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g u e s t  e d i t o r i a l

T he hype around wearables is deafening.
I say this from the perspective of someone
who saw their application in chronic ill-

ness management more than 15 years ago. Of
course, at that time, it was less about wearables
and more about sensors in the home, but the
concept was the same.

Partners HealthCare has been committed
to technology-enabled care for nearly two
decades. Over the years, we’ve seen growing
signs that wearables were going to be all the
rage. In 2005, we coined the term ‘Connected
Health’ and the slogan, “Bring health care into
the day-to-day lives of our patients,” shortly
thereafter. About 18 months ago, Partners
Connected Health launched Wellocracy, an
online community designed to educate con-
sumers about the power of self-tracking as a

tool for health improvement. All of this atten-
tion to wearables warms my heart.  

Sarah C.P. Williams has written an informa-
tive feature story in this issue that clearly defines
what is required to make these technologies ap-
plicable in healthcare and what to do with all of
the patient data being collected. Based on our
clinical research at Partners, including connected
health programs in chronic disease management,
adherence and wellness, we have verified many
of the principles mentioned in this article.

To add further perspective, there are a few ad-
ditional concepts that I believe we must get
right in order to harness mobile technology. Re-

GuestEditorial

search has shown that people
check their mobile phones up-
wards of 150 times per day. So how do we
leverage mobile health to make health and well-
ness as addictive?

Making health addictive is really about har-
nessing the power of our fascination with mobile
devices, particularly smartphones. Could we in-
duce permanent behavior change if we put a
personalized, relevant, motivational and unob-
trusive message in front of you some of those
many times you check your mobile device?

Today, most healthcare app development is
still confusing education with inspiration. We are
learning a great deal about how to empower pa-
tients to self-manage their health, and what to
do with all of this patient-generated data. The
one critical element we must get right is how to

‘sell’ health to consumers and keep them coming
back for more. Again, it’s got to be personal, mo-
tivational and ubiquitous.

Looking ahead, we must ask the question, is
the future of patient-generated data migrating to
the mobile phone or will it move into the realm
of micro-sized wearable seeds, ingestibles, in-
jectables, bandaids and the like? There are also
many more health sensing applications than just
pure activity tracking, such as continuous heart
rate or blood pressure monitoring. 

The power of sensor-generated data in per-
sonal health and chronic illness management is
simply too powerful to ignore. nn
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In order for computers to extract knowledge from the
vastness of all biomedical literature, the machines
must first determine the structure of the natural lan-

guage text—what are the nouns and verbs and what is
their role in each sentence. But transforming such a large
body of literature into a series of dependency trees not un-
like the sentence diagrams of old-time grammar classes
requires millions of CPU hours.
Fortunately, researchers associ-
ated with the Mobilize Center
have completed this prepro-
cessing task for several large
biomedical literature datasets
(including PubMed Central’s
Open Access Subset, PLoS and
BioMed Central)—and are of-
fering the marked-up resources
for use by others.

“We’re really excited that
we’ve been able to preprocess
these datasets and make them
available,” says Chris Ré, PhD,
assistant professor in the com-
puter science department at
Stanford University. “Now other
researchers who want to prospect
the scientific literature and per-
form natural language processing
can get all that detailed markup
for free. We hope they find
something interesting with it.”

Most labs can’t afford to pre-
process such a huge amount of
literature, Ré says. But in col-
laboration with the Center for High Throughput Com-
puting at the University of Wisconsin, Ré’s group
gained access to many hours of computational time
using the Open Science Grid.  This allowed them to
mark up large volumes of creative commons literature
for their own work—and now offer it to others. 

Before the end of 2015, Ré plans to use DeepDive, a
free, open-source, probabilistic inference engine developed
by his lab, to go a step further with his natural language
processing (NLP) analysis of the biomedical literature and
release those results for free as well. If one thinks of NLP
preprocessing as identifying the nouns, verbs, and objects

(x inhibits y, for example) then DeepDive might be deter-
mining the nature of the entities—whether x and y are
genes or proteins, for example—as well as the genes’ or
proteins’ relationship to some specific disease term de-
scribed in the same paper. “These inference or entity res-
olution problems are very challenging computationally as
well as challenging to get high quality on,” Ré says. But

DeepDive has proven adept at the task, sometimes out-
performing expert annotators.

How it works:  Domain experts specify the kinds of
relationships or features they are interested in. They
might provide examples from ontologies or a sample of
manually curated data, or they might just explain to
DeepDive researchers how to reason with the data.  “We
take that specification and translate it into a large prob-
abilistic inference problem,” Ré says. “We solve that and
produce data for the researchers.” It’s an iterative
process—the researchers look at what comes out and give
feedback that is used to train the system over time, so it
can extract the entities or relationships more robustly. 

But the release of the NLP datasets should be useful to
people even if they don’t use DeepDive, Re says. Right
now, people are still just downloading the datasets and
poking around. “The excitement is: we’re giving away
data,” Re says. “If it’s useful to anyone, send us a note.” nn  

MobilizeNews

DETAILS 

The DeepDive Open Datasets are available at
http://deepdive.stanford.edu/doc/opendata/ 

Screenshot from the DeepDive Open Datasets web page offering preprocessed NLP analysis
of the open access portion of PubMed Central. 

BY KATHARINE MILLER

Giving Away the NLP Store
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Each cell in a person’s body contains the same three
billion letter DNA encyclopedia. But the many
different cell types throughout the body (brain,

bone, heart, skin, etc.) represent different readers of that
encyclopedia who have each highlighted their favorite
parts, dog-eared certain pages, annotated interesting para-
graphs, and crossed out things they find dull or uninter-
esting. These markings constitute the epigenome. “The
epigenome tells us what are the important parts to read,”
says Manolis Kellis, PhD, professor of computer science
at the Massachusetts Institute of Technology (MIT). 

And now the marked up encyclopedias are available
to all. A February 2015 Nature paper by the
Roadmap Epigenomics Consortium, of which
Kellis is a part, reports that they have mapped the
epigenomes for 111 different human cell types.
In addition, the researchers compared the differ-
ent cell types’ epigenomic signatures and even
uncovered some possible ways the epigenome
may play a role in disease. 

Epigenetic changes in different kinds of cells
include such things as DNA methylation and
modifications to the histones around which DNA
is wrapped (like beads on a string) in the cell nu-
cleus. These kinds of changes affect which genes
in the cell are expressed at any particular time.  

To map all such changes for 111 different
human cell types—an enormous task in itself—
the Consortium used a variety of assays to pull
out the modified parts of the genome and then sequence
the attached DNA to determine its location in the
genome. This produced an epigenomic map showing
each kind of modification for each type of cell.  

The next step, Kellis says, was to figure out how the
marks have meaning. For that, he and his colleagues
turned to hidden Markov models capable of identifying
underlying patterns in the epigenome maps. “Some pat-
terns happen at the starts of genes; others in the gene;
others in places that are repressed,” Kellis says. These
patterns revealed regulatory modules of coordinated ac-
tivity as well as their likely activators and repressors.  

Once that was understood, Kellis says, “Then we could
start studying the differences.” And some interesting ones

were noted. For example, many cells derived from embry-
onic stem cells clustered closely with other embryonic stem
cells rather than their corresponding tissues, suggesting their
stem cell nature was still predominant. For one particular

enhancer signal, fetal brain and germinal matrix cells cluster
with neural stem cells rather than adult brain cells.

Going a step further, the researchers looked at how the
epigenomic data sets squared with disease-associated vari-
ants identified in various genome-wide association studies
(GWAS). In many cases, disease variants were enriched
in epigenomic modifications for trait-specific tissues. For
example, the team looked across the genome at all the ge-
netic variants associated with blood pressure and found
that they tend to be active in cells in the left ventricle of
the heart. “These are genetic differences that affect the
circuitry that turns the genes on and off,” Kellis says. Thus,

the way cells are controlled in the left ventricle has some-
thing to do with how much pressure builds up.     

A separate Nature paper by the Consortium also re-
ported that the epigenomic signature for a cancerous
tumor could help identify the originating site of the can-
cer—a piece of information that is sometimes unknown
and confounds appropriate treatment. 

This work is important, Kellis says, because it provides
access not just to the protein coding part of the genome,

but also to the hidden control circuitry. “We can read the
circuitry of the genome and understand which genes are
active and use that to understand where the genetic pre-
dispositions to disease lie within the genome,” he says.  nn

Big DataHighlight

Researchers have sequenced the epigenomes of 111 different human cell
types. Reprinted by permission from Macmillan Publishers Ltd: Roadmaps
Epigenomic Consortium et al., Integrative analysis of 111 reference human
epigenomes, Nature 518:318 (2015).

111 Reference Human Epigenomes

BY KATHARINE MILLER
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Some biomedical researchers are serious
about games.
“Just because something is a game does

not mean it is childish,” says Ingmar Riedel-
Kruse, PhD, assistant professor of bioengi-
neering at Stanford University.

