine, because tomorrow you’re going 
to wake up with a cold,” Dunn says.

In a similar vein, Dunn and her 

 “The research 
methodologies, 

algorithms and devices 
these centers are 

developing—not to 
mention the training 
opportunities they 

provide—are creating 
a foundation that 
will make it easier 

for others to produce 
robust mobile health 
research,” says Delp.



Published by the Mobilize Center, an NIH Big Data to Knowledge Center of Excellence 15

colleagues successfully identified sensor-
based predictors of insulin resistance, a 
risk factor for type II diabetes, which 
they confirmed by testing steady-state 
plasma glucose (SSPG) levels among 
a subset of study participants. 

The researchers started with clini-
cally measured body mass index (BMI), 
and added sensor-based reports of both 
physical activity and heart rate—in 
particular, differences between day and 
nighttime heart-rate patterns that they 
found to be associated with diabetes. 
While the researchers found that they 
could best predict insulin resistance 
if they used all three parameters in 
combination, variation in heart rate 
proved to be the strongest biomarker of 
the lot, and was an effective predictor 
even in the absence of the other two.

Given their usefulness, Dunn hopes 
that as wearables become cheaper, they 
will help expand healthcare access 
to low-income groups and people in 
remote rural communities, many of 
whom cannot easily see a living, breath-
ing doctor. “This is really a fantastic 
public health opportunity,” she says.

In the meantime, the rich dataset 
she and Snyder created is available (at 
http://hmpdacc.org/data/wearable/
stanford.tar) for others to explore.

Boosting Health with  
Games and Social Networks
Tim Althoff, MS, a doctoral can-

didate in computer science who is also 
affiliated with the Mobilize Center, is 

trying to promote 
population-scale 
health benefits as 
well. But his tool 
of choice is the 
online social net-
work. And rather 
than dealing with dozens of study 
participants, he’s working with thou-
sands, even millions, of them.

In a paper published in the Journal of 
Medical Internet Research in 2016, Althoff 
and his colleagues demonstrated that users 
of the Pokémon Go augmented-reality 

game—a group whom Althoff describes 
as being “way less active than the 
typical health-app user”—did in fact 
become more physically active because 
of their involvement with the app.

Althoff and his co-authors had access 
to data from nearly 32,000 users of the 

Microsoft Band wear-
able fitness tracker. 
By algorithmically 
combing through all 
the Go-related queries 
that cohort posted 
to the Bing search 
engine, the researchers 

In the summer of 2016, the 

Pokémon Go app became a huge 

fad that got people all over the 

world walking around to capture 

Pokémon characters at virtual 

locations in their neighborhoods. 

Mobilize Center researcher Tim Althoff and his col-

leagues at Microsoft showed that, before starting to play, 

Pokémon Go users are less active than average users of 

the leading consumer health apps (A, B, C, and D), but 

they experience larger increases in physical activity after 

starting to play (at t0). To determine when a person was 

actually playing Pokémon, the researchers distinguished 

between search queries that suggested a user was merely 

seeking general information about the game, and “expe-

riential queries” that indicated he or she was actively 

using it. Reprinted from Althoff T, White RW, Horvitz E, 

Influence of Pokémon Go on Physical Activity: Study and 

Implications, J Med Internet Res 2016;18(12):e315.

RELEVANT NIH INSTITUTES:

NIMH, NINDS, NHLBI, NIA, NIBIB, 
NIDA, NHGRI, NICHD, and NIAAA
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inferred that just over 1,400 of those 
Band users were actively engaged with 
the game. And by examining users’ Band 
data, they determined that Pokémon Go 
players walked as much as 1,473 extra 
steps a day—an increase of more than 26 
percent over their prior activity levels. 

Most of the people who use mobile 
health apps are already physically active. 
But Althoff ’s study suggested that even 
sedentary, obese, and older users benefited 
from playing Pokémon Go. And while the 
benefits of gameplay did fall off after three 
or four weeks, given the well-established 
link between physical activity and mortal-
ity risk, Althoff and his colleagues sug-
gested that active engagement with the 
game—which has 65 million monthly 
active users—could nonetheless have a 
measurable impact on life expectancy.

The work also has immediate value to 
the research community. “The Pokémon 
Go project demonstrated how to do a 
physical activity study across more than 
30,000 people with a very specific treat-
ment,” Althoff says—the treatment being 
playing Pokémon Go. “It shows how you 
can contextualize wearable data in a way 
that allows you to test large-scale interven-
tions like this and provides a model for 
conducting such studies in the future.” 

In a pair of studies published this 
year, Althoff also exploited wearables 
to explore the real-world impact of 
participation in online social net-
works and app-based competitions.

Althoff and his co-authors, includ-
ing Jure Leskovec, PhD, who spear-
heads the social and behavioral modeling 
effort at the Mobilize Center, analyzed 
data from Argus, a fitness-tracking app 
developed by the Silicon Valley startup 
Azumio. The app allows users to create 
posts about their physical activity (walk-
ing, cycling, yoga, etc.), and uses the 
accelerometers in their smartphones to 
unobtrusively track their physical activity.

In the first paper, Althoff wanted to see 
if participation in an online social network 
organized around fitness would affect 
physical activity in the real world. Argus 

provided the ideal data set: Althoff and 
his colleagues had access to anonymized 
information provided by 6 million users 
from 2011 to 2016—amounting to 10,000 
times more users and a million times more 
activity tracking than most comparable 
studies—but the app’s embedded social 
network was only added in 2013. This 
allowed the researchers to observe changes 
in physical activity among users who 
joined the network, and to compare their 
results to those of users who did not join.

Sure enough, people who made 
new social connections through the 
app increased their physical activity by 
approximately 7 percent, or 400 steps per 
day. Algorithms designed to tease out 
different kinds of effects, such as changes 
in internal motivation versus the influ-
ence exerted by new social connections, 
showed that 55 percent of the observed 
changes in user behavior were due to social 
influence. And Althoff and his colleagues 
developed a model that could predict 
which users would be most influenced 
by new social network connections—
something that could contribute to the 
design of more effective apps in future.

In the second study, Althoff and his 
collaborators examined the impact of 
app-based fitness competitions on users’ 
activity levels. They analyzed the data 
generated by 3,637 users who partici-
pated in 2,432 physical activity competi-
tions over a 10-month period—again, the 
largest data set of its kind to date. And by 
considering factors such as age, gender, 
and prior activity level, the research-
ers were able to study which features of 
competition design were most likely to 
boost participants’ activity levels. For 
example, competitions were most effec-
tive when participants shared similar 
levels of prior activity, and when there 
was a balanced mix of men and women.

According to Althoff, those kinds 
of insights could guide the creation of 
better app-based competitions. And 
that, in turn, would further his overall 
goal of optimizing online communi-
ties and mobile health apps “to help 

people be healthier and happier.”
But the immediate impact of the 

project will be most acutely felt in 
the mHealth research community. 

“Identifying social influence in 
observational network data is extremely 
challenging but very important for 
interventions,” Althoff says. The Azumio 
project tested a new causal inference 
technique based on “delayed friendship 
acceptance,” he says. “This worked really 
well and had never been done before.”

A Comprehensive 
mHealth Platform and 

Specialized Sensors
Dunn and Althoff rely on commercially 

available apps and hardware to supply the 
data that fuels their algorithms. But the 
researchers behind MD2K—a Big Data 
to Knowledge Center of Excellence that 
brings together experts from 12 univer-
sities and the nonprofit startup Open 
mHealth—are taking a different route. 

While they make use of some off-
the-shelf wearables, they have also built 
their own novel sensors. In addition, they 
have developed an open-source mobile 
phone–based platform called mCerebrum, 
which includes more than 20 apps that 
combine and process the data from those 
various sources to support the discovery 
and validation of digital mobile-health 
biomarkers; and a cloud-based big-data 
component called Cerebral Cortex, 
which supports population-scale data 
analysis, visualization, and modeling.

According to Timothy Hnat, PhD, 
chief software architect for MD2K, 
mCerebrum can collect up to 70 mil-
lion data samples per person per day, 
processing them in real time and run-
ning them through predictive models to 
trigger just-in-time health interventions. 
And because it’s an open-source plat-
form, it can be used by other research-
ers—with the potential to have a sig-
nificant impact on mHealth research 
well beyond the BD2K program.

The mCerebrum sensor data is 
also synced to Cerebral Cortex, where 

Mobile 
Health
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health science researchers can visual-
ize and interpret the information being 
gathered from study participants—and 
where data science researchers can 
perform large-scale machine-learning 
exercises to refine their algorithms. 

Those refinements, in turn, trickle back 
down to mCerebrum, where the models 
that decide whether an intervention is 
required (and what kind of interven-
tion it should be) can be fine-tuned on 
an individual basis, opening the door to 
data-driven personalized medicine.

Since the program’s inception in 
2015, researchers have used MD2K’s 
best-of-breed wearables and software to 
track people’s stress patterns and smok-
ing behaviors, delivering alerts and 
behavioral exercises to help calm them 
or prevent them from taking a puff. 

Now they are hoping to use a home-
grown device called EasySense to more 
effectively treat congestive heart failure. 
This potentially fatal illness charac-
terized by fluid buildup in the lungs 
affects almost 6 million Americans.

Unfortunately, says William 
Abraham, MD, the cardiologist at 
Ohio State University College of 
Medicine who leads the project, the 
standard method of managing conges-
tive heart failure doesn’t work very well. 

Patients monitor their own symptoms 
and body weight (an indicator of fluid 
buildup), but rarely receive treatment 
until a significant amount of fluid has 
accumulated in their lungs—at which 
point “the horse is already out of the 
barn.” Relapses are common, and read-
mission rates are higher than for any 
other cause of medical hospitalization.

EasySense could help change that. 
The device, which is roughly the 

size of a hockey puck, emits pulses 
of ultra-wideband radio waves and 
listens to the echoes they create as 
they bounce off various bodily tissues. 
According to Emre Ertin, PhD, an 
electrical engineer at Ohio State who 
leads the development of MD2K’s 
custom-built sensors, this allows 
EasySense to provide nearly EKG-
quality heartbeat detection—and to 
gauge the fluid content of the lungs.

Abraham recently concluded a 
20-person pilot study that successfully 
demonstrated the device could gather 
useful data in a hospital setting. He and 
his collaborators are now beginning a 
75-person study in which participants 
will take the sensors home with them. 
By analyzing the data provided by 
EasySense along with the output from 
other wearables that record parameters 
such as respiration and oxygen satura-
tion, Abraham hopes to determine 
which signals are most predictive of 
relapse and rehospitalization. A third 
and final study will then use that 
information to make treatment changes 
“to see whether or not we can actually 
keep patients out of the hospital,” he says.

The goal, Abraham says, is to have 
mCerebrum send alerts and notifica-
tions directly to patients and their doctors 
before things get out of hand. They might, 
for example, suggest the need to reduce 
salt intake or prescribe an extra dose of 
diuretics when fluid levels begin to rise. 
As the data set grows, he expects patterns 
will emerge that will allow the team to 
tailor interventions on an individual basis. 

Like the projects at the Mobilize 
Center, the work being done by Abraham 
and his MD2K colleagues promises 
to harness the Big Data generated by 
wearable biosensors to drive improve-
ments in both personal and public health. 
And given the ever-increasing ubiquity 
of wearables (and the ever-increasing 
sophistication of data science), it’s 
likely that the mobile health revolu-
tion is just getting started, spurred on 
by the methods and devices generated 
by the BD2K Centers—and available 
to the entire research community. 