Indeed, the so-called serious games move-
ment has established that games in general—
and electronic games in particular—can
serve as tools for accomplishing meaning-
ful goals, like helping people to improve
their eating habits or understand the fed-
eral budget.

For his part, Riedel-Kruse has developed
a number of “biotic games” that employ real
biological materials. Right now, these are
primarily educational in nature, allowing
players to influence, observe, and under-
stand the behavior of simple living organ-
isms. In PAC-mecium, for example, players
use something resembling a conventional
videogame controller to herd a flock of ac-

tual paramecia, single-celled organisms that
live in ponds and respond readily to mild
electrical stimulation. The paramecia are
represented on a monitor by a digital image
of a fish; and while players can also watch
real-time video of the tiny creatures swim-
ming about and changing direction in re-

sponse to electrical fields, the fun lies in
using their digital fish avatar to gobble up
virtual yeast pellets while trying to avoid
the bite of a predatory zebrafish.

There have been a handful of notable
cases in which researchers have used online
games to crowdsource solutions to big bio-
logical problems. The most famous of these,
Foldit, relies on players (or citizen scien-
tists, as they are known in research circles)
to find novel ways of folding proteins.
EteRNA, developed by scientists at Stan-
ford and Carnegie Mellon University, does
something similar with RNA molecules;
and EyeWire, which was spearheaded by
Princeton neuroscientist Sebastian Seung,
PhD, has gamers map the three-dimen-
sional structure of neurons in the retina.
The results can be impressive: In a paper
published last year in the journal Nature,
Seung and his co-authors drew on the work
of thousands of EyeWire players to help ex-

plain how eyes detect motion.
Still, games that are used to advance bio-

medical research remain rare enough to gar-
ner attention just for their sheer novelty.
But that may be about to change.

Last December, the National Institutes
of Health (NIH)sponsored a two-day work-

shop at the National Cancer Institute’s
(NCI) Shady Grove facility in Rockville,
Maryland. On the agenda: exploring how
games could be used for biomedical re-
search, and how the methods and tech-
nologies that game developers rely upon
might also be exploited by scientists.

The benefits could be substantial. The
avalanche of data available to researchers is
fueling demand for new and better tools to
analyze and understand it—tools that use
methods such as crowdsourcing and data vi-
sualization to discover patterns and solu-
tions that might otherwise go unnoticed.
As it turns out, game developers have been
refining such methods for years.

Bringing Game 
Thinking to Biomedicine

“Game developers are computer scientists
who just happened to go into a slightly dif-
ferent field,” says David Miller, PhD, AAAS
Science and Technology Policy Fellow at the
NCI and one of two lead organizers of the
December event. His fellow organizer, Jen-
nifer Couch, PhD, who leads the Structural
Biology and Molecular Applications Branch
at the NCI, adds that biomedical researchers
have watched with considerable envy as
game developers have succeeded in visualiz-
ing and manipulating complex systems for

SERIOUS GAMES AND BIOMEDICAL RESEARCH:
What Do Game Developers Bring to the Table?

In the biotic game PAC-Mecium, players redirect the movements of actual live paramecia by chang-
ing the surrounding electric potential.  Reprinted from H. Riedel-Kruse, A. M. Chung, B. Dura, A. L.
Hamilton and B. C. Lee, Design, engineering and utility of biotic games, Lab Chip, 11:14-22 (2011). 
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entertainment purposes, getting large num-
bers of people to work together online. 

Riedel-Kruse, meanwhile, points out that
game developers are also highly adept at
motivating players, designing incentives to
keep them engaged, and building interfaces

that help them learn how to play as they
progress through the game itself. Both sci-
ence and games involve problem-solving, he
says, but game developers are the ones who
have figured out how to encourage volun-
tary participation by making their products
fun, even if they may also be frustrating.
That skill could prove useful not only for
building online research-oriented games ca-
pable of marshaling thousands of citizen sci-
entists, but also for developing digital tools
to make the more tedious tasks involved in
biomedical research—like tracking the po-
sitions of individual cells in a sample—more
bearable for professional scientists toiling
away in their labs.

The workshop, which was sponsored by
the NIH’s Big Data to Knowledge (BD2K)
initiative—a program that aims, among
other things, to develop the methods and
tools necessary to analyze biomedical Big
Data—and formally titled “BD2K Think
Tank: Game Developers and Biomedical
Researchers,” was therefore intended not
only to generate ideas for new games that
could help solve specific problems, but also
to explore how scientists might benefit
from what game developers sometimes call
game thinking. “The way that game devel-
opers think about problems is different
from the way in which bioinformaticians
think about problems,” Couch says. “How
can we bring some of that thinking into
biomedical research?”

Making that happen will require a good
deal of effort on both sides. The workshop
participants—nine biomedical researchers
and ten game developers—were all chosen
in part for their open-mindedness, but that
didn’t mean they knew much about their

counterparts’ work or methods. Indeed, just
getting up to speed on the basic science in-
volved in biomedical research is going to be
a challenge for game developers, says Ben
Sawyer, a leading figure in the realm of se-
rious games who co-chaired the event and
recruited the developers—though he adds

that they’re up to the task, and even look
forward to it. (Sawyer co-founded Games
for Health, a grassroots network funded by
the Robert Wood Johnson Foundation that
supports the development of health games
and technologies.) Researchers, mean-
while, are going to have to get their minds
around an entirely different way of ap-
proaching problems. Whereas scientists
tend to begin by looking at big questions
and try to design experiments that will an-
swer them, says Couch, game developers

work more iteratively, jumping right into a
project and allowing the solution to reveal
itself—often in a form that they might not
have envisioned. “We’re just worlds apart,”
says Markus Covert, PhD, an associate
professor of bioengineering at Stanford who
rounded up the researcher contingent and
acted as co-chair. 

Gamifying Research
In an effort to bring those worlds a bit

closer together at the workshop, Covert and
Sawyer engaged in a sample dialogue about
Covert’s work, which involves computa-
tional models of cellular activity and plenty
of live-cell imaging. Their back-and-forth
led first to a lively discussion among the
assembled game developers about how
Covert’s research could be “gamified,” fol-
lowed by a round of speed-dating sessions
that teamed each researcher up with several
game developers to brainstorm how games
might be used to help solve problems in-
volving large data sets. The topics ranged
from genomics to organic chemistry, and
the sessions touched upon everything from
the objectives of cancer researchers to the
potentially useful characteristics of games
like Pokémon and SimCity. 

In some cases, game developers were
able to quickly see the potential for turning
particular research problems into games.
And participants on both sides walked
away having made connections that could
lead to future collaborations. Riedel-Kruse,

for example, met a number of developers
whom he believes could potentially help
refine his biotic games; while Nick For-
tugno, a prominent game developer and
entrepreneur who teaches game design at
The New School’s Parsons School of De-
sign, is already in discussions with several
different researchers who attended the
meeting. But perhaps just as important, the
various parties involved also left with a bet-
ter understanding of the opportunities—
and challenges—that lie ahead.

In EteRNA, developed by scientists at Stanford and Carnegie Mellon, players design complex new
RNA molecules. The best designs are then synthesized in the lab. 
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Sawyer, for example, points out that re-
search-oriented games pose a unique prob-
lem for game developers: whereas the latter
typically know all of the rules of a game be-
fore they design it, they won’t have that
luxury when constructing games meant to
facilitate scientific discovery—games whose
very purpose will be to help lift the veil on
the unknown. Yet building games in the ab-
sence of all the rules not only flies in the
face of traditional game design; it could also
result in games that upend traditional
norms of gameplay. “Imagine if you only

knew 30 percent of the rules of chess,” says
Sawyer, “and I arranged the board in some
weird way that was still valid, and I said,
‘How did we get there?’”

Fortugno explains that this kind of un-
certainty about basic ground rules will make
it harder for game designers to evaluate the

solutions that players come up with, and
therefore to design incentives that will keep
them engaged. And the fun won’t stop
there: Once they’ve succeeded in establish-
ing evaluative criteria based on the limited

information that researchers can provide,
the developers will still have to gamify
those criteria in ways that will not only mo-
tivate players to win, but also produce sci-
entifically relevant results. “This,” says
Fortugno, “is an odd way to make games.”

On the other hand, researchers and de-
velopers alike see great potential in open-
ended, discovery-oriented games. Among
other things, such games could be used to
test researchers’ hypotheses and models by
having large numbers of people run amok
in gamified versions of them, identifying

aberrations and inconsistencies as only
game-obsessed players can. “That’s the
process of game design,” says Couch. “You
build a game and put it out there, and play-
ers find all the glitches and exploits very
quickly, figuring out where it’s broken.”
Similarly, research games could be ex-

tremely useful tools for attacking nebulous
problems involving large piles of data. “We
as humans are very, very good at seeing
anomalies given the right type of data, pre-
sented in the right way,” Miller says. And

Sawyer contends that that the unusual
challenge posed by research games could
spur developers to discover new ways of de-
signing systems to deal with unknown rules
and data structures, resulting in games—
and outcomes—that go beyond anything
achieved thus far.

Where this may lead, only time will tell;
and there will be plenty of practical hurdles
to overcome, like finding ways of connecting
scientists and game developers who inhabit
completely different professional networks,
and figuring out how to fund their collabo-

rations. But Couch and Miller are already
considering ways of continuing the conver-
sation between researchers and developers,
perhaps through boot camps or short courses.
And in a telling sign, the BD2K initiative re-
cently announced a new funding opportu-
nity to support the development of “new or

significantly adapted interactive digital
media that engages the public, experts or
non-experts, in performing some aspect of
biomedical research via crowdsourcing.”

Let the games begin.  nn
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Game developers who attended the NCI think tank pondered whether popular, open-ended games such as SimCity (pictured) and Minecraft could
serve as models for biomedical research games.
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could lead to novel ways of crippling these
creatures as well as ways to engineer viruses
for therapeutic purposes. 

Spring-Loaded DNA
To cram their genetic material inside a

capsid, DNA viruses employ some of the
most powerful molecular motors in nature.

It takes a lot of energy to bend the stiff dou-
ble helix and overcome repulsive forces be-
tween strands. Once squished inside the
capsid, the genome waits ready to spring

out at the moment of infection, a process
called DNA ejection. “We suspected that
there is a one-to-one relationship between
the way the DNA is packaged by the mo-
tors and the dynamics of ejection,” says
Murugappan Muthukumar, PhD, profes-
sor of polymer science and engineering at
the University of Massachusetts, Amherst.

His team explored the connection between
packing and ejection in bacteriophage in a
2013 paper in Biophysical Journal.

Muthukumar’s team modeled DNA as

Zooming in on a virus reveals a physical
marvel. It can stuff a genome into a con-

fined space (a protein casing called a capsid).
It can eject its genome rapidly and fluidly
into a cell. And it can coat itself in a piece
of host cell membrane (a lipid envelope) to
avoid detection by the host’s immune sys-
tem. To better understand how viruses per-

form these parlor tricks, some scientists are
turning to physics-based computer simula-
tions. These methods are revealing some un-
expected vulnerabilities in viral design that

VIRAL PHYSICS LESSONS:
Simulations Offer Novel Insights

These screenshots show the progress of a DNA viral packing simulation from initial entry of the DNA to near completion. In repeated simulations, the
researchers found that DNA organization after packaging varied and also depended on motor force. Courtesy of: Murugappan Muthukumar.
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a wormlike chain of charged beads on a
string. In their simulation, the motor
stuffs the rope-like molecule through an
opening in the capsid; after packing is
complete, the DNA is allowed to sponta-
neously eject from the same portal. As ex-
perimentalists had previously observed,
they found that the motor frequently stalls
during packing. Experimentalists have
blamed the pauses on motor choppiness,

but Muthukumar’s team showed that the
DNA chain sometimes bunches up, and
takes time to relax and make room.

They also showed that packing occurs
slightly differently every time and is more
variable and disorganized at higher motor
speeds. The more ill-ordered the packing,
the more inconsistent the ejection kinetics.
“We watched each DNA monomer as it
was coming out. We could see whether it
was wrapping around, going in the wrong
direction, or going in an orbital-like move-
ment.” They found that if DNA ap-
proached the exit portal at the wrong angle,
it would become jammed, causing ejection
to pause as the molecule straightened out.
A 2014 paper in PNAS confirmed their pre-
dictions with experimental data.

These observations could be exploited
therapeutically. For example, therapies
could be developed to speed up the molec-
ular motor enough to make packing more
disorderly, causing the DNA to become
stuck in the capsid. Or treatments might
mess with the DNA inside the capsid, pre-

venting it from achieving an effective exit
path, Muthukumar says.

Self-Compacting Genomes
Unlike DNA viruses with their power-

ful molecular motors, many single-stranded
RNA viruses pack their genomes with no
help. Their RNA strands fold sponta-
neously into space-saving structures, and
the protein capsid takes shape around
them. Luca Tubiana, PhD, postdoctoral
fellow at the University of Vienna, won-
dered how RNA viruses manage that task.
“Viral RNA are more compact than com-
pletely random RNA,” he observes. So, he
hypothesized, perhaps their compactness is
the result of evolution. 

In a recent paper in Biophysical Journal,
Tubiana and his colleagues put that ques-
tion to the test. The team mutated the
genomes of 128 different single-stranded
RNA viruses in silico using only synony-
mous mutations, which do not change the
amino acids encoded. Then they used soft-
ware to predict how the RNA would fold.
Strikingly, mutations in just five percent of
the genome were sufficient to wipe out
genome compactness. This was true even if
they preserved codon bias (the fact that
some codons occur more frequently than
others) and restricted mutations to protein-
coding regions. “This strongly indicates
that this compactness is evolutionarily se-
lected for,” Tubiana says. These viral RNAs
don’t just code for specific proteins but also
for physical shape, he concludes.

This knowledge could be useful in the
design of antiviral drugs. “In principle, one
may be able to destroy this physical com-
pactness and therefore hinder the repro-
duction of the virus,” Tubiana says. Plus,
scientists are hoping to exploit viruses for
therapeutics, such as engineering anti-
cancer viruses. Understanding how capsid
assembly works naturally will make this
task easier.

Single-stranded RNA viruses
don't require a motor to pack

their genomes into the capsid.
Rather, the capsid self-assembles around the
RNA, which has evolved to have an extra-com-
pact structure. Here, capsid proteins gather
around a virus’s single-stranded RNA. Courtesy

of: Cristian Micheletti, International School for
Advanced Studies.
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The Physics of a Virus’s Shield 
Many of the world’s deadliest viruses—

including Ebola, HIV, and flu—are encased
in a lipid envelope that shields them from
the host immune system. Newly formed
viruses steal pieces of the host cell mem-
brane, into which they insert the viral
spike proteins that will be used to latch
onto new host cells. In a recent paper in
Structure, scientists reported the first mi-
crosecond-timescale simulation of an in-
fluenza A virion’s envelope. Their goal:  To
gain insight into the flu virus’s biophysical
behavior, says lead author Tyler Reddy,
PhD, a postdoctoral fellow at the Univer-
sity of Oxford.

They based their models on abundant
experimental data, including viral protein
structure as well as the lipid composition of
the envelope. “The details, the shapes of
the models, come from experiments. But
these experiments are largely static. With
computer simulation, we can animate the
system,” Reddy explains. “Basically, New-
ton’s laws of motion are being used to allow
the atoms to wiggle and jiggle over time.”

His team first modeled the envelope as
a lipid ball in a water droplet. Once the ball
(vesicle) relaxed into equilibrium, they in-
serted viral spike proteins into the model
and capped some lipids with sugars to fash-
ion the glycolipids that account for 12 per-
cent of the envelope. Though the model
was coarse-grained to reduce computational
demands, their five-microsecond simula-
tions still took a year to run on a high-per-
formance supercomputer.

The simulations revealed that the sur-
face glycolipids slow down the movement
of both spike proteins and lipids. “That
makes sense because they’re basically these
physical obstructions on the surface of the
virus,” Reddy says. Low envelope mobility
may help explain how flu viruses can sur-
vive in water for up to three years, he says.
Reddy’s team also showed that the spike
proteins don’t clump in the presence of gly-
colipids, which likely facilitates host cell
binding but may also make the virus vulner-
able to host antibodies.

Reddy’s team is working on a bigger sim-
ulation that incorporates both the flu virus
and the host cell membrane to see how they
interact. Eventually, they hope to use their
model to probe how flu virions respond to
different drugs.

These computer simulations reveal new
insights into how viruses reproduce and
spread. Beyond the implications for medi-
cine, viruses’ slick anatomies also evoke
wonderment. Muthukumar says: “Viruses
are very beautiful objects.”  nn

In the future, scientists from the University of Oxford plan to build on their flu envelope model; for
example, they may simulate its interaction with a host cell membrane, as pictured in this cartoon.
Courtesy of: Heidi Koldsoe, University of Oxford.



a list of some 500 genes
expressed at different
levels in cancer versus
normal cells. While a re-
searcher might know
something about one or
two of those genes, Su
notes, “I need to quickly
get up to speed on the
other 498 that I’m not fa-
miliar with—to under-
stand if they’re relevant
to my system or worth
further study.”

Resources like Gene
Wiki require tons of
biocuration—the process
of combing through bio-
medical literature and
putting its content into
structured databases that
can be queried for statis-
tics and trends. The Na-
tional Institutes of Health
spends millions of dollars
each year hiring profes-
sional scientists to do
biocuration. “We hope
to make that process
more efficient by engag-
ing crowds,” Su says. “The more we can get
our crowd to do, the more professionals can
focus on really hard problems.”