MD2K has developed mCerebrum, an open source, real-time software 

platform for data collection from sensors in smartphones and wearables. It 

can capture data from multiple sensors simultaneously while continuously 

evaluating data quality. It also allows for real-time data viewing, such as 

a live ECG signal. And it uses advanced analytics to convert the data into 

markers of health, behavior, and risk factors. The gyroscope data from a 

wrist sensor might, for example, provide insight into smoking or eating 

behaviors by revealing the telltale hand gestures involved in bringing 

a cigarette or piece of food to one’s mouth. Images courtesy of MD2K.
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DISEASE DETECTIVES: 
BD2K CENTER RESEARCHERS SLEUTH FOR EARLY SIGNS OF DISEASE

Most people don’t know that 
they’re sick until they feel, for 
lack of a better word, sick. Like 

storms, diseases quietly brew and gather 
strength before wreaking havoc. For the 
weather, however, you can turn on your 
local news channel and check next week’s 
forecast. Not so for disease. Not yet, 
anyway. Researchers across the NIH Big 
Data to Knowledge (BD2K) Centers are 
pursuing innovative, data-driven strate-
gies to predict disease and its progression.

Such predictions would help doctors and 
scientists alike, says Mark Craven, PhD, 
professor of biostatistics and medi-
cal informatics at the University of 
Wisconsin-Madison (UW-Madison) 
and director of the BD2K Center 
for Predictive Computational 
Phenotyping (CPCP).

For many conditions, if you can 
predict that it’s headed your way, 
Craven says, “that can give cli-
nicians some kind of guidance.” 

Armed with predic-
tive models, doctors could 
intervene sooner to improve 
patient outcomes. Statistical 
models could also predict 
whether a patient’s dis-
ease will progress quickly, 
slowly, or hardly at all. 
Identifying who falls into 
which group may be the 
key to choosing candi-
dates for clinical trials.

BD2K researchers are 
using their computational 
toolkits to study everything 
from neural changes that pres-
age Alzheimer’s disease to rates 
of osteoarthritis progression. Here, 
we feature a few stories of excep-
tional disease detective work with the 
potential to reshape our understand-
ing of when and why diseases strike.

Detecting  
Disease Earlier

For many diseases, there are official 
guidelines regarding screening patients. 
Take breast cancer, for instance. The 
American Cancer Society recommends 
women age 45 and up receive regular 
mammograms. But 
some younger 

women are at higher risk than women in 
older age groups. Should a woman in her 
early 40s with a family history of breast 
cancer be screened? A doctor would have 
to consider family history, demograph-
ics, and a patient’s medical record to 
come up with an answer. So why not 

have an algorithm help 
predict risk? This is 
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the goal of Elizabeth Burnside, MD, 
professor of radiology at UW-Madison. 

“What we envision is … a tailored 
approach depending on a woman’s risk 
and values,” Burnside says. “That would 
hopefully result in better outcomes.”

Burnside’s team has access to nearly 
70,000 mammograms collected at 
UW-Madison’s hospital dating back to 
2006, as well as genetic data and personal 
risk factors (e.g., age, family history, etc.) 

drawn from those patients’ electronic 
health records (EHRs). In collaboration 
with CPCP investigators, Burnside’s 
group combines these data 
and uses various 

machine learning 
approaches, includ-
ing support vector 
machines, neural 
networks, and deep 
learning, to predict 
breast cancer risk. 

Breast cancer is 
caused by genetics and environmental 
factors that affect estrogen levels, ranging 
from diet and exercise to breastfeeding 

history. Burnside believes it is essential 
to incorporate both nature and nurture 
into effective, user-friendly models that 

will be useful in clinical settings. “If a 
patient and physician are going to use 
a model, they generally want to under-

stand how it’s working,” she says.
Burnside especially wants increased 

screening for women at risk of develop-
ing aggressive forms of breast cancer. 

These include tumors that cannot be 
treated by hormone therapy, as 

well as those that break off and 
spread throughout the body, a 

process known as metastasis. 
Her group is analyzing 

genetic and imaging 
data to determine what 

groups of women are 
at risk for aggressive 

breast cancer so that 
they can be screened 
more intensively. 

“What we’re 
trying to do is to 
intervene at the 
right time in 
the right patient 

to decrease 
the chance of 
poor outcomes,” 
says Burnside.

Other groups 
are also capital-

izing on the power 
of imaging to detect 

subtle phenotypes. A CPCP 
team led by Vikas Singh, PhD, 

professor of biostatistics and medi-
cal informatics at UW-Madison, is 

Diffusion tensor imaging (DTI) 

is a magnetic resonance imaging 

technique that can map the bundles 

of nerve fibers that make up the brain’s 

white matter. Vikas Singh’s group at UW-Madison applied 

statistical methods to DTI data to identify individuals at risk 

of Alzheimer’s years before they show symptoms. Here we see 

top and side views showing the regions of brain connectivity 

associated with preclinical Alzheimer’s disease. Image courtesy 

of Seong Jae Hwang, Singh lab.

RELEVANT NIH INSTITUTES:

NCI, NHLBI, NIAMS, NIA, NINDS, 
NCATS, and all other disease-
focused Institutes

“If a patient and physician are going to use a model, they generally 
want to understand how it’s working,” Burnside says.
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developing statistical algorithms that 
use diffusion MRI data to map degen-
eration in brain connections in patients 
at risk of developing Alzheimer’s.

While memory loss and confusion 
are hallmark Alzheimer’s symptoms, 
they are preceded by a decades-long 
preclinical phase of the disease. Singh 
and his collaborators wanted to under-
stand how the brain’s intricate web 
of neural connections change dur-
ing this early phase of the disease.

“Once you are able to identify or 

predict this future disease course, then 
you can identify which subset of indi-
viduals are most likely to be helped 
by a new treatment,” says Singh.

Singh’s team, including graduate 
students Won Hwa Kim and Seong Jae 
Hwang and research scientist Nagesh 
Adluru, PhD, analyzed MRI data col-
lected with diffusion tensor imaging, 
which uses the diffusion of water mole-
cules to reveal tissue architecture. The data, 
collected at the Wisconsin Alzheimer’s 
Disease Research Center in studies led 
by UW-Madison professors Sterling 
Johnson, PhD, and Barbara Bendlin, 
PhD, revealed a variety of neural connec-
tions that differed in strength between 
cognitively normal adults with and with-
out a first-degree relative with Alzheimer’s. 
Previous studies have shown that individu-
als with a family history of Alzheimer’s 
are more likely to develop the disease.

Further research on these connections 
and the brain regions they encompass 
may shed light on how Alzheimer’s 
progresses. Singh and his collaborators 
are now investigating how structural con-
nectivity changes correlate with known 
protein biomarkers of Alzheimer’s, 
such as beta-amyloid and tau. 

Both Burnside and Singh have focused 
their analyses on specific diseases, with 
the goal of applying their methods to 
other conditions. David Page, PhD, 
professor of biostatistics and medi-
cal informatics at UW-Madison, 
takes a distinctly broader approach. 

“We have lots of EHR data. How 
well can we predict every diagnosis that 
a patient is going to get?” Page says.

Using 40 years of de-identified 
EHR data from 1.5 million patients at 
the Marshfield Clinic in north-central 

Wisconsin, Page’s team built predic-
tive models for nearly 4,000 diseases. 
Their strategy used random forests, 
a classification algorithm that uses 
decision trees to guide predictions, 
and required HT-condor, a high-
throughput computing environment 
that could handle the deluge of data. 

The researchers predicted disease 
from one month to 20 years in advance. 
All predictions were better than random 
chance, though, as expected, earlier pre-
dictions were less accurate. Page believes 
that, with further research and improved 

model accuracy, his ‘pan-diagnostic’ 
approach can become a widely used tool 
that supports both providers and patients. 

“We’d like to explore whether 
some of these models are good 
enough … to translate them into use 
in the clinic—and test whether that 
has a positive impact,” Page says.

Forecasting Disease  
Progression and Complications

Once patients learn that they have a 
disease, they want to know how it will 

progress. Will their symptoms steadily 
worsen, plateau, or alternate between 
active and inactive periods? These ques-
tions also matter to doctors as they 
decide the best course of treatment. 

At the Mobilize Center at Stanford, 
Eni Halilaj, PhD, postdoctoral fellow 
in the lab of Scott Delp, PhD, is study-
ing the progression of osteoarthritis. 
Halilaj and her Stanford collaborators are 
analyzing X-rays from the Osteoarthritis 
Initiative, a multi-center study of knee 
osteoarthritis progression. Osteoarthritis 
wears away cartilage over time, which 
appears on an X-ray as a narrow-
ing of the distance between bones. 

Halilaj is building a model that com-
bines information from an initial X-ray 
with dietary habits, medical histories, 
joint exam and performance measures, 
and baseline symptoms to identify slow 
versus fast progressors—a potentially 
confounding factor in clinical trials. 

“The goal is to predict the kind of 
progressor that someone will be so that 
we can balance treatment and control 
groups in…clinical trials,” says Halilaj.

The same statistical tools that 
predict disease progression can be 
adapted to other adverse clinical 

Disease  
Detectives

“Once you are able to identify or predict this future disease course, then you can identify 
which subset of individuals are most likely to be helped by a new treatment,” says Singh.

Using 40 years of de-
identified EHR data from 

1.5 million patients at 
the Marshfield Clinic in 

north-central Wisconsin, 
Page’s team built 

predictive models for 
nearly 4,000 diseases.
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MINING FOR PAIN

BY JONATHAN WOSEN

Over a million patients get joint replacements each 

year in the United States, often due to osteoar-

thritis, a leading cause of disability. Approximately 

five percent of replacements fail, according to the 

American Academy of Orthopedic Surgeons.  And 

postoperative pain can be an indicator that a 

device is failing.  

“We are interested in asking the question, ‘Can we 

mine electronic health records for device surveil-

lance?’” says Alison Callahan, PhD, research scien-

tist in Nigam Shah’s biomedical informatics lab at 

Stanford University. Specifically, 

she wants to determine 

whether tracking postoperative 

pain can provide insight into 

the effectiveness of specific 

implant models.

There’s just one problem: Most 

mentions of pain aren’t neatly 

coded in a patient’s electronic 

health record (EHR). Instead, Callahan must dive 

into the deep, murky waters of unstructured data. 

Physician notes are a treasure trove of information 

but are riddled with typos, different ways of refer-

ring to pain, negative statements (“the patient did 

not experience pain”), and hypotheticals (“if the 

patient has pain”). It’s a job that, in and of itself, can 

be quite painful.

To help her mine EHRs from Stanford Hospital and 

Clinics for, as she puts it, “the type of pain some-

one’s having and where it hurts,” Callahan needed 

labelled training data. Using experts to manually 

label data would be expensive and time-consum-

ing, so she turned to Snorkel, a tool developed by 

Mobilize Center researchers in Christopher Ré’s 

lab. Snorkel uses a set of rules, or labeling func-

tions, to create large sets of labelled training data. 