Su’s eventual goal is to build a Network
of BioThings. This system would organize
the torrents of data that currently flood the
PubMed database at a rate of one or two
new articles per minute. “Keeping up with
the literature is incredibly hard,” Su says.
Rather than spending weeks scouring ab-
stracts, it would help if researchers could
glean their useful tidbits by querying a
knowledge base. Building it would involve
surveying publications for key “bio things”
—genes, proteins, mutations, diseases and
drugs—and documenting relationships be-
tween them.

Building and 
Debugging Databases

As a first step, Su and colleagues tested if
they could crowdsource this sort of biocura-
tion to lay people. Using Mechanical Turk—
a web platform for harnessing human
intelligence to do things computers can’t do
well—they asked workers to highlight dis-
ease-related terms in 593 PubMed abstracts. 

This job had previously been done by 12
professional biocurators working part-time
for a good part of the summer, an effort that
Su estimates cost tens of thousands of dollars.
With crowdsourcing, 145 lay workers com-
pleted the work in nine days. Each docu-
ment was scanned by 15 novices who earned
six cents per abstract. The upshot: Six

In pre-Internet days, people sought expert
advice for their purchasing decisions—

consulting product ratings in magazines
such as Consumer Reports and reading news-
paper reviews of local dining spots. Now,
many rely instead on feedback from ordi-
nary folks who post to websites like Ama-
zon or Yelp. The soaring popularity of such
online reviews signals the value of the
crowd: Even if any single lay opinion might
seem dubious, the wisdom of the group of-
fers a powerful source of information.

Biomedical researchers have watched
these developments eagerly. “Those of us on
the interface between technology and biol-
ogy were thinking, ‘Hey, how can we apply
crowdsourcing to problems and challenges
that we care about?’” recalls bioinformati-
cian Andrew Su, PhD, of Scripps Research
Institute in La Jolla, California. 

Data Deluge
In recent years, the potential value of

crowdsourcing has grown as biomedical re-
searchers drown in data. Advances in online
technology and DNA sequencing have
plunged biomedicine into a new era in
which genome-scale analyses churn out data
faster than anyone can make sense of it. 

So, for the last decade, Su’s research
group has reached out to crowds to organize
biomedical information. One of their first
projects was Gene Wiki, a collection of
10,000-plus pages with information on
human genes and proteins. The portal is
hosted on Wikipedia, the free online ency-
clopedia that made a splash in 2001 and is
now the world’s sixth-most-visited website
with 34.5 million articles written by more
than 53 million people worldwide. “None of
their content is created by paid individuals.
It’s all on the backs of volunteers,” Su says.
“It speaks to the power of crowdsourcing.”

The idea for Gene Wiki emerged as
genome-scale experiments became
more powerful and feasible. It’s not uncom-
mon now for a single experiment to produce

CITIZEN SCIENCE: 
Getting Cheap, Reliable Help from Lay Workers
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In the training phase of the Mechanical Turk project, lay workers
were given feedback on how well they did on a task, such as iden-
tifying disease names. Reprinted from BM Good, et al., Microtask
Crowdsourcing for Disease Mention Annotation in Pubmed Ab-
stracts. Biocomputing 2015: pp. 282-293. 
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who is allergic to its key ingredient, ace-
tominophen, which SNOMED knows is
the main ingredient of Tylenol. 

Asked to verify relationships and find mis-
takes in a subset of SNOMED CT terms, lay
workers performed “on par with experts” and

cost one-fourth as much, Mortensen says. He
was the lead author on a November 13 paper
reporting these findings in the Journal of the
American Medical Informatics Association.

Many Eyes Make Light Work
Crowdsourcing has also proven useful for

annotating images—a huge need in cancer
research. Despite tremendous advances in
molecular biology that allow researchers to
probe thousands of genes and proteins
within individual cells, “the single most
useful tool for diagnosing cancer is a micro-
scope. It’s the convergence of all this com-
plex molecular data,” says Andrew Beck,

MD, PhD, a molecular pathologist at Beth
Israel Deaconess Medical Center in Boston. 

Training computers to correlate molecular
and microscopy data could help physicians
tell if a tumor is benign or malignant, or pre-
dict how it might respond to treatment, Beck

says. The challenge is getting enough anno-
tated images to build the algorithms. 

For a study he reported at the January
2015 PSB, Beck and colleagues showed lay
workers a set of renal cell carcinoma images
and asked them to identify and delineate

the boundaries of nuclei, which contain the
cell’s DNA. The size and shape of the nu-
cleus, as well as how dark or light it appears
under a microscope, can help researchers
distinguish cancer cells from normal tissue.

On the first task —identifying nuclei—
automated approaches did about as well as
the crowd. However, for determining nuclear
boundaries, human eyes did considerably bet-
ter than state-of-the-art methods, Beck says.

Though this study only focused on two
small tasks, Beck says the approach could
be extended “to something as complex as
making diagnoses.” However, he notes,
computers won’t replace human expertise.

When a computational method adds value,
more people want to use it—which then
creates more complicated results to be in-
terpreted. “Ironically, the better the ma-
chines we have, the greater the need for
human experts,” Beck says.  nn  

novices in aggregate did as well as, if not bet-
ter than, one PhD biocurator, and at a frac-
tion of the cost ($631 total including time
for training). Su reported these results at the
Pacific Symposium on Biocomputing (PSB)
held January 4 – 8 in Hawaii. And Su has re-

cently shown that the same work could be
done just as reliably—and free of charge to
the researchers—on the Mark2Cure.org site,
which allows interested people to volunteer
their time to contribute to research. In May,
Mark2Cure launched a biocuration cam-
paign aimed at aiding rare disease research.

In addition to building databases, crowd-
sourcing can help fix them. Mark Musen,
PhD, and Jonathan Mortensen of Stanford
University sought crowd help to find errors
in SNOMED CT, a set of clinical terms and
concepts becoming more critical as hospitals
switch to electronic medical records. For ex-
ample, typing “Tylenol” into a SNOMED
system could warn a physician to avoid
prescribing this medication to a patient

Lay workers assigned the task of determining
nuclear boundaries of potentially cancerous
cells did a better job than state-of-the-art auto-
mated methods. These slides show two exam-
ples (top and bottom) of nuclear segmentation
using an automated method and three increas-
ing contributor skill levels. Green region indi-
cates a true positive region, yellow region
indicates a false negative region and blue region
indicates a false positive region. Reprinted from
H. Irshad, et al., Crowdsourcing image annota-
tion for nucleus detection and segmentation in
computational pathology: Evaluating experts,
automated methods, and the crowd, Biocom-
puting 2015, Proceedings of the Pacific Sympo-
sium, pp. 294-305.
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A t a 1906 county fair in England, some
800 villagers tried to estimate the

weight of an ox. None of the contestants
hit the mark, but a closer look at their
guess cards led to a stunning discovery.
Stacking the estimates from lowest to high-
est, the middlemost value came within 0.8
percent of the ox’s butchered weight—
closer than individual guesses submitted by
cattle experts. Published in 1907, these
findings on the statistical concept of me-
dian were among the first to demonstrate
the wisdom of crowds.

A century later, leaders of the genomic
revolution are summoning “crowds” to
tackle some of the toughest problems in
modern medicine. These aren’t crowds of
ordinary townsfolk—or even biologists,
necessarily. Many train in fields such as
computer science, engineering or statistics
and spend far more time staring at numbers
and graphs than scrutinizing cells under a
microscope. They’re part of a collaborative
initiative called DREAM (Dialogue on Re-
verse Engineering Assessment and Meth-
ods). Since 2007, the group has organized

more than 30 open science competitions
drawing diverse experts to complex bio-
medical questions. Wooed by prize money
and opportunities to publish their ap-
proaches in top journals, researchers around
the globe have developed computational
models for a variety of translational medi-
cine challenges, including predicting drug
responses and disease outcomes.

DREAMing of Better Solutions
For systems biology, the crowdsourcing

concept emerged as scientists were faced

with organizing huge piles of data coming
out of DNA microarray experiments. Mi-
croarrays measure the expression of thou-
sands of genes at once, comparing their
levels in groups of cells under normal versus
disease conditions, for instance. But mas-
sive lists of differentially expressed genes by
themselves aren’t that useful. Researchers
want to understand how the genes are
connected, such as whether they encode
proteins that interact or regulate other
genes, says computational biologist Gustavo
Stolovitzky, PhD, of IBM Research and the

CROWDSOURCING TO EXPERTS: 
The DREAM Challenges
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Icahn School of Medicine at Mount Sinai
in New York, one of DREAM’s founders. 

Computational scientists have assem-
bled networks using algorithms that re-
verse-engineer or infer gene relationships
from data. However, some worry that vali-
dating these approaches relies too much on
cherry-picking. By focusing on connections
that seem consistent with prior publica-
tions, “you’re selecting what works for you
but forgetting the ones that might not be
working,” Stolovitzky says. 