In Callahan’s case, these rules include whether 

a clinical note contains pain-related terms and 

information about sentence structure to ensure a 

true mention of pain. In collaboration with several 

Ré lab members (postdoctoral fellow Jason Fries, 
PhD, graduate student Alex Ratner and postdoc 

Stephen Bach, PhD), Callahan 

used Snorkel to extract men-

tions of pain and pain location 

from the notes of roughly 5,000 

hip implant patients. She then 

tested the extraction accuracy 

with a small subset of data that 

was manually labeled with the 

aid of a physician.

Callahan has presented her work at the 2016 

Stanford Data Science Initiative retreat, and her 

initial extraction results look promising. She now 

plans to scale up to include larger data sets. Because 

Snorkel is a general system, Callahan says, it can be 

used for other research questions as well. “There are 

other types of experiences which a patient might 

report which would get captured in a clinical report, 

[such as] activities of daily living,” Callahan says. As 

a result, she says, Snorkel has broad applicability 

for mining unstructured data without the burden of 

manually labelling large sets of training data. 

“We are interested in 
asking the question, 

‘Can we mine electronic 
health records for 

device surveillance?’” 
says Callahan.
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events, such as postoperative compli-
cations. Complications such as infec-
tion, heart attack and stroke are major 
concerns, and studies show that two 
of every five patients who experience 
a complication will have more than 
one. Mark Craven wants to help hos-
pitals understand and predict chains 
of postoperative complications, which 
he likens to a snowball effect.

Craven’s team utilized a national data-
base of postoperative outcomes known 
as the American College of Surgeons 
National Surgical Quality Improvement 
Program. The researchers considered 
over 20 different postoperative com-
plications, including infection, heart 

failure, and extended use of a ventilator. 
They used Markov chains, which model 
changes between states, to predict the 
complications that occurred each day 
over a 30-day period post-surgery.

The models were particularly accurate 
for major complications such as death, 
heart attack, and kidney failure. Going 
forward, Craven plans to incorporate 
additional clinical information from 
the dataset to make earlier and broader 
predictions about patient outcomes. “At 
the time of surgery, how much risk do 
I think this patient has for having any 
complications, specific complications, or 
multiple complications?” Craven says.

His lab has already developed an 
accurate predictive model for post-
hospitalization blood clots using 

information from EHRs. Craven plans 
to test this model in the clinic through 
a shadow trial—a process of predict-
ing and measuring outcomes without 
intervening. Predictions will be made 
about the risk of clots in specific patients 
as they are monitored over time. If the 
predictions hold true, doctors may one 
day use Craven’s model to determine 
who should be given a blood thinner to 
prevent clotting after hospitalization.

To Causality and Beyond
Ultimately, predictions for disease 

progression, outcomes and complications 
will be more accurate when scientists and 
doctors understand why these events hap-
pen. Understanding causation would help 
researchers design specific therapies that 
target factors directly involved in dis-
ease. Panayiotis (Takis) Benos, PhD, pro-
fessor and vice chair of computational 
and systems biology at the University 
of Pittsburgh School of Medicine and 
project leader for the BD2K Center 
for Causal Discovery (CCD), wants to 
develop a causal understanding of chronic 
lung disease to guide treatment design.

Benos and collaborators are analyz-
ing gene expression and other molecular 
data together with clinical and histology 
data from the tissues of patients with 
idiopathic pulmonary fibrosis. His team 
uses probabilistic mixed graphical models 
(MGMs) to combine different data types 
into a network that reveals direct, causal 
connections between variables. Using 
data from the Lung Genomics Research 
Consortium and new data generated by 
Benos’ team, the researchers have also 
built MGMs for chronic obstructive 
pulmonary disease. These models pro-
vide insight into how these chronic lung 
diseases progress and which factors affect 
the long-term decline of lung function. 
Knowing these factors, scientists can 
predict which patients are likely to worsen 
over the next two to five years, Benos says.

One inherent challenge with this 
approach is dealing with variables 
that aren’t measured. An MGM may 

show that a certain gene or measurement 
is directly associated with a disease, but 
there could be another untested variable 
that is in closer association. To bolster 
his models of lung disease, Benos plans 
to include larger patient cohorts and 
incorporate additional variables, includ-
ing CT scans, biomarkers, and patient 
symptom questionnaires. In addition, his 
group is developing algorithms to detect 
when two variables are controlled by an 
unmeasured lurking variable. This can 
help scientists and clinicians recognize 
when they need to collect additional data. 
Benos believes this graphical approach 
can reveal causal relationships in other 
illnesses, and wants to share his team’s 
analytical tools with the scientific commu-
nity. “We are planning to apply [MGMs] 
to cancer, influenza and pneumonia. We 
also plan to have an R package out soon, 
so people can easily incorporate our 
method into their own analysis,” he says.

BD2K Synergies
The BD2K Centers’ contribution to 

the prediction of disease and its progres-
sion is still expanding. To provide a fuller 
picture of changes in a patient’s health 
between doctor’s visits, Page would like 
to supplement EHRs with data from 
wearable devices that track blood pres-
sure, heart rate, and body temperature. 
Research out of the Mobilize Center 
and MD2K (Mobile Sensor Data-
to-Knowledge) could potentially help 
with that (see “Mobile Health: BD2K 
Centers Harness Sensor Data,” page 10).

In addition, predictive algorithms will 
be more accurate when built using larger 
data sets from patients at multiple research 
centers, which raises the question of how 
to efficiently share data across centers 
while also protecting patient privacy. Work 
out of several BD2K Centers will surely 
make that a lot easier as well (see “The 
FAIR Data-Sharing Movement: BD2K 
Centers Make Headway,” page 33). 

BD2K has fostered great interac-
tions, Page says. “There’s a natural 
synergy. There’s a lot of teamwork.” 

Mark Craven wants 
to help hospitals 

understand and predict 
chains of postoperative 

complications, 
which he likens to 
a snowball effect.
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S
ince the 1960s, biologists have 
manually curated data on 6,000 
hereditary diseases for the 
OMIM database (Online 

Mendelian Inheritance in Man). 
The database is vital to doctors, 
who use it for differentially 
diagnosing genetic condi-
tions; it’s much faster 
and more accurate 
than asking Dr. Google. 
But human curators have 
only been adding about 50 
records per month for years, lagging far 
behind the explosion of information on 
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gene-disease associations and gene variants currently 
available in the literature.  

What if, instead, computers could curate the 
literature automatically? What if computers could also 
scan the millions of papers in PubMed and automati-
cally discover biological networks or predict new uses 
for existing drugs? These are the many promises of 
text mining; and some are beginning to come true. 

For example, a program called DeepDive, devel-
oped by Christopher Ré, PhD, assistant professor of 
computer science at Stanford, and data science lead 
at the Mobilize Center, can now quickly and accu-
rately extract data from the text, figures, and tables of 
scientific papers. When applied to the paleontology 
literature as a test case, it extracted 100 times more 
facts from 10 times more papers than human cura-
tors, with an accuracy as good or better than that of 

humans. Unlike human curators, DeepDive 
doesn’t get bored or tired, and it can 

re-read the entire literature any-
time to grab new facts of interest. 

In biomedicine, the need for high 
performance text-mining systems 

like DeepDive has never been more 
pressing. Most of the collective knowl-

edge of biomedicine is trapped within published 
papers or buried within the medical notes and 
images found in electronic health records (EHRs). 
If researchers could teach computers to make sense 

of natural language and pictures, they could unlock 
this untapped knowledge. But teaching a computer 
to read is hard; and teaching a computer to read bio-
medical jargon is even harder. Scientists often write 
in complicated, convoluted prose; and doctors write 
in shorthand recognizable only to others in their 
specialty. Plus, many biological entities have ambigu-
ous names; for example, there are genes named 
“cheap date”, “onion ring”, and “pray for elves.”  

 Fortunately, there has been significant progress 
in biomedical text-mining in the past decade. “There 
have been a lot of new techniques discovered,” says 

KnowEnG Center director Jiawei Han, PhD, 
professor of computer science at the University of 
Illinois, Urbana-Champaign. “A number of groups 
are moving text mining along to make it real time 
and high resolution.” Specifically, the community 
has seen advances in two key text-mining tasks: 
recognizing entities (e.g., genes and drugs), and 
extracting relationships between entities (e.g., 
interactions between genes and drugs). Early systems 
relied on simple approaches such as matching words 
to dictionaries; making up simple rules (e.g., the 
word “kinase” denotes a protein); and assuming 
that two entities that co-occur in the same sen-
tence are related. Later systems improved accuracy 
by incorporating machine-learning algorithms. 

Now, BD2K researchers at the Mobilize, 
KnowEnG, and bioCADDIE Centers are tak-
ing text mining to the next level by leveraging 
recent advancements in machine learning, such 
as deep learning and active learning. They are also 
finding ways to address machine learning’s big-
gest bottleneck: the need for large amounts of 
hand-annotated data to train the systems. Finally, 
with tools such as DeepDive, they are putting 
cutting-edge methods in the hands of users. “It will 
be exciting to explore how some of these BD2K 
tools can be combined to form a nice, practical 
text-mining pipeline,” says Jason Fries, PhD, a 
postdoctoral fellow in Stanford’s Mobilize Center.

Even BD2K Centers that are not focusing on 
text-mining methods per se are getting into the 
text-mining game by using existing text-mining 
tools for novel applications, such as cleaning 
up the metadata in data repositories, an effort 
that’s happening at the Center for Predictive 
Computational Phenotyping (CPCP). 

“What’s exciting is that we’re moving from 
just demonstrating that these methods can 
extract information with reasonably good accu-
racy to now figuring out ways that this infor-
mation can be used,” says Mark Craven, PhD, 

“It will be exciting to explore how some of these 
BD2K tools can be combined to form a nice, practical 

text-mining pipeline,” says Jason Fries, PhD, a 
postdoctoral fellow in Stanford’s Mobilize Center.
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director of the CPCP and professor of biostatis-
tics, biomedical informatics, and computer sci-
ence at the University of Wisconsin-Madison.

Mobilize:  
Deep Learning  
for Text Mining

To achieve state-of-the-art performance in text and 
image mining, researchers at the Mobilize Center are 
turning to deep learning. Deep learning models are 
larger and more complex than traditional machine-
learning models, and are driving revolutions in com-
puter vision and speech recognition; for example, they 
power Apple’s digital assistant Siri. “A lot of develop-
ment has gone into deep learning in the last few years.  
The community has achieved state-of-the-art and 
lowered the bar to use,” says Alex Ratner, a doctoral 
student in Ré’s laboratory at the Mobilize Center. 

But there’s a catch: Deep learning mod-
els need massive amounts of annotated train-
ing data from which to learn. “You can label a 
couple hundred examples and can get a simple 
model to work, but you can’t get one of these 
deep models to work,” Ratner says. “Intuitively 
it makes sense that a much more complex 
model—one that has tens of millions of param-
eters—would need commensurately more data.”

It might take weeks or even months for a team 
of graduate students working around the clock to 
generate enough training data for one text-mining 
task. Ré’s lab is getting around this problem by 
having computers label the data. The computer-
generated training data are imperfect, but, surpris-
ingly: “You can get really good performance even 
if you have lower quality labels,” Ratner says. Their 
tools—DeepDive (http://deepdive.stanford.edu/) 
and Snorkel (http://snorkel.stanford.edu)—actu-
ally outperform  tools that require hand-labeled 
training data (so-called “supervised” models). 

DeepDive automatically annotates training 
examples with the help of existing knowledge bases, 
a trick known as “distant” supervision. For example, 
if an existing database tells us that p53 down-
regulates CHK1, then DeepDive would label the 
sentence: “It was therefore of interest to determine 
whether p53 affects CHK1,” as a positive example of 
a gene-gene interaction. “You ‘lightly’ label every-
thing,” explains Emily Mallory, a doctoral student 
in the lab of Russ Altman, MD, PhD, professor of 

bioengineering, genetics, medicine, and biomedi-
cal data science at Stanford. While the labels can 
be wrong, DeepDive compensates for these inac-
curacies with the sheer volume of examples. 

DeepDive has been used in applications as 
far-flung as automatically curating the paleo-
biology literature to catching sex traffickers by 
text mining internet ads. In a 2016 paper in 
Bioinformatics, Mallory used DeepDive to auto-
matically extract gene-gene interactions from 
more than 100,000 full-text articles from PLoS 
One, PLoS Biology, and PLoS Genetics (see sidebar: 
Mining for Gene-Gene Interactions, page 26). 

It took Mallory a few months to perfect her gene-
gene relation extractor because DeepDive requires 
multiple rounds of iteration and refinement to opti-
mize performance. DeepDive 
also requires considerable pro-
gramming knowhow—beyond 
the skills of a typical biologist. 
So Ratner and others on Ré’s 
team have developed Snorkel, 
a successor to DeepDive that 
is more streamlined, more 
user-friendly, and achieves 
better performance. 

Snorkel uses even weaker 
supervision than DeepDive. 
“Weak supervision is where 
you say ‘I want to use even 
noisier input streams,’” Fries 
explains. Rather than relying 
on just a single knowledge 
base, you can throw in any-
thing that might contain even 
a very noisy signal—hundreds 
of weakly related knowledge 
bases; training data labeled 
by lay annotators; or simple, 
error-prone rules, such as “anytime two chemicals 
occur in the same sentence label this as a causal rela-
tionship”—and Snorkel is able to learn something 

RELEVANT NIH INSTITUTES:

NHGRI, NIBIB, NLM, and all 
disease-focused institutes 
including NCI, NHLBI, NIDDK, 
NINDS, NIAID, and NIAMS

Rather than relying 
on just a single 

knowledge base, 
you can throw in 

anything that might 
contain even a very 
noisy signal … and 
Snorkel is able to 
learn something.
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about that signal. Snorkel users input 
labeling functions via a simple interface 
that requires only basic programming 
skills. A typical novice user can write 30 to 
40 such labeling functions in hours to days.

The key is that the labeling functions will assign 
multiple—often conflicting—labels to the same bit 
of text. Snorkel automatically looks at the patterns of 
agreement and disagreement to learn which label-
ing functions are better than others. Labeling func-
tions that mostly agree with other labeling functions 
are assumed reliable and given the most weight; 

labeling functions that mostly run counter 
to the consensus are considered unreliable 
and given the least weight. The computer 

then tallies the votes of the “good” and “bad” 
labeling functions for a given extraction and 

assigns it a probability—e.g., there is an 85 percent 
probability that this sentence contains a gene-gene 
interaction. By assigning probabilistic rather than yes/
no labels, “you’re actually formally acknowledging 
and modeling the fact that this is weak and inaccu-
rate supervision, not the ground truth,” Ratner says. 

These training data are then fed to deep-learning 

Mining for Gene-Gene Interactions
In 2016, graduate student Emily 

Mallory used DeepDive to extract 

gene-gene interactions from more 

than 100,000 full-text articles from 

PLoS One, PLoS Biology, and PLoS 

Genetics. Mallory first extracted about 

1.7 million sentences containing 

mentions of at least two genes. She 

labeled sentences as positive for a 

gene-gene interaction if the gene 

pair could be found in the BioGRID 

or ChEA databases and negative if 

it could be found in the Negatome 

database (which documents genes 

and proteins unlikely to interact). 

This generated a training set with 

more than 100,000 imperfectly 

labeled sentences. 

Using these training data, DeepDive 

learned 724 sentence features useful 

for classification—for example, the 

presence of the verb “bind” between 

two genes. When this model was 

applied to the 1.6 million unlabeled 

sentences, it identified 3,356 unique 

gene pairs where the probability of a 

true interaction was greater than 90 

percent. (To account for uncertain-

ties, including in recognizing gene 

mentions, DeepDive returns the 

probability of a true gene-gene inter-

action rather than a yes/no answer.)

In evaluation against a database 

of curated protein interactions 

and manual curation, the system 

achieved an F1 score of 59 per-

cent, which is on par with state-

of-the-art relation extractors that 

use human-labeled training data. 

Mallory is now planning to apply 

the framework to mine gene-gene, 

gene-disease, and other relations 

from 500,000 full-text articles 

available in PubMed Central.
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algorithms that can handle uncertainty in the 
training labels. These algorithms devise a clas-
sification model that can be applied to new data 
for entity tagging or relation extraction.

Snorkel has shown impressive performance. 
State-of-the art chemical entity taggers that rely on 
human-labeled data have achieved an accuracy of 
88 percent, as quantified by the F1 score (a common 
accuracy metric in text mining). On the same task, 
Fries’ team got an F1 score of 87 percent with Snorkel 
when all they fed it was a dictionary. “We did it 
completely automatically—we just gave it a dictionary. 
So, it’s completely for free,” Fries says. Adding some 
simple labeling functions improved performance. For 
a harder task—extracting causal chemical-disease 
relationships from PubMed abstracts—the top team 
in the 2015 BioCreAtIvE competition achieved an 
F1 score of 57 percent using 1000 human-labeled 
PubMed abstracts. Ratner’s team built a Snorkel-
based extractor that bested this mark without using 
any human-labeled data. They used 33 labeling 
functions applied to hundreds of thousands of unla-
beled PubMed abstracts. “We can pour in unlabeled 
data, and we actually get scaling,” Ratner says.

Mallory is now collaborating with the FDA to 
build a Snorkel-based tool for extracting gut micro-
biome relationships, such as drug-microbiome and 
chemical-microbiome interactions, from the bio-
medical literature. Fries and Ratner are working on 
Snorkel applications that extract information from 
the clinical notes of electronic health records. For 
example, Fries is collaborating with Stanford post-
doctoral fellow Allison Callahan, PhD, to extract 
mentions of pain and other symptoms from 500,000 
clinical notes for 3500 hip and knee replacement 
patients. When combined with structured data from 
the electronic health records, unstructured data 
from clinical notes may help doctors predict which 
patients’ implants will fail, as well as generate early 
warnings when specific devices are causing prob-
lems (see page 21 for sidebar story about Callahan’s 
work). Snorkel is also being used outside of bio-
medicine—for example, researchers at the Hoover 
Institution are using Snorkel to extract data from 
military combat notes to try to determine what factors 

cause militants to join or leave insurgencies.
Ré’s lab is also building tools 

on top of Snorkel to extract data 
from images, figures, and tables. 
Ratner is collaborating with radi-
ologists who study bone tumors 
to develop a Snorkel-based tool 

that can accurately classify images 
of bone lesions as cancerous or not. 
For images, users write labeling 

functions that consider visual features, such as edges, 
as well as text in titles and captions. Snorkel-based 
tools that read tables in the biomedical literature 
are also in development. These tools can help aug-
ment manual data curation efforts, such as for the 
GWAS Catalog (an online catalog of published 
genome-wide association studies). For example, a 
computer could extract results from every supple-
mental GWAS table in the published literature.

KnowEnG:  
From Phrases to Relations
Researchers at the KnowEnG Center are also 

exploiting weak and distant supervision to make 
state-of-the-art text-mining tools that require 
minimal labeling from domain experts. KnowEnG’s 
director, Jiawei Han, has developed a suite of 
text-mining tools that work on everything from 
tweets, to the New York Times, to the scientific 
literature. In the past few years, Han’s lab has 
been focusing on applications in biomedicine. 

“Jiawei is a mainstream text-mining person. 
For him to enter bio-text mining is very exciting,” 
says KnowEnG co-director Saurabh Sinha, PhD, 
professor of computer science at the University 
of Illinois, Urbana-Champaign. “The underly-
ing tools that his lab has developed are making 
new functionalities that I care about happen.”

Han’s team first built tools to mine phrases out 
of text. Text-mining tools need to recognize that 
certain words go together—such as “congenital heart 

disease” or “Obama administration.” “Extraction 
of phrases is critical towards information extrac-
tion because many concepts, entities, and relations 
are manifested in phrases,” Han says. The tools are 
portable across domains and languages, and also 

Text-mining tools need to recognize 
that certain words go together—
such as “congenital heart disease” 

or “Obama administration.”
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require minimal or no hand labeling. “We worked 
out a very powerful method using either no train-
ing at all or weak training or distant training.”

Han’s team first built ToPMine in 2014, which 
is an unsupervised method and requires no train-
ing data. ToPMine identifies salient phrases using 
statistical clues, such as how frequently a given string 
of words appears in the corpus (popularity), how 
often the words appear together versus apart (con-
cordance), and how often they appear in one docu-

ment but not another (distinctiveness). For example, 
“congenital heart disease” is distinctive because it 
crops up frequently in some documents but rarely in 

others, whereas “important problem” is ubiquitous 
and thus not what Han calls a “quality phrase.”

Han’s team found they could improve per-
formance by adding weak supervision. 

Their tool SegPhrase incorporates 
a machine-learning model 

that can be trained with 
a tiny amount of labeled 
data—just 300 labeled 

phrases for a 1 gigabyte cor-
pus. The model generates better-

quality phrases than completely 
unsupervised methods such as ToPMine.

Han’s team recently built AutoPhrase, which 
uses distant supervision to obviate the need for 
hand-labeled data. Users provide AutoPhrase 
with a dictionary or knowledge base that can 
be used to label enough phrases in the corpus 

to train the machine-learning model. “We like 
this distantly supervised method because you can 
get high-quality results without experts,” Han says. 
“It’s also powerful because it works on many lan-
guages. It could also recognize Chinese phrases if 
we gave it a Chinese Wikipedia, for example.”

Han’s team has also developed an entity tagger 
called ClusType, which builds on their phrase-mining 

tools. ClusType first uses distant supervision to 
tag some entities in the corpus. Then it leverages 
the context clues around the labeled entities to tag 
additional entities. For example, based on Wikipedia, 
ClusType may tag ice cream as a food in: “The waiter 
served ice cream.” When ClusType later comes 
across an unlabeled phrase in a similar context—for 
example, “The waiter served pav bhaji”—it is able 
to predict that pav bhaji is a food. Newly labeled 
entities give new context clues, and the whole cycle 

repeats until the corpus is adequately labeled. When 
applied to news stories, Yelp reviews, and tweets, 
ClusType yielded an average 37 percent improve-
ment over the next best method for tagging entities. 
Han’s team has extended this to CoType, which 
works in a similar manner but types both entities 
and relationships between entities simultaneously. 

Han’s suite of text-mining tools are publicly 
available (at https://github.com/KnowEnG) 
and are being built into the KnowEnG knowl-
edge engine. The KnowEnG Center is also part-
nering with Heart BD2K to use the tools to 
solve specific biomedical problems (see sidebar: 
Ranking Proteins in Heart Disease, opposite). 