DREAM originated as a way to evaluate
these network inference algorithms. Open
competitions allow participants to see which
schemes work and which don’t. Soon, the
group realized DREAM challenges could do
more than assess methods—they could ac-

celerate research. By focusing a community
of experts on a specific problem for a limited
time, work that might take 10 years in a sin-
gle lab could be done by the crowd in several
months. Reliability also got a boost. “When
we aggregate the solutions from all partici-
pants, the resulting solution is often better
than the best,” Stolovitzky says.

Challenge: 
Predict Cancer Drug Responses

Several papers published last year in
Nature Biotechnology highlight DREAM
challenges aimed at developing rational
approaches to predict how cancer patients
respond to treatments. These days, choos-
ing drugs involves a fair amount of guess-
work, unless the patient happens to have a
gene mutation known to drive that partic-
ular cancer. In one challenge, the DREAM
coordinators gave teams genomic, epige-
nomic and proteomic profiles for 35 breast
cancer cell lines as well as information on
how the cells respond to treatment with a
group of drugs. The teams were then asked
to predict how well a different set of 18 cell
lines would respond to those drugs, given

only their genomic, epigenomic and pro-
teomic profiles. 

The 44 algorithms submitted by the re-
search community suggest it is possible to
develop rational approaches for predicting
drug responses. However, their predictions
are “not yet as good as we would like,”
Stolovitzky says. Asked to rank cell lines
from most to least sensitive for each drug
tested, the top model ordered 60 percent of
cell line pairs correctly. By comparison, “a
monkey doing this task would be right half
the time,” notes Stolovitzky.

In a related DREAM challenge, partici-
pants devised algorithms to rank 91 pairs of
compounds on how strongly they enhance
or sabotage each other’s effects—otherwise
known as synergism and antagonism. This

challenge proved harder—only 3 of 31 sub-
missions performed better than random
guesses. However, the top methods were
based on different hypotheses about how
synergism and antagonism work—and com-
bining them produced better results and
provided insights into how drug interac-
tions might work.

Thus, “while the results are not immedi-
ately applicable to the clinic, they begin to
establish the rules and types of data needed
to predict accurately the correct drug regi-
men,” says Dan Gallahan, PhD, who directs
cancer biology research at the National In-
stitutes of Health (NIH) in Bethesda, Mary-
land. “This is the type of research needed to
make precision medicine a reality.”

Challenge: 
Predict Neurodegenerative 
Disease Progression

One of the more successful DREAM ini-
tiatives offered $50,000 for the computa-
tional approach that could most accurately
predict disease progression in people with
amyotrophic lateral sclerosis (ALS). This
neurodegenerative disorder has no effective

treatment, and the disease course varies
widely between individuals. Most patients
die three to five years after symptoms ap-
pear, but some make it 10 years past onset. 

Disease variability is a big challenge for
the field, says neurologist Merit Cudkowicz,
MD, MSc, an ALS specialist at Massachu-
setts General Hospital in Boston. It means
clinical trials need to be large for tested com-
pounds to show an effect. The heterogeneity
also suggests different biological mechanisms
could be at work in patients who decline
more quickly or slowly. So “maybe there will
be therapies that work in some people but
not in others,” Cudkowicz says.

Challenge organizers supplied competi-
tors with three months of lab test data as
well as demographics and family history for

1,822 people enrolled in ALS clinical trials.
DREAM teams were then asked to predict
each participant’s disease progression over
the subsequent nine months.

The ALS challenge drew 1,073 regis-
trants from 64 countries. Top-performing
models predicted disease outcomes better
than a panel of 12 experts, and the win-
ners “didn’t know anything about ALS,”
Stolovitzky says. 

Statisticians estimate that the best two al-
gorithms could reduce the size of ALS clini-
cal trials by 20 percent. For a 1,000-patient
Phase 3 trial, that would save $6 million.
One company—Origent Data Sciences in
Vienna, Virginia—is working to incorporate
new predictive analytics into future ALS tri-
als. By estimating how a patient’s symptoms
would progress without the intervention,
these tools are particularly useful in early tri-
als that lack placebo arms, says Origent
CEO Mike Keymer.

Researchers won’t know the true impact
of DREAM algorithms for a while. But in the
meantime, the challenges have succeeded in
getting cross-disciplinary researchers out of
their silos and working together.  nn  
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In this future, devices on our wrists, in
our phones, or tucked in our pockets are
more than step-count monitors. They track
all aspects of people’s health and act as part-
counselor, part-physician, part-coach, alert-
ing us to health concerns or spurring us to
make lifestyle changes. Patients could be
alerted if they have signs of impending heart
failure, worsening Parkinson’s disease, or a
low blood sugar crash—among many other
things. Moreover, as devices funnel increas-
ingly large amounts of information to the
cloud, they give scientists a rich and ever-
changing platform to use for research—let-
ting them make new connections between
facets of people’s behavior and health that
have never been linked before.

Many of the arguments in favor of the
increasing use of mobile devices to monitor
patients center around preventive medi-
cine—the idea that many chronic diseases

such as diabetes and heart disease can be
prevented by changing people’s diets or ex-
ercise patterns, saving healthcare systems
vast amounts of money. 

“It’s easy to give a pill, it’s straightforward
to do a procedure, but to change patients’ be-
havior is the holy grail in medicine,” says
Alan Yeung, MD, La Ka Shing Professor of
Medicine at Stanford School of Medicine.
“Phones, together with wearable devices,
can for the first time provide some objective
evidence of behavior.” And once researchers
understand what influences behavior they
can set to work changing it. 

“The ultimate goal is to improve health
outcomes for people,” says Ray Browning,
PhD, associate professor of health and ex-
ercise science at Colorado State University.
“We have a lot of chronic disease in this
country that’s preventable with changes to
behavior.”

Today, mobile fitness devices are explod-
ing in popularity, but we’re only a small way
toward that vision coming true. “We’re at the
very beginning of mobile devices starting to
impact how medicine is being practiced,” says
Eric Topol, MD, a Scripps Research Institute
cardiologist who has written extensively
about the technological future of medicine.
He thinks the slope toward full adoption
likely has a hockey stick shape. “We’re start-
ing to get closer to that rapid rise.”

Interviews with a handful of researchers
and companies who are pushing the field
forward suggest that, while many of them
are making lofty promises for the future,
challenges remain: showing the clinical
utility of devices and apps through not just
anecdotes but well-designed clinical trials;
getting both doctors and patients alike to
buy into the use of the devices; and devel-
oping new computational methods to parse
the steady stream of data from the mobile
device fire hose. 

Get Moving
In the decades-off vision of wearable

health trackers, devices on our wrists or in
our pockets can collect all sorts of data
about our breathing and our eating and
markers in our blood. But for now, the ma-
jority of wearable medical devices are fit-
ness trackers that rely most heavily on one
piece of data: our movement. 

“The lower-hanging fruit in the field right
now is physical activity data because it’s so
ubiquitous,” says Ida Sim, MD, a co-director
of the Biomedical Informatics Institute at
the University of California, San Francisco,
as well as an investigator with Mobile Sensor
Data-to-Knowledge (MD2K), an NIH-
funded Big Data to Knowledge (BD2K)
Center of Excellence. “The thing being
measured is a physical quantity and it’s
pretty easy to represent and to calibrate
between devices.” 

Devices like the Fitbit, or numerous
phone apps, rely on accelerometers to tell
users how much they’ve walked each day.
Tiny crystal structures embedded in these
devices sense movement—as your arm
swings or your body moves up and down in
a tell-tale walking pattern—by detecting
changes to the direction they’re pulled by
gravity.  Then, they transmit a voltage re-
laying this information. It’s a relatively sim-
ple and cheap technology these days—the
accelerometer in the latest iPhone has an
estimated cost of 65 cents and the gyroscope
(a similar technology that detects the tilt of
the phone) costs less than two dollars. 

But—at least until now—that step count

My phone buzzes.
It’s Mood Matters, a mood-tracking app developed by the
startup Ginger.io. “We notice you haven’t logged any recent
physical activity,” it alerts me, linking to an article about the
connection between depression and exercise. I glance at the
band on my wrist, a Fitbit fitness tracker that’s unrelated to the
app, and see that I’ve only walked a measly 800 steps today. I
scroll over to see my heart rate—at least I’m relaxed, I think.  I
scan my to-do list and then stand up for a quick walk around
the block. Each step I take, eventually, is relayed to the cloud
and stored as a bit of information in a data center with all the
other steps people are taking around the world, forming a
massive data set describing when and how we move.

Right now, that data set—the vast amount of information
already collected by mobile health devices—is mostly looked at
through the lens of very basic statistics to answer questions of
curiosity. How many steps do American Fitbit owners walk, on
average? Which occupations are most active? Whose heart
rates spiked during the Super Bowl?

There’s a vision for the future, though, that is far more complex.
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on Your Sleeve:

Wearing
Your Health

How big data from mobile apps and 
sensors may revolutionize healthcare
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has rarely been linked to real health advice
beyond the idea that more activity can help
you lose weight and lower your overall odds
of a plethora of obesity-related chronic dis-

ease. Now, though, that’s starting to change.
Researchers are now seeking meaningful as-
sociations in the data deluge from early
adopters, with the ultimate goal of showing
that their app or device of choice can make
people healthier or less likely to develop
conditions like heart disease. 