Han’s team is also working on an exciting new 
search tool that embeds entity recognition into the 
search. If you search in PubMed or Google Scholar, 
these search engines treat genes, proteins, metabolites, 
and drugs like any other words. But what if the search 
engine could recognize genes, proteins, metabolites, 
and drugs as biological entities? “That’s a type of 
query/response interface to the literature that sup-
ports a much richer space of queries,” Sinha says. 

Working together with existing biomedical knowl-
edge bases, Han’s tools can tag entities in queries and 
papers. “His tools can recognize that there are differ-
ent types of terms in there. They have built in the prior 
knowledge of what are genes, what are proteins, what 
are drugs, and so on,” Sinha explains. Now, Han’s team 

ClusType may tag ice cream as a food in:  
“The waiter served ice cream.” When ClusType later 

comes across an unlabeled phrase in a similar 
context—for example, “The waiter served pav 

bhaji”—it is able to predict that pav bhaji is a food. 
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Ranking Proteins in Heart Disease
The Heart BD2K’s director, Peipei Ping, PhD, 

asked Jiawei Han’s team at KnowEnG to help 

them use the biomedical literature to com-

paratively rank 250 proteins known to be 

involved in heart disease. Ping is professor 

of physiology, medicine/cardiology, and bio-

informatics at the University of California, 

Los Angeles. “The problem is there are mil-

lions of papers in cardiology. Nobody can 

read one million papers in a lifetime. But 

a computer can,” Han says. “What if your 

computer could read those articles to give 

you a comparative summary?” Han’s and 

Ping’s labs collaborated to build a pipe-

line called Context-Aware Semantic Online 

Analytical Processing (caseOLAP), which 

incorporates SegPhrase.

Ping’s team wanted to know which of the 

250 proteins were most relevant for each 

of the six major types of heart disease—

cerebrovascular accidents, cardiomyopa-

thies, ischemic heart diseases, arrhythmias, 

valve disease, and congenital heart disease. 

They used phrase mining to group abstracts 

by disease and to discover the predomi-

nant proteins for each disease. CaseOLAP 

calculated a text-mining score for each 

disease-protein pair based on the quality of 

the mined phrases, how frequently a given 

protein appeared in the abstracts of a given 

disease, and how distinct a given protein 

was for one disease versus the other five. 

“The thing that I found amazing was just 

how much information could be processed. 

This is something that a human being just 

cannot do,” says David Liem, MD, PhD, a 

scientist at UCLA and the project’s clinical 

study coordinator. When they examined 

the top-ranking proteins, they got some 

unexpected insights. “Some of the findings 

were no surprise. For example, we found a 

lot of inflammatory proteins and proteins 

involved in hemodynamic regulation,” Liem 

says. “But what was a surprise to us was we 

found a lot of proteins that are involved in 

neurodegenerative diseases.” This unfore-

seen link between heart disease and neuro-

degenrative disease has been confirmed in 

other recent studies, Liem notes.

The discoveries could help doctors predict 

new drug targets for heart disease, Ping 

says. Han and Ping plan to expand the proj-

ect to explore the role of 8,000 additional 

proteins and also to rank protein-protein 

interactions for each type of heart disease. 

The tool could also be applied to electronic 

medical records to mine clinical notes. “This 

collaboration opens possibilities for many 

other projects,” Ping says.
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is working on exactly how to use this information 
to give the most reasonable ranking of papers. “The 
problem isn’t solved yet, but we have an army of really 
smart graduate students working on this,” Sinha says. 

bioCADDIE:  
Customized Pipelines 

for Text Mining 
The bioCADDIE Center is developing dataMED, 

a search engine for publicly available datasets 
that does for data what PubMed does for papers. 
Similar to Han’s search tool, dataMED embeds 

entity recognition into the search. So, it’s not supris-
ing that text-mining expert Hua Xu, PhD, was 
tapped to lead development. Xu is a professor in the 
School of Biomedical Informatics at the University 
of Texas Health Science Center at Houston. 

Xu’s lab works on text-mining methods, soft-
ware, and applications for clinical data. “I view it 
like a circle. You have a new proven method for 
NLP [natural language processing]; you imple-
ment that into software; and then you use the 
software to extract information for clinical 
studies,” Xu says. “Then the clinical study actu-
ally suggests needs for new technology, and 
this feeds back to the methods development.”

Like scientists at Mobilize and KnowEnG, Xu 
wants to reduce demands for costly anno-
tated training data. Rather than turning 
to weak and distant supervision, 
however, Xu’s lab is taking a dif-
ferent tack—an approach called 
interactive machine learning. 

Interactive machine learning 
loops humans into the learning process. 

The idea is that if a person injects critical insights 
at the right time, this can improve efficiency and 
performance. Normally, human experts label random 
stretches of training data. But in active learning—
a type of interactive machine learning—only the 
most informative examples are selected for labeling, 
Xu explains. At the beginning of active learning, a 
human expert annotates a small amount of randomly 
selected training data, which is fed into a machine-
learning algorithm to build a model. The computer 
then attempts to classify the unlabeled data using the 
model—and passes back the ones for which it has 
the most trouble. The human labels these, and passes 
them back to the computer. This cycle repeats until 
the model achieves sufficient accuracy. This approach 
has the potential to significantly reduce training data 
for the same performance, Xu’s team has shown.    

Xu’s lab has also built several machine learn-
ing–based tools for entity tagging and relation 
extraction that have taken first or second place in 
major text-mining challenges including the i2b2 
NLP Challenge, SemEval (Semantic Evaluation) 
and BioCreAtIve (Critical Assessment of 
Information Extraction in Biology). Xu’s team has 
made these tools available as part of dataMed. 

Sometimes, text-mining tools need to be tuned to 
local data. For example, different hospitals and even 
different specialties within the same hospital may 
have idiosyncrasies in how they talk about diseases 
and traits. “For an institution that doesn’t have a 
strong NLP team, it could be very challenging,” Xu 
says. To address this issue, Xu’s team built a user-
friendly clinical text-mining system called CLAMP 
(Clinical Language Annotation, Modeling, 
and Processing Toolkit, http://clamp.uth.

“[T]here are millions of papers 
in cardiology. Nobody can read 

one million papers in a lifetime. 
But a computer can,” Han says.
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edu/). With CLAMP, users drag and drop ready-
made components—such as part-of-speech taggers, 
dictionaries, and machine-learning modules—to 
create a customized pipeline. “They can modify each 
component, including directly annotating local data 
and clicking a button to train a machine-learning 
module,” Xu says. “With this interface, users who 
don’t have much NLP experience can build high-
performance NLP pipelines for their own tasks,” 
Xu says. The tool is freely available to academics, 
and has been downloaded by about 50 institutions.  

The same cutting-edge text-mining tools that 
are baked into CLAMP are also being used in 
dataMED, bioCADDIE’s dataset search tool (https://
datamed.org). The dataMED development team 
first indexed all the datasets in the data repositories, 
using NLP to mine free-text fields for mentions of 
genes, diseases, and chemical names. Then the team 
built a search tool that embeds recognized enti-
ties into the search. For example, if a user types in 
breast cancer and NFKappaB, the tool recognizes 
these as a disease and gene, respectively, and maps 
them to their standardized ontology concepts. Then 
it expands the search to include synonyms of these 
concepts (e.g., “tumor of breast” for “breast cancer”). 

dataMED has already indexed more than 
63 data repositories that contain a total 
of 1.4 million biomedical datasets. 

CPCP:  
Putting Text-Mining 
Tools to New Uses
Though text-mining methods are not 

a focus of CPCP, Center researchers have 
developed some novel ways to use text min-

ing for different kinds of PubMed searches and 
to clean up metadata in data repositories. GADGET, 
developed by Craven, uses standard indexing and text-
mining algorithms to search PubMed and return, for a 
given query, genes and metabolites rather than articles. 

For example, a researcher can enter “HIV replication” 
in gene-search mode and get a ranked list of genes 
relevant to HIV replication. The system searches mil-
lions of abstracts in PubMed to find those relevant 
to the user’s query, and then applies a named entity 
recognizer to identify mentions of genes or small mol-
ecules. “The challenge is trying to filter out false posi-
tives,” says CPCP director Mark Craven. For example, 
the common English word “cat” could be mistaken for 
the abbreviation for the catalase gene, CAT.  To help 
avoid errors, the named entity recognizer considers 

properties of the word, such as the presence of ital-
ics, as well as the context around it. “We look at lots 
of pieces of evidence like that to decide ‘do I think 
this is a gene name, yes or no?’” Craven says. The 
software then ranks the genes based on how many 
query-specific abstracts mention the gene and how 
frequently the gene is mentioned in other abstracts.

Biologists at the University of Wisconsin-
Madison, are already using the tool to accelerate 
their science. For example, one stem cell lab searches 
for genes that might help them steer stem cells to 
a given fate. Another lab is using the tool to help 
figure out the networks of host genes involved in 
HIV replication. “We found that we can get better 
network models by pulling in this evidence from 
the literature as identified by GADGET in addi-
tion to the genes that are coming directly from 
experiments,” Craven says. GADGET is freely 
available here: http://gadget.biostat.wisc.edu/.

Another lead investigator of CPCP, Colin Dewey, 
PhD, associate professor of biostatistics and medical 
informatics at the University of Wisconsin-Madison, 
is using text mining to clean up the metadata of the 
Sequence Read Archive (SRA) data repository.

The SRA stores next-generation sequencing reads 
for 2.1 million samples from 90,000 worldwide 
studies. Scientists hope to mine these data for new 
insights; for example, by studying all available lung 
cancer RNA-seq data, scientists might be able to 
pinpoint gene expression patterns that character-
ize the disease. But combining data across different 
studies is difficult because the samples aren’t labeled 
consistently. “The metadata are not standardized 
or normalized,” Dewey says. “People just make up 
their own names for the attributes, as well as the 

With CLAMP, Xu says, “users who don’t have much NLP experience 
can build high-performance NLP pipelines for their own tasks.”
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values of those attributes.” Attributes (such as “cell 
line”) and their values (such as “HeLa cells”) vary 
widely due to misspellings, synonyms, abbrevia-
tions, and the use of natural language descriptions. 

So, Dewey’s team devised a novel com-
putational pipeline (https://github.com/
deweylab/metasra-pipeline) that automati-
cally cleans up the metadata in the SRA. 

Off-the-shelf text-mining tools yield an unac-
ceptably high false-positive rate when applied to 
SRA metadata. “There are a lot of cases when there’s 
an entity mentioned in the metadata that is not 
actually describing the sample of interest,” Dewey 
says. For example, a standard named-entity rec-
ognizer will extract the word “breast” from “breast 
cancer” and infer that this is the anatomical source 

of the sample. But the sample may have been 
taken from blood rather than breast tissue. 

Dewey’s team built a system that’s similar to 
a named entity recognizer but “with a bunch of 
heuristics added to remove the errors introduced 
by such systems,” he says. The system builds a 

graph, starting with the attribute-value pair from the 
original metadata. The attribute and value are each 
mapped to terms from biomedical ontologies (rep-
resented as nodes on the graph). But Dewey’s team 
then subjects the graph to a series of custom-made 
reasoning rules and operations. For example, one of 
these heuristics recognizes that “breast” should not 
be mapped to an anatomical location if the word 
“breast” in the metadata is part of a larger phrase 
(e.g., “breast cancer”) that maps to an ontology 
term.  Another rule tells the system that the abbre-
viations “F” and “f ” indicate a female sample when 
they are paired with an attribute that maps to “sex.” 
The system also extracts numerical values—such 
as age—from metadata. “That’s a novel aspect of 

our system that will be helpful for doing aggregate 
analyses using those numerical values as covariates.” 