Yeung, with colleagues at Stanford, has
developed MyHeart Counts, one of the apps
that Apple is touting as the future of its
smartphone and smartwatch-based tech-
nologies. When you download MyHeart
Counts—as roughly 26,000 people
did in the 24 hours after Apple’s
latest press conference on its new
open-source ResearchKit—you’re
asked a series of questions on your
lifestyle and family history of heart
disease. Then, using the iPhone’s
movement sensors, the app records
your every motion for seven days. 

“Using the gyroscope and GPS
on the phone, you can easily tell
whether someone is just sitting
around or whether they’re being
active,” says Yeung. If someone has
time, they can also take a six-
minute walk test—their phone
records how far they are able to
walk in that time period. It’s a clas-
sic test that’s been used by cardiol-

have to show that people who use it have
less disease—or longer lives—than those
who don’t. 

For now, Yeung and his colleague are
tracking whether those who continuously
use the app—and get reminders to exer-
cise—see a decrease in their computed
heart age.  Eventually, they’d like to test out
the app in patients who are at higher risk of
heart attacks, for example those who have
diabetes or have had heart bypass opera-
tions. Could an app tracking their behavior
signal which of these patients need doctors’
visits or new medication strategies?

“If we evolve the app to be more clini-
cally relevant, we’d like to give it to every
heart patient at Stanford,” Yeung says. 

The question remains whether re-
minders on an app or device are sufficient
to motivate behavioral change, says Brown-
ing, who collaborates with Stanford’s Mo-
bilize Center on a project that will apply
new analytical techniques to movement
data from devices and apps.

“I’ve never heard of a person who says,
‘The reason I don’t have a more active
lifestyle is because I don’t have a wearable
activity monitor to tell me how active I am,’”
Browning points out. 

He says that it will take massive public
health campaigns—ones he likens to anti-
smoking campaigns—to get activity on
people’s radar. Until then, the majority of
the population that already doesn’t spend

ogists for years, but usually relies on a stop-
watch and marks along the edge of a long
hospital corridor. With the phone app, users
can perform the test anywhere, and at the

end, MyHeart Counts
provides each user with a
calculated “Heart Age.”
“A person signing up
might be fifty years old,
but we might calculate
that their heart health is
more like that of a sixty
year old,” Yeung says.
Again, this computation

is not new—it is based on existing data pub-
lished by the American Heart Associa-
tion—but the app makes it more accessible
and understandable to the average person.
Yeung hopes it will motivate people to set a
goal of lowering their heart age. 

Like many other devices and apps,
though, the challenge with MyHeart
Counts is proving any sort of clinical utility.
Generally, to show that patients benefit
from an intervention (whether it’s a drug, a
counseling session, or a device), researchers Continued on page 18 

The Fitbit dashboard shows
users a variety of data
about their daily activities.
The data gathered could
help researchers discover
whether this kind of track-
ing can actually change
users’ behavior.

The MyHeart Counts app uses the
Apple ResearchKit (see sidebar) to col-
lect data on users’ cardiovascular health
and send them to Stanford researchers
who hope to learn how to motivate
users to become more active. 
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This spring, consumer electronics giant
Apple went from being an intermediary
in the mobile health market—their

iPhones could track steps or host third-party
fitness apps—to being a major stakeholder.
Apple’s jump into the big time could mean
good things for those who want to see mobile
health go mainstream.

“Personally, I’m excited to see the Apples and
Googles and Samsungs of the world take on
preventive healthcare,” says Ray Browning of
Colorado State University. “You’re talking
about a lot of horsepower all of a sudden
being thrown at these problems. And these companies
are historically highly successful at changing behaviors.” 

In March, Apple unveiled ResearchKit, which aims to trans-
form the way data for clinical trials is collected. ResearchKit
launched with five apps—including MyHeart Counts which
tracks cardiovascular disease (see main story). Other apps

log patients’ symptoms of diabetes, Parkinson’s disease,
asthma, and breast cancer. But the power behind Re-
searchKit is that the data isn’t just for patients’ own curios-
ity—it’s linked to research programs that want to use the
data to answer questions about diseases. The Wall Street
Journal reported that in the first month of availability,
more than 60,000 patients signed up for the apps—essen-
tially volunteering themselves as clinical subjects. 

Then, in April, Apple announced a second major collabora-
tion: a partnership between Apple, IBM’s new Watson
Health Cloud, Johnson & Johnson, and Medtronic. Together,
the companies are launching an effort to tailor data storage
and data analytics to clinicians. The data they try to har-

ness will be drawn not only from ResearchKit, but from
Apple’s earlier HealthKit, the basic suite of fitness apps that
comes pre-installed on iPhones. 

Already, a survey by Reuters news agency found that
more than half of the top US hospitals have rolled out
pilot programs using HealthKit. With patients’ consent,

doctors can view data collected by their smartphones and
add it to electronic medical records. Google and Samsung
have also launched collaborations with hospitals and
medical record providers to pair their software more
closely with clinicians. Like all mobile health efforts, how-
ever, it remains to be seen whether buy-in from these
major tech companies can not only streamline the way
data is collected, but change patient behaviors. nn

An App a Day 

KEEPS
the Doctor Away

“Personally, I’m excited to see the Apples and Googles and Samsungs 
of the world take on preventive healthcare,” says Browning. “You’re talking 
about a lot of horsepower all of a sudden being thrown at these problems. 

And these companies are historically highly successful at changing behaviors.”
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much time exercising isn’t about to pick
up a fitness tracker and start working out,
he says. 

Inside Your Head
If tracking movement with the aim of

preventing obesity, diabetes, and heart fail-
ure is the low-hanging fruit in mobile med-
icine, then tracking movement with the
aim of detecting downward spirals in de-
pression is the next branch up. People who
are depressed are less likely than usual to
call and text friends, more likely to stay
home, and less likely to exercise. And these
are all things that can be detected by a
smartphone’s call logs, text message records,
and gyroscope using an app such as Mood
Matters from Ginger.io. 

“Of course everybody deals with depres-
sion slightly differently,” says Joe Grim-
berg, head of marketing at Ginger.io. “But
clinically we know that social isolation
and physical lethargy are markers of de-
pression.”

By giving clinicians access to day-to-day
trends in patients’ activity levels, the app is
designed to detect when caregivers should
intervene to help patients who have depres-
sion, as well as guide psychiatrists’ conver-
sations with those patients, Grimberg says. 

They’ve partnered with psychiatrists at

the University of California, Duke, and
other medical research centers to test out
what happens when clinicians can see the
daily behavior patterns of their patients.
Each institution has launched slightly dif-
ferent trials using the app, targeting differ-
ent patient populations. Those pilot studies
are ongoing. At the University of Califor-
nia, San Francisco, teams of psychiatrists
and nurses are interacting with hundreds
of depressed people who were recruited on-
line, treating them and following their
moods with no face-to-face visits.  Instead,
doctors and nurses receive alerts if certain
behaviors are flagged—if a patient reports
that they’re hearing voices, or feeling sui-

cidal for instance. 
For now, the flagged behaviors that Gin-

ger.io uses to alert a medical team that it’s
time to call a patient are based on previous
knowledge of psychiatric disorders. Eventu-

ally, though, Ginger.io could use their data
to find new “flags” that inform clinicians of
how their patients are doing.  So far, most
of the data collected by Ginger.io—show-
ing that the app can, in fact, gauge depres-
sion severity—has been published in the
form of patent filings or presented at meet-
ings. The Ginger.io team and their collab-
orators, however, are aiming to publish
more recent studies on the effectiveness of
interventions in peer-reviewed journals. In
pilot studies, Grimberg says, they’ve gotten
overwhelmingly positive feedback from
both patients and providers. 

“The great thing about the smart phone
as a medical device is that it’s already a

part of most people’s daily life,” Grimberg
says. “Ninety percent of smart phone users
have their phone within three feet of them
all day.”

And an app like Mood Matters is more

“The great thing about the smart phone as a medical
device is that it’s already a part of most people’s daily life,”
Grimberg says. “Ninety percent of smart phone users have

their phone within three feet of them all day.”

Ginger.io is teaming with various research groups to determine whether their Mood Matters
app can help physicians intervene to help people with depression. Courtesy of Ginger.io.
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accurate at capturing a patient’s mood than
a questionnaire in a psychologist’s office,
the company has found—not only because
of its activity meter, but because of its built-
in questions and journaling function, which
give more frequent insight into a patient’s
feelings compared with reports gleaned at
occasional in-person appointments. 

Data from 
All Sources

Alex Markowetz, PhD, a computer sci-
entist at the Universität Bonn in Germany,
says that it’s not just smartphones that hold
the power to reveal someone’s behavioral
trends—it’s all the computers we interact
with every day. 

“Theoretically, we can track any human-
machine interactions,” Markowetz says. “A
smartphone works, but so does your email
client, or World of Warcraft, or Skype, or
your car or your fridge.” 

Markowetz’s group has already devel-

oped an app called Menthal Addicted that
tracks people’s smartphone usage, hoping to
pinpoint factors that make people more
prone to becoming addicted to technology.
Now, they’re teaming up with clinicians to
make Menthal Depressed, which, like Gin-
ger.io, uses a person’s phone to detect de-
pression; Menthal Skilled, which requires
users to complete a simple cognitive puzzle
to unlock their phone and could pinpoint
the earliest signs of dementia; and Menthal
Dopa, which uses a phone’s accelerometer
and gyroscope to detect hand tremors and
track the severity of Parkinson’s disease
over time. 

All the Menthal projects, Markowetz
says, are geared around the idea of getting
more constant data about a patient’s life to

inform a clinician.  
Right now, the typical clinican has two

ways to get information about a patient: a
questionnaire or an office visit. But these
isolated data points present a tiny frag-
mented view of mental health, Markowetz
says. “They are just poor ways to steer med-
ication or therapy.” 

To develop each Menthal app, Markowetz
closely analyzes how skilled doctors assess
the symptoms of patients they see. He then
tries to recreate that using sensors and the
right computational analysis. 

“A doctor might say, ‘I noticed that a
patient was slouching and looking down-
ward and that made me think they were
depressed’,” Markowetz says. “So then I
say, ‘okay what sensors can we use to de-
termine someone’s posture and the direc-
tion of their gaze?’”

But finding such sensors isn’t necessarily
easy. For example, there’s no device to
measure slouching right now, although
Markowetz suggests that a head-mounted
device like Google Glass might work. In
any event, it can take many iterations of
programming and analysis to fine-tune the
data signature that points toward a behav-
ior—differentiating slouching from nod-
ding, or eating from drinking, for instance. 

And making technology applicable to
healthcare requires more than the right sen-
sors and computational methods, Markowetz
adds. Sensors need to be unobtrusive and
require little buy-in from the patients. If
you ask someone to fill out a questionnaire
on their smart phone every day 365 days a
year, they’re going to get tired of it quickly.
Likewise, if you ask someone to wear a
soap-bar-sized sensor on their forehead
while they sleep, it likely won’t last long.
It will take small devices that require no
input from users to truly make mobile med-

icine applicable to the whole population,
Markowetz says. 

Beyond Step-Counts
The technology to detect a person’s steps

may now be ubiquitous, but to make mobile
medicine more broadly useful—beyond the

prevention of obesity and depression—will
take not only the most unobtrusive sensors,
but sensors that can detect physiology and
measures of health beyond movement. 

About five years ago, Emre Ertin, PhD,
an electrical engineer at Ohio State Univer-
sity who is also part of MD2K, developed
AutoSense, a sensor suite that contains a
one by two inch sensor that is worn on a
person’s chest. It is designed to track levels
of stress by measuring the electrical activity
of the heart as well as a person’s breathing
rate, temperature, and movement. As it
records the data, AutoSense streams it to a
cell phone. 

In 2012, Ertin’s research team turned to
developing a stress sensor that works wire-
lessly without touching the skin. The device
they came up with could fit in a pocket and
used radio waves to sense a person’s heart
and lung motion. But there was a problem:
The sensor was too sensitive to changes in
water content. “Wireless waves don’t move
well through water,” Ertin says. For measur-
ing stress, this was an annoyance: The team
had to figure out how to make the sensor
give consistent readings even if the body’s
liquid levels changed. “But then we got an
idea,” Ertin says. “Maybe we could use the
sensor to monitor lung fluid levels in con-
gestive heart failure patients.” 

Almost a quarter of patients hospitalized
for congestive heart failure are rehospital-
ized within a month, and more than half
within six months; it’s a number that doc-

All the Menthal projects, Markowetz says, 
are geared around the idea of getting more constant 

data about a patient’s life to inform a clinician.  

Right now, the typical clinican has two ways to get
information about a patient: a questionnaire or an office

visit. But these isolated data points present a tiny
fragmented view of mental health, Markowetz says. 

“They are just poor ways to steer medication or therapy.” 

“Theoretically, we can
track any human-machine
interactions,” Markowetz

says. “A smartphone
works, but so does your
email client, or World of
Warcraft, or Skype, or

your car or your fridge.”



20 BIOMEDICAL COMPUTATION REVIEW Summer 2015 www.biomedicalcomputationreview.org

tors are always trying to lower. But it’s tough
to predict which patients will have recurring
problems. A sensor monitoring fluid in the
lungs (a telltale sign of heart failure) could
help pinpoint these patients early. 

As part of MD2K, Ertin’s group is collab-
orating with clinicians to use the wireless
monitors to track patients with chronic ob-
structive pulmonary disease (COPD). Like
heart failure, COPD is characterized by
fluid in the lungs.  

Some at MD2K, using sensors similar
to those Ertin has developed, are working
on detecting when cigarette users smoke.
“There’s a very particular gesture and breath-
ing pattern that goes with smoking,” Ertin
says. MD2K-affiliated researchers at the Uni-
versity of Massachusetts developed RisQ,
which uses a wristband to detect smoking be-
havior with 95.7 percent accuracy. Such data
might provide a patient (and his or her doc-
tor) with hints as to when they’re most likely
to pick up a cigarette, he says, helping tailor
interventions that work. 

Many challenges remain. At the 2014
International Conference on Information
Processing in Sensor Networks, for exam-
ple, Santosh Kumar, PhD, of the Univer-
sity of Memphis—a long-time collaborator
of Ertin and the director of the MD2K cen-
ter—presented data on attempting to use
his sensors to detect when drug addicts
took a dose of cocaine. But training a de-
vice to recognize cocaine use wasn’t quite
as easy as smoking. A person’s heart rate,
blood pressure, and breathing patterns
change when they use cocaine. But they
also change for any number of other rea-
sons—exercise, fear, stress, and other drugs
for instance. The data Kumar’s team col-
lected—922 total days (over 22,000 hours)
of data from drug users—was incredibly
noisy. And they had to figure out how to
clean it up enough to find meaningful
trends without losing the signal of the co-
caine use. It took multiple iterations of
modeling, statistical analysis, and data pro-
cessing to get the data to this point—and
in order to detect all cocaine events, the
researchers still had a false positive rate of
1 per day. “In conclusion, detection of co-
caine use from physiological measurements
collected in the field setting is challeng-
ing,” Kumar and Ertin, together with the
student (lead) authors, wrote in the paper
describing the work. 

Sifting Through 
the Data Dump

For now, most mobile medical devices
are designed to measure a piece of data that

doctors already know they want—and has
already been correlated to clinical outcome.
Doctors already knew that lung fluid helps
predict congestive heart failure, for instance;
now they just have a new way to track that.
And psychologists already knew that less ac-
tive patients are more likely to be depressed. 

But one promise of mobile medicine—
at least for basic researchers—is that the
vast amounts of data being collected can
help reveal connections that clinicians
don’t yet know about. It’s mobile medicine
as a discovery tool. 

“There’s definitely this thought that be-
cause we have all this data, eventually we’ll
learn something from it,” says Sim. 

It’s what online giants like Facebook and
Google have already been able to do in
other realms by tracking the online activity
of people—discover what makes one person
more likely to click an ad for a restaurant
and someone else more likely to click an ad
for a movie. Doctors want to do the same
thing for healthcare: Ask what it is about a
person’s data footprint that can predict
whether they’ll get sick or whether they’ll
respond to a treatment. 

“We can take all of these data points and
find trends in them,” says Joe Kvedar of
Harvard Medical School and the Center for
Connected Health. “It’s what other indus-
tries have already done with complex, ever-
changing data feeds.”

For now, though, that data pool just
needs to grow. Is there such a thing as “too
much data?” Most of the researchers inter-
viewed for this story answered that question
with a resounding no.

“There’s certainly no such thing as too
much data right now,” says Markowetz.
“That’s the paradigm shift that’s happening.
Right now, you collect data because you can
and because data storage is cheap. And
then at some point later, you can say ‘I have
all this data, I wonder if it can help me an-
swer a new question?’”

As long as researchers can keep up with
managing the data, Topol says, there will al-

ways be a place for it. “There is this concern
about TMI, too much information,” says
Topol. “And that is something that can be
preempted by really great algorithms and an-
alytics that filter out the signal from the noise
and get the critical elements out of the data.”

But sufficient data for researchers, Sim
points out, might be too much for con-
sumers or their doctors. “For individual pa-
tients and clinicians, there most definitely
is a problem of too much data,” she says.
“We’re almost there already.” One key to
moving forward, she suggests, is targeting
the right data pools to the right people—
clinicians might not need to see everything
that researchers see, for instance. 