In initial tests on human samples assayed by 
RNA-seq experiments on the Illumina platform, 
the system achieved recall rates as good as stan-
dard named-entity recognizers (85 to 90 percent) 
but better false positive rates (precision of 90 to 

95 percent). The MetaSRA database is available at 
http://deweylab.biostat.wisc.edu/metasra. Dewey’s 
team plans to expand the database in the future. 

Looking Back; Moving Forward
Nine years ago, Biomedical Computation Review 

(Summer 2008) published an article about text 
mining. One challenge identified then remains a 
major bottleneck today—data accessibility. Out of 
14 million English-language abstracts in PubMed, 
only about a million are accessible for full-text min-
ing, Mallory says; and when it comes to electronic 
health records, privacy issues complicate data access. 
For text mining to realize its full potential, research-
ers will have to make headway on this issue. 

But there have been a lot of wins over the past nine 
years, thanks in part to work by the BD2K Centers. 
Text-mining tools have gotten more powerful and, 
importantly, more usable by doctors and biolo-
gists—as evidenced by user-friendly programs such as 
Snorkel, CLAMP, and GADGET. Text-mining tools 
are also being used in more real-world applications 
than ever before—from curating and scanning the 
literature to making it easier to find and pool publicly 
available datasets. It might also be possible to build 
a pipeline from the BD2K tools described here. For 
example, Fries says, Han’s unsupervised learning tools 
are great for potentially discovering new patterns and 
building domain dictionaries, but they are also very 
noisy. Snorkel could be used to unify these dictionar-
ies into a more robust extraction system. “The differ-
ent BD2K tools being developed provide complemen-
tary ways to tackle the text mining problem,” he says.

Nine years from now, perhaps computer cura-
tors will have replaced human curators for the 
OMIM database. As a result, within moments 
of a new paper hitting PubMed, new knowl-
edge will be deposited in OMIM automati-
cally—making it possible for doctors to instantly 
use that knowledge to help patients. 

“The different BD2K tools being developed 
provide complementary ways to tackle the 

text mining problem,” [Fries] says. 
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Science that isn’t reproducible isn’t science at 
all. And science that relies on big biomedical 
datasets will only be reliably reproducible if 
those datasets are FAIR—findable, accessible, 

interoperable and reusable. 
Achieving the laudable goal of FAIR datasets requires 

a shift in scientific culture. Researchers accustomed to 
storing their data in silos at individual research institu-
tions must become more mindful about how they handle, 
describe and store their data. In addition, there must be an 
infrastructure that makes data sharing possible. 

When the National Institutes of Health (NIH) funded 
the twelve Big Data to Knowledge (BD2K) Centers of 
Excellence in October of 2014, Philip Bourne, PhD, the 
NIH associate director for data science at the time, under-
stood that an emphasis on the FAIR standards within the 
BD2K Centers would seed this cultural change. 

“We view this as a virtuous cycle,” Bourne told this 

magazine. The Centers would generate FAIR data and 
data-sharing tools that others would use to do the same; 
and this ongoing cycle would serve to simplify and nor-
malize the process. “Sharing the data and the software 
across the Centers and to other investigators and beyond 
is key,” he said.

Fast forward two and a half years and the Centers are in 
full swing, propelling the data sharing revolution forward 
at every level of research and demonstrating that adherence 
to the FAIR principles is an achievable goal. 

Metadata Entry by Humans:  
Achieving FAIRness Up Front 

Biomedical researchers are generating datasets at 
unprecedented rates. To describe, store and share these 
datasets in ways that are FAIR, the researchers must create 
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metadata—clear, accurate, computer-readable descriptions 
of the data. “A lot of metadata are produced by people who 
are forced to produce them under duress when they have 
other things they’d rather do,” says John Graybeal, PhD, 
technical program manager for the BD2K Center known 
as CEDAR (the Center for Expanded 
Data Annotation and Retrieval). “In the 
absence of good verification processes and 
helpful suggestions to such people about 
what information they need to provide, 
you get a lot of pretty useless metadata.” 
And if the metadata are useless, the data 
itself will never be FAIR. 

To address that problem, CEDAR has 
created the CEDAR Workbench, which 
researchers can use to access libraries of 
standard templates for defining metadata. 
The Workbench makes metadata entry 
easy by suggesting appropriate templates, 
enabling the use of appropriate terminol-
ogy from various biomedical ontologies, 
and suggesting such terms in drop-down 
menus. In addition to making data findable and accessible, 
CEDAR’s Workbench adds a lot of value for interoper-
ability and reproducibility, Graybeal says, by ensuring that 
people are using the same terminology in consistent ways. 

For example, inves-
tigators who use high-
throughput B-Cell and 
T-Cell receptor reper-
toire sequencing (Rep-
Seq) can deposit their 
data into four different 
repositories (BioProject, 
BioSample Sequence 
Read Archive [SRA] and 
GenBank) at the National 
Center for Biotechnology 
Information 
(NCBI). CEDAR is 
working with members 
of this community to 
provide a simple and 
standardized metadata 
entry process that can 
be integrated with the 
data submission pro-
cess already in place. If 
these attempts are suc-
cessful, researchers will be 
able to submit their data 
and metadata through the 
CEDAR Workbench, and 
it will flow to the appro-
priate NCBI repositories, 

considerably simplifying the submission process. 
CEDAR is also collaborating with the Library of 

Network-Based Cellular Signatures (LINCS) consor-
tium and the BD2K-LINCS Data Coordination and 
Integration Center (BD2K-LINCS-DCIC). LINCS 

researchers, who use various methods to disrupt biological 
pathways and observe the altered phenotypes, have gener-
ated huge amounts of data. Their standardized metadata 
procedure involves several manual steps: They enter infor-
mation into an Excel spreadsheet, then submit it for manual 
review by a person who checks it for completion and 
accuracy and then emails the submitter to request correc-
tions. “Heavily manual processes like this don’t scale well,” 
Graybeal says. “And Excel spreadsheets are limited in the 
support they can offer metadata providers.” With a supple-
mental BD2K grant, CEDAR is helping LINCS research-
ers develop an integrated workflow for managing metadata 
in real time, with the system giving users feedback to 
correct mistakes right away. “From the user’s standpoint and 
LINCS’ standpoint, that’s a big change,” Graybeal notes. 
“Curators will be able to review created metadata much 
faster.” The system is now functioning in a prototype envi-
ronment and is targeted for production over the summer. 

CEDAR is also contemplating how to fix flawed meta-
data that’s already stashed in data repositories. Looking 
at the Gene Expression Omnibus (GEO) data repository, 
for example, researchers on the CEDAR team have noted 
inconsistent entries for such basic information as age and 
gender. CEDAR could support workflows to automatically 
enhance these metadata, or even provide simplified ways 
for users to correct these issues in a wiki-fied environment. 
The metadata updates could be forwarded back to the 

In the CEDAR Workbench, a user selects a metadata template and then fills 

in the template by selecting values from various dropdown menus. Here the 

user is selecting a value for the tissue field in the BioSample Human template 

from candidate tissue types from the UBERON ontology in BioPortal. Courtesy 

of Mark Musen and CEDAR. 

Variants of ‘age’ metadata 
field in Gene Expression 

Omnibus (GEO) repository

age
Age
AGE
`Age
age (after birth)
age (in years)
age (y)
age (year)
age (years)
Age (years)
Age (Years)
age (yr)
age (yr-old)
age (yrs)
Age (yrs)

age [y]
age [year]
age [years]
age in years
age of patient
Age of patient
age of subjects
age(years)
Age(years)
Age(yrs.)
Age, year
age, years
age, yrs
age.year
age_years

 Metadata entry is difficult and leads 
to inconsistencies that make data 
reuse challenging. CEDAR is address-
ing this problem by creating standard-
ized metadata templates.  Information 
courtesy of Mark Musen, MD, PhD, 
principal investigator for CEDAR.
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repository, if it had a way to handle these sorts of changes 
and suggestions. “Ideally, you’d end up with well-reviewed 
and more accurate documentation,” Graybeal says, which 
would be a step forward for the FAIR principles.

Finding 
Accessible Data 
Given the huge quantity of 

biomedical data that has been 
generated by high-through-
put experiments as well as 
the vast troves of clinical data 
residing in electronic health 
records, many researchers 
hope to address interesting 
research questions by find-
ing and accessing existing 
data rather than generating 
more. The NIH recognized 
the potential for re-use of 
existing datasets when, as 
part of the BD2K program, it 
funded the biomedical and 
healthCAre Data Discovery 
Index Ecosystem (bioCAD-
DIE) under the leadership of 
Lucila Ohno-Machado, MD, PhD, professor of medi-
cine at the University of California, San Diego. 

bioCADDIE set out to develop a prototype data 
discovery index to help people find relevant datasets they 
would otherwise have a hard time finding. The result is 
dataMED, a repository and search engine that does for 
data what PubMed does for biomedical literature: Rather 
than having to search individual repositories for relevant 
data, researchers can search dataMED to find what they 
are looking for. As of March 2017, dataMED had indexed 
64 data repositories containing more than 1.3 million 
datasets, and it is still growing.

Just as scientific journals must meet certain require-
ments for inclusion in PubMed, repositories included in 
dataMED must meet certain standards of quality, sustain-
ability and interoperability. And their metadata must be 
capable of being digested into dataMED’s DATS (DAta 
Tag Suite) metadata system. The core DATS metadata 
includes information about a dataset’s accessibility through 
an application programming interface (API) as well as 
whether access requires approvals or security clearances. 

To test the effectiveness of dataMED, bioCADDIE ran 
a dataset retrieval challenge competition to see who could 
develop an algorithm that would identify the best set of data 
to address a well-defined research question. The top two win-
ning algorithms are now being incorporated into dataMED. 

“Achieving findability and accessibility is just the 

beginning of the journey,” Ohno-Machado says. More 
work will be required to achieve interoperability and reus-
ability. For now, she says, “it’s critical to find the data in the 
first place.” 

Making Dataset 
Recommendations: 

Findability Goes Deeper
In a separate effort to make datasets more findable, the 

HeartBD2K Center created the Omics Discovery Index 
(OmicsDI). Whereas dataMED indexes a broad array of 
datasets (including OmicsDI), OmicsDI focuses solely 
on omics datasets (proteomics, transcriptomics, genomics 
etc.). It is also searchable at a deeper level than dataMED. 

OmicsDI evolved from an even more specifically defined 
collaboration called the ProteomeXchange, a global net-
work of four proteomics databases that coordinates how 
they accept data and then centralizes their metadata. The 
HeartBD2K Center has extended these concepts to mul-
tiple omics data types including genomics, transcriptomics, 
and metabolomics, says Henning Hermjakob, MSc, team 
leader for molecular networks services at the European 
Bioinformatics Institute (EBI) and co-director of 
HeartBD2K. “We got off the mark quite fast because we 
could build on existing experience and infrastructure.” 

Like bioCADDIE’s dataMED, OmicsDI can be easily 
searched to find datasets of interest. “But what we offer 
beyond pure metadata indexing is where it gets interest-
ing,” Hermjakob says. In addition to indexing the metadata, 
OmicsDI indexes part of the data content. For example, 
it might index the proteins observed in a proteomics 

Searching for datasets in dataMED is akin to searching for scientific literature in PubMed. 
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Extracting Needles from Haystacks:  
The Reactome 

Reactome.org is an open-source 

curated database of human bio-

logical pathways. As of early 2017, 

it comprised 10,391 human reac-

tions organized into 2,080 pathways 

involving 10,624 proteins encoded by 

10,381 different human genes, and 

1,735 small molecules. And under 

BD2K, the web interface has been 

re-designed to create a user-friendly 

tool. Researchers gathering gene 

expression data about normal and 

diseased tissue or cells perturbed with 

a certain drug want to know what the 

observed expression changes mean. 

Now they can upload their datasets 

to Reactome.org and it will show the 

pathways that are over- or under-

represented in their specific gene 

set. “It’s very helpful to the biologist 

in reducing large changes in large 

datasets to something that is much 

more understandable biologically,” 

Hermjakob says. It doesn’t necessar-

ily give answers, he says, but it points 

researchers in the right direction. “It 

provides a magnet for extracting a 

needle from a haystack.”

The updates to Reactome make it 

not only more accessible but also 

more interoperable. “We’ve devel-

oped computational components 

allowing Reactome functionality 

in other websites with very little 

effort,” Hermjakob says. LINCS-DCIC, 

for example, provides high-quality 

new data on systematic perturba-

tions of different cellular systems 

and Reactome aims to provide 

analysis capability for exactly these 

kinds of data output. “So the two fit 

together quite nicely,” Hermjakob 

says. Reactome functionality has 

also been incorporated into several 

non-BD2K projects including the 

Human Protein Atlas and the Open 

Targets project. 

In the very latest release of Reactome.org,Hermjakob and his colleagues have significantly enhanced the 

visual presentation of biological pathways. Schematic diagrams (such as the one at top showing platelet 

homeostasis) have been replaced with textbook style pathway diagrams (bottom, showing homeostasis more 

generally) drawn by a professional biomedical illustrator. Portions of the diagrams are clickable to dig deeper 

into the various pathways. “These make Reactome easier to navigate and the diagrams are also released in 

an editable form that can be used for publications and slides,” Hermjakob says. Courtesy of Reactome.org.
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experiment; or the differentially expressed genes in a tran-
scriptomics experiment. OmicsDI then calculates similarity 
metrics between all the experiments in a domain. Using this 
capability, a user can get recommendations for datasets of 
interest. “The whole functionality is similar to recommenda-
tions in Amazon.com: ‘If you’re interested in this dataset 

you might also be interested in this other one,’” Hermjakob 
says. He’s eager to see if this system leads to more datasets 
being reused—and OmicsDI is tracking that as well. 

Findability at the  
Deepest (Data) Level

Avi Ma’ayan, PhD, professor of pharmacological sci-
ences at the Icahn School of Medicine at Mount Sinai 
and principal investigator of the BD2K-LINCS Data 
Coordination and Integration Center (BD2K-LINCS-
DCIC), decided to take findability to another level. Their 
creation, the Harmonizome, offers a collection of all the 
hottest and most exciting databases that everyone is using. 
“It allows you to find knowledge about genes and proteins 
that was buried in data silos but now is accessible.”

To create the Harmonizome, Ma’ayan’s team gathered 
together 66 major online omics resources and processed 
them into more than 70 million associations between 
nearly 300,000 attributes and all human and mouse genes 
and proteins. That processing involved taking either raw 
data or formatted data from existing databases and map-
ping it onto common IDs for genes. They also processed 
the data into simplified formats such as relational tables, 
making it ready for machine learning. The data are now 
served online through a user-friendly interface. “It makes 

it very easy for someone to do predictions of functions for 
genes,” Ma’ayan says.

Ma’ayan thinks of the Harmonizome as a prototype 
that shows what can be done. “The nice thing about the 
Harmonizome is that it enables search at the data level,” 
he says. He acknowledges that making it scalable could be 

challenging. Still, the Harmonizome has proven popular. 
Since it became public in 2015, the site has had more than 
100,000 unique user visits and 300,000 page views. “We get 
about 400 users per day now,” Ma’ayan says, with about 40 
percent sticking around for a while because they are finding 
it useful. He’d like to learn more about how others are using 
the resource. “I’m sure people can think of creative ways to 
use it that we haven’t thought of,” Ma’ayan says. “That will 
be the coolest thing.”

Accessing Data Where It Lives

For genomics research to achieve its promise of improv-
ing human health, vast data resources must be brought 
to bear. “We absolutely have to share the data so that we 
can compare cases,” says David Haussler, PhD, principal 
investigator for the Center for Big Data in Translational 
Genomics (BDTG), a BD2K Center. But access to genomic 
datasets is often restricted because of privacy concerns and 
confidentiality laws established by the countries and insti-
tutions where the data reside. This makes it impossible to 
create a central, unified genomic database. “The only path 
forward is to create a common API and a common language 
for containerized workflows so that you can literally ship 
analysis software off to different countries and medical insti-
tutions and let it run on their platforms,” Haussler says. 

When searching OmicsDI for relevant datasets, the search box offers a dropdown menu of options. When the search is complete, researchers may further refine 

it by tissue, disease, or organism, and search results can be sorted by relevance—a measure of how closely related the datasets are to the specific query.  
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And that has been one focus of the BDTG Center. 
They’ve created an ecosystem of genomics tools and a 
standard interface for interacting with genomic data—the 
Global Alliance API. It allows genomics researchers to 
work together on a global scale, sharing software to achieve 
reproducible results.

As a test case, the Center developed Toil, a portable, 
open-source workflow, and demonstrated its use in a cloud 
environment by reprocessing more than 20,000 RNA-seq 
samples from four major studies. The effort reduced the 
time and cost of such processing by 30-fold; created a new, 
publicly available dataset free of batch effects (the statisti-
cal problems created by data processed in different ways at 
different research institutions); and set a precedent for the 
use of portable software in contemporary cloud workflows 

as a path toward allowing research groups to reuse data and 
reproduce one another’s results.

Sharing and  
Integrating Clinical Data

Often, researchers want to study different types of data for 
the same patient population but the data—much of it privacy 
protected—are distributed across multiple databases and 
institutions. In a pilot study called Count Everything, four 
BD2K Centers of Excellence worked together to create a 
prototype for integrating various types of data without com-
promising privacy. Ohno-Machado’s Center, bioCADDIE, 
played the aggregator role using APIs (for genomics, elec-
tronic health records, and mobile health data) developed by 
hree other centers: BDTG, PIC-SURE (Patient-centered 
Information Commons: Standardized Unification of 
Research Elements), MD2K (Mobile Sensor Data-to-
Knowledge). The result: a system that can make simple dis-
tributed queries across simulated data from these Centers in a 
secure and anonymized way. Queries could ask, for example, 

To create the Harmonizome, researchers with LINCS-DCIC distilled information 

from original datasets into attribute tables that define significant associa-

tions between genes and attributes, where attributes could be genes, proteins, 

cell lines, tissues, experimental perturbations, diseases, phenotypes, or drugs, 

depending on the dataset. These attribute tables can be searched and integrated 

to perform many types of computational analyses for knowledge discovery and 

hypothesis generation.  

Integrated Transcriptomics: Clue.io
In addition to LINCS-DCIC, the NIH funds six LINCS 

(Library of Integrated Network-Based Cellular Systems) 

Data and Signature Generating Centers. They all gather 

data on perturbed cells, but each center has a different 

focus (such as transcriptomics, proteomics, the cellular 

microenvironment, disease, drug toxicity, or the brain). 

The LINCS Transcriptomics Center, located at the Broad 

Institute in Cambridge, Massachusetts, also receives 

BD2K funding. The aim: to integrate LINCS-generated 

transcriptomics data (approximately 2 million gene 

expression profiles) with all the other transcriptomics 

data in the world (for example, the approximately 1 

million profiles that reside in the Gene Expression 

Omnibus). “That was the premise of our proposal—to 

create a unified system across all these transcriptomic 

sources,” says Aravind Subramanian, PhD, principal 

investigator for the Broad Institute LINCS Center for 

Transcriptomics and Toxicology.

The project created clue.io, a website with an API that 

provides a uniform programmatic interface to all the 

transcriptomic datasets. Clue.io also offers web appli-

cations that can be used to find relationships between 

genes, compounds and diseases. “BD2K funding allowed 

us to build all these tools,” Subramanian says. “We’re 

hoping that these APIs we are creating to expose the 

data will be taken up by other BD2K centers and inte-

grated with the other datasets and methodologies 

they’ve been developing.” 
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the number of individuals in these datasets who share a clini-
cal phenotype, genomic variant and activity profile. And they 
could achieve this interoperability without any Center seeing 
another Center’s data. According to Benedict Paten, PhD, 
associated research scientist at BDTG, “This is an example of 
what can happen when big centers with expertise in different 
areas coordinate and come together.” 

Interoperability of Genomics 
Datasets and Tools

In the good old days, a researcher would upload data to 
a web server where stand-alone tools would do the analysis. 
Today, large datasets often reside in specialized cloud envi-
ronments. Tools must be brought to the data, rather than 
the other way around. 

Researchers at the BD2K Center KnowEnG, a col-
laboration between the University of Illinois at Urbana-
Champaign and the Mayo Clinic, realized that the analyti-
cal tools they develop have to be more than just accessible 
and downloadable. “Our tools have to be able to talk to 
other data repositories and other code bases and analysis 
systems for the user to have a reasonable experience in 
their analysis pipeline,” says Saurabh Sinha, PhD, pro-
fessor of computer science at the University of Illinois at 
Urbana-Champaign.

For example, Sinha says, The Cancer Genome Atlas 
(TCGA) is a big data repository that is part of the Stanford 
Genomics Cloud. “If you want to analyze those data using 
our kinds of tools, there needs to be a convenient and formal 
mechanism for these different systems to talk to each other, 
rather than the researcher making it happen by brute force.” 
The solutions KnowEnG researchers are developing should 
be available within a year. “We’re working on a way by which 
researchers can invoke our tools from their cloud and ana-
lyze the TCGA data right away on that cloud,” he says. 

Ideally, Sinha says, many such interactions will be 
possible in the future. “Researchers will be able to say ‘get 
me this slice of the LINCS data, and analyze it with this 
pipeline in KnowEnG,’” he says. “If this kind of goal can be 
achieved, it will be fantastic.” 

Accessing Data for Reuse

Some large health datasets created over many years 
remain locked in formats that aren’t truly accessible. For 
example, in the 1960s the Centers for Disease Control 
(CDC) began been conducting surveys and interviews 
to better understand the health and nutrition status of 
the American people. Since 1999, this survey, called the 
National Health and Nutrition Examination Survey 
(NHANES) has been continuous, covering about 5,000 
people each year. The data gathered covers a broad range 

of topics and, until recently, was stored in about 250 Excel 
spreadsheets at the CDC. Anyone hoping to analyze the 
data could do so only in these discrete subsets.

Researchers at the PIC-SURE BD2K Center set out to 
correct this problem and establish a prototype user-interface 
that would simplify analysis of NHANES data. First, they 
integrated the NHANES data, combining thousands of dif-
ferent variables—clinical, environmental, self-reported, and 
genomic—into one set of data structures. They then loaded 
the data into a software system called i2b2/tranSMART, 
which makes the data accessible to researchers in a web 

Real World Data 
Sharing

Genetic testing sometimes reveals that patients have a 

heightened risk of breast cancer. Certain variants in the 

BRCA1 and BRCA2 genes, for example, raise the lifetime 

risk from about 12 percent to as much as 65 percent. 

But if a woman has a different variant of these genes 

(and there are literally thousands of possible variants), 

doctors don’t necessarily know their significance. As a 

result, clinical tests often reveal variants of uncertain 

significance, as much as 20 percent of the time, and 

occasionally different clinical testing companies give 

women different information about their breast cancer 

risk. To reduce that uncertainty and inconsistency, BDTG, 

ENIGMA and many collaborators have created the BRCA 

Exchange, a public resource that aggregates and unifies 

data on BRCA variants. The Exchange is now the world’s 

largest aggregation of genetic variance, Paten says. 

To curate information for the BRCA Exchange, experts 

review information about BRCA1 and BRCA2 variants to 

develop consensus about what they signify. “We started 

with 1,000 expert curations and now have 3,500,” Paten 

says. Ultimately, he says, all the variations on the site will 

be curated. The various clinical testing companies will be 

able to cross-reference the BRCA Exchange and deliver bet-

ter information to patients. “It’s a real-world project that is 

trying to deal with data sharing right now,” Paten says. He 

also sees it as a model for other diseases for which there 

are genes of interest and communities of people who want 

to understand their potential risks.
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browser as well as adding a layer of analytical tools. In the 
user interface, researchers can easily drag and drop different 
patient characteristics into boxes for comparison using statis-
tical tools that are part of i2b2/tranSMART. Furthermore, to 

allow large-scale analysis across the entire dataset, the BD2K 
PIC-SURE team implemented a RESTful API called the 
PIC-SURE RESTful API “This is a programmatic way of 
accessing data for large scale computing,” says Paul Avillach, 
MD, PhD, assistant professor of bioinformatics at Harvard 
Medical School and member of the PIC-SURE team. 

In addition to the NHANES dataset, the API can 
be used to analyze i2b2 patient electronic health records 
(with different levels of privacy access for different types 
of users), data from the Exome Aggregation Consortium 
(ExAC) browser at the Broad Institute, or any other data-
set a researcher would like to import into the system. 

Reusability and  
Reproducibility Using Jupyter

Often, computational research is done on a postdoc’s 
laptop. Eventually that person moves on to a different lab 
or project and leaves an insufficient record of the steps 
taken or even the location of the computer script. The 
result: the work is not reproducible. But using Jupyter 
Notebooks, an open-source web application, researchers 
can detail all the steps of a computational project from 
input to output using any combination of 40 different 
computer languages. When researchers publish a paper, the 
Notebooks can be published alongside the data. “Jupyter 
Notebooks are a very nice way of doing reproducible 
science for real,” Avillach says. “They allow you to share 
how you managed to process the data so someone else can 
reproduce the exact same results.” 

At the PIC-SURE Center, Avillach and his colleagues 
established a system for using Jupyter Notebooks to track 

their work. They also added Docker technology (that they 
then contributed back to the Jupyter open-source hub) to 
create a protected research environment for each researcher. 
“We have one Docker container per investigator,” Avillach 
explains, “so no one can crash the container of another 
investigator.” It’s a prototype for computational research 
that Avillach hopes becomes the norm.

Piloting the Commons 
Cloud Credits Model

In October 2014, Bourne announced plans to create 
the “NIH Commons” to catalyze the sharing, use, reuse, 
interoperability and discoverability of shared digital research 
objects, including data and software. The Commons is por-
trayed as a layered system consisting of three primary tiers: 
high-performance and cloud computing (at the bottom); 
data, including both reference datasets and user-defined data 
(in the middle); and (at the top) services and tools, including 
APIs, containers, and indexes, as well as scientific analysis 
tools and workflows and—eventually—an app store and 
interface designed for users who are not bioinformaticians.

To be eligible for use in the Commons, data and 
software must meet the FAIR principles. For example, 
the products of all the BD2K centers will be part of the 
Commons ecosystem, including dataMED from bioCAD-
DIE and the CEDAR Workbench. And to incentivize 
participation in the Commons, the NIH is piloting a plan 
to offer cloud computing credit vouchers that researchers 
can use with a provider of their choice, so long as the pro-
vider complies with the FAIR principles. Several BD2K 
Centers are participating in the pilot, including KnowEnG, 
PIC-SURE, and BDTG. 

As part of their pilot, PIC-SURE took a HIPAA-
compliant research environment (for using privacy-pro-
tected patient data) that they had developed for use in the 
Amazon cloud and added Docker containers to make it 
cloud-vendor agnostic. “We realized that we didn’t want 
to be limited to one cloud vendor,” Avillach says. It is now 
useable across multiple cloud vendors including Amazon, 
Google and IBM cloud layers.

Haussler strongly supports the Commons effort. “It’s 
very important that we make it easy for NIH researchers 
to access data and compute on the cloud and in so doing 
share data,” he says. From a financial point of view, having 
NIH principal investigators each build their own computer 
facilities for these big data comparisons will end up costing 
billions more than if researchers can work together in a 
common computing environment with competitive pricing, 
he says. But the important thing is the science. “You can’t 
make progress unless you can share data,” he says. “The 
technology exists to do it. It’s just the will and the organi-
zation. I think we’re at a critical point. We’re very enthusi-
astic about continuing to work on it.” 

Clue.io is a website with an API that provides a uniform programmatic inter-

face to all the transcriptomic datasets.  
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 BY MOHITH MANJUNATH, PhD, AND YI ZHANG,
Carl R. Woese Institute for Genomic Biology, 
University of Illinois at Urbana-Champaign

EXPLORING PATTERNS IN BIG DATA USING ClusterEnG, 
A CLUSTERING ENGINE FOR GENOMICS

In this age of genomic data deluge, research-
ers need integrated resources that can 
efficiently identify hidden structures in data. 

Researchers often use clustering, a popular 
machine-learning technique, to explore simi-
larities within data. But they must choose from 
several clustering algorithms that may yield dif-
ferent results depending on input data and algo-
rithm-specific metrics. Experimental 
biologists or even bioinformaticians 
may not be aware of the pros and 
cons of diverse clustering algorithms 
that vary in their complexity and ease 
of use; their ability to handle noisy 
data, outliers, or datapoints that aren’t 
well separated; their computational 
expense; and how well they work on 
non-linear datasets.

ClusterEnG is a web resource that aims to address 
that problem. First, it provides a tutorial that defines 
and describes the pros and cons of various popular 
clustering algorithms: k-means, k-medoids, affinity propaga-
tion, spectral clustering, Gaussian mixture model, hierarchi-
cal clustering and DBSCAN. Second, it offers the opportunity 
for users to upload a file with numeric data in a tabular format 
and perform clustering analysis on that data. If a user is not 
sure which algorithm to choose, ClusterEnG offers the option 
of selecting several algorithms to explore the results. This gives 
researchers an idea of the structure of their data (see Figure). 

ClusterEnG provides visualization of clustering results by per-
forming principal component analysis, a commonly used dimen-
sional reduction technique. The first three principal components 
of the input dataset are plotted two at a time for 2D visualization, 
while all three are also plotted together in 3D. The ability to pan, 

zoom and select datapoints in the 3D visualization is particularly 
helpful in revealing the hidden patterns in data. 

The user can also explore the similarities and differences 
between various algorithms by selecting one of the sample datasets 
available on the ClusterEnG site. One option is the NCI60 gene 
expression dataset, which provides data for cell lines from 9 differ-
ent types of cancer tissue of origin. Using this high-dimensional 
dataset for which the labels of the samples are known, users can 

see how some algorithms perform better at clustering different 
cancer types. For this dataset, for example, k-medoids and spec-
tral clustering prove to be better at clustering like with like. 

For high-dimensional datasets where the structure is 
unknown, the process of identifying the best clustering algo-
rithm for the data may require some biological intuition about 
the data’s structure as well as iterative trial and error—i.e., 
visualizing the principal component plots and experimenting 
with several algorithms until a meaningful pattern emerges. 

Clustering can be a powerful way to explore data, but it 
is important to understand which methods to use and how 
to use them correctly. By allowing users to explore their 
data using multiple clustering algorithms, the ClusterEnG 
web resource provides much-needed assistance for bio-
medical researchers dealing with Big Data. 

BD2K Tool Highlight
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This table compares clustering results and run-times for six different algorithms (col-

umns) applied across four input datasets (rows) with different structures (non-linear 

noisy circles, boxes with different densities, data with an outlier, and close boxes). Colors 

represent cluster labels. Spectral clustering and DBSCAN beat other methods when the 

dataset has circular structure and boxes with different densities (top two rows). For the 

second type of dataset, affinity propagation works better than others in most cases. 

The third dataset includes an outlier not far from the clusters, and Gaussian mixture 

model clustering does best at finding the outlier. The last row shows a dataset with 

four clusters, two of them are close to each other. All the algorithms do well, but the 

ways they partition the two close clusters are different. Image courtesy of the authors.
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Seeing Science

VISUALIZING HUMAN GENOME VARIATION

Humans share 99.5 percent of their DNA sequence, 
but that still leaves plenty of variation to go around. 
To get a handle on which variations contribute to 

health or disease, researchers typically compare individuals’ 
genomes to a single “reference” genome that represents an 
assemblage of very high quality human genome sequences. 

But now researchers are envisioning a better way to think 

about reference genomes by building a genome graph that 
represents not just a single linear genome but also known 
variation. “The graph is this comprehensive representation 
of human variation that allows us to have a discourse that 
computers can understand about all of the different ways that 
humans vary,” says Benedict Paten, PhD, associated research 
scientist at the Big Data and Translational Genomics 

(BDTG) BD2K Center at the University of 
California, Santa Cruz. 

BDTG is developing tools that Paten says are 
“head and shoulders better” for understanding 
human genome variation than what can be done 
with just a linear reference genome. Alongside 
the applications that enable analysis of the human 
genome variation map, Paten’s team is creating 
a visualization tool that shows the way different 
humans are explicitly represented within the graph. 
“These are pretty pictures that make intuitive 
sense,” Paten says. 

“The work started out largely theoretical but is 
really moving toward something that we think will 
have wide-scale practical application in the next 
few years,” Paten says. 

BY KATHARINE MILLER

This prototype visualization of a genomic variation graph zooms in on portions of the NOTCH2 

gene, an important gene for development. The colored bands represent 5 different variants of 

the gene, with rectangular shapes representing nodes (shared DNA sequences) and the colored 

ribbons between nodes representing paths/edges (not sequences). In the top panel, introns are 

shaded out (at right and left) while the solid colors represent exons 4 and 5. The 

exons are shown in increasingly greater detail in the bottom two panels. The 

visualization tool can also provide an intuitive graphical view of inversions, as 

shown in the green and red loops in the simulated example to the right.  Images 

courtesy of Wolfgang Beyer, software developer for the Computational Genomics 

Laboratory at the University of California, Santa Cruz.