A Common Language
As the data pool grows, another challenge

emerges: the need for data from different de-
vices to be standardized and compared.  

When Sim orders a potassium level on a
patient, for example, she doesn’t care
whether GE or Siemens produced the ma-
chine that measures it. “The data has to be
device-agnostic,” she says. “I can’t be deal-
ing with what machine the number came
from.” Likewise, if she wants to get informa-
tion on a patient’s daily activity for the past
month, Sim doesn’t want the information
from a Fitbit to be presented to her differ-
ently than the information from an iPhone. 

The priority for tech companies, Sim
points out, is to find their niche, market
their product, and keep their data propri-
etary. But for researchers and clinicians, data
that’s in different forms depending on where
it’s from isn’t useful. 

“All these people who are trying to get
data from multiple sources, and across het-
erogeneous platforms are starting to see
the value of standardization,” says Sim,
who is a co-founder and a principal scien-
tist of the non-profit Open mHealth,
which aims to design an open, common
language for health data. 

Open mHealth has already outlined an

“We can take all of these data points and find trends
in them,” says Joe Kvedar of Harvard Medical School

and the Center for Connected Health. “It’s what 
other industries have already done with complex, 

ever-changing data feeds.”
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initial set of suggestions for standardizing
such mobile sensor data, and Sim says
they’ve garnered some interest from tech
companies who want to learn more. 

“People see the need for an open stan-
dard,” she says. “We’re only three years in
and we’re already getting traction. We’ll be
rolling out more this year.”

The Tech World 
Meets Healthcare

Many of the mobile medical devices dis-
cussed here promise to give individuals more
power over their own health. But mobile
medicine also promises to ease the burden

on our healthcare system by giving doctors
tools to be more efficient, helping clinicians
make the move toward truly personalized
medicine, and providing platforms for clin-
ical trials. But for this to happen, doctors
and nurses will have to buy in to the power
of wearable sensors. 

“Doctors are not particularly enamored
by many of these tools because it’s a chal-
lenge to their control which has been in
existence since the beginning of the pro-
fession,” says Topol. 

Changing their minds will require tech-
nology that’s easy to use. “If you go into a
doctor’s office with a huge stream of EKG
data that’s been collected 24 hours a day,

there’s not much they can do with it,” says
Ertin. Software is needed to summarize
these huge streams of data into a form that
clinicians will find useful. 

Yeung, as he moves forward with My-
Heart Counts, imagines an algorithm that
summarizes how each patient’s heart health
is doing—a green light means they’re doing
well, a yellow light might warrant a call
from a nurse, and a red light would indicate
the need for a virtual doctor’s visit to discuss
changing medications or approaches. 

“This kind of system needs to be created
to take the workload away from the physi-
cian,” Yeung explains. “I could easily be
following ten thousand or more patients

anywhere in the world and only seeing the
ones that need to be seen, rather than fol-
lowing fewer patients and scheduling fre-
quent visits with all of them.”

For the Menthal apps, Markowetz always
aims to get a single number that captures a
patient’s status. “What if I had a single num-
ber that’s your Parkinson’s severity number
per day?” he asks. “Now, I can chart this over
the past six months, and that’s something
that really tells a doctor how you’ve been.”

One day, healthcare may move this way.
Rather than wait for your annual exam to
have a doctor test the status of your health,
you get daily updates, reminders, and noti-
fications about your own body and behavior.

When it’s needed, you’ll be alerted to con-
tact your doctor who will have a plethora of
information at his or her fingertips to diag-
nose and treat you.  

“This is going to be a whole rebooting of
how medicine will be practiced to benefit
the consumer,” Topol says.  nn

Open mHealth, in partnership with a physician,
used a set of mobile apps on an Android phone
to help a patient with post-traumatic stress dis-
order. The project helped the physician track
symptoms, better understand the patient's con-
dition, and intervene appropriately. Reprinted
from http://www.openmhealth.org/open-
mhealth-case-study-ptsd/

“This is going to be a
whole rebooting of how

medicine will be practiced
to benefit the consumer,” 

Topol says.
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In an oft -cited story, six blind men 
each touch an elephant to describe 
its essential nature. The one who 

touches the tail reports that the elephant is 
like a rope. The others each touch a different

body part (the trunk, tusks, leg, ear and
body) and describe a snake, a

spear, a tree trunk, a fan, and 
a wall. Disagreement ensues. 
Although each is correct in 
his observations, they cannot 
agree on the nature of the
elephant because none 
of them observes the
beast as a whole. 

The diverse researchers who study neuro-
logical diseases or psychiatric disorders such
as schizophrenia are faced with a similar
dilemma. They use multifarious approaches
to understand the causes and effects of these
diseases—sorting through the genome, meas-
uring changes in the volume or concentra-
tion of gray matter, tracing the brain’s white
matter wiring, and spotting functional con-
nections across brain regions. And just as the
blind men each describe the elephant differ-
ently, so too do these various scientists report
a fragmented and somewhat confusing pic-
ture of how mental illness affects the brain. 

“The many approaches to understanding
neurological disease and psychiatric disorders

each offer a particular window into
something that’s gone awry,” says
Arthur Toga, PhD, professor at
the Keck School of Medicine at

the University of Southern Cali-
fornia. But because all aspects of the

brain work in concert, no single window
can offer an integrated understanding.

In the case of schizophrenia, which
means, quite literally, “fragmented mind,” the
disjointed nature of the research enterprise
also parallels the disorder itself. People with
this tragic mental illness don’t seem to inte-
grate their experiences of the world into a co-
herent thought process. As a result, they may
behave in socially abnormal ways, have dis-
organized thoughts, and experience delusions
and auditory hallucinations. 

Just as their fragmented brains need to be
better integrated, so too does the research
designed to understand those brains. And
that is now starting to happen. “Scientists
are just beginning to join hands around the
elephant,” says Olaf Sporns, PhD, distin-
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guished professor in the department of psy-
chological and brain sciences at Indiana
University, Bloomington. “They are collab-
orating more and also looking at the problem
in all its complexity.” 

Some researchers are integrating struc-
tural information about the brain with ge-
netic or functional data. Others tie genetics
to phenotype or function. Still others are
reaching for the whole enchilada using inte-
grative systems analysis. While some pieces
of the picture—such as environmental influ-
ences on the genome—remain out of focus,
as the  National Institutes of Health (NIH)
and others are getting more interested in
data mashing, progress is being made. “It’s
definitely the way to go,” Toga says. “I think
we’ll see an accelerated pace of discovery be-
cause of it.” 

Genes and 
Schizophrenia

There’s plenty of evidence that schizo-
phrenia is highly heritable, yet no single ge-
netic variant is the cause. And sample sizes
have limited the productivity of genome wide
association studies (GWAS). To address that
problem, the Schizophrenia Working Group
of the Psychiatric Genomics Consortium
pulled together GWAS data from multiple
institutions—amassing data for more than
36,000 cases and 113,000 controls. The study,
published in Nature in July 2014, identified
at least 108 genomic loci of significance.
Many variants are located next to genes that
operate in the brain or immune system—sug-
gesting a possible link between the immune
system and schizophrenia.

A separate study, also published in Na-
ture in 2014, focused on identifying rare
variants associated with schizophrenia by se-
quencing the exomes of 2,536 patients with
schizophrenia and 2,543 unrelated controls.
Individuals with schizophrenia had a signif-
icantly higher rate of rare disruptive muta-
tions in protein-coding genes that were
loosely suspected to play a role in schizo-
phrenia. Moreover, disruptive mutations in
28 genes related to synaptic activity ap-
peared in 9 cases versus none in controls;
and disruptive mutations in 26 genes in-
volved in calcium ion channels were found
in 12 cases versus only one in controls. 

Genes in these two gene sets appear to ex-
plain about one percent of schizophrenia
cases. “It’s consistent with the idea that there
are many rare variants scattered throughout
the genome, some of which probably confer
risk for schizophrenia,” says Benjamin Neale,
PhD, assistant professor in the Analytic and
Translational Genetics Unit at Massachu-

setts General Hospital, and an associated re-
searcher at the Broad Institute.

Schizophrenia
and the Thinking Brain:

Schizophrenia patients often experience
disorganized thinking, hallucinations, and
problems with attention, memory and lan-
guage. And that in turn suggests a problem
with the brain’s gray matter. “The gray mat-
ter is where the good stuff happens,” says
Jessica Turner, PhD, associate professor of

psychology and neuroscience at Georgia
State University. “It’s where the synapses
are—where the cells fire. Without gray mat-
ter you can’t think.” 

In imaging studies, researchers have long
observed gray matter abnormalities in the
brain structures of schizophrenic patients.
Some such studies look at gray matter vol-
ume—the amount of gray matter inside the
borders of particular brain structures—and
some look at gray matter concentration—
the density of gray matter judged by charac-
teristics of the voxels. Most look for clusters
of voxels that differ from healthy controls
(univariate approaches) while a few have
begun looking for patterns of variation

Turner’s mega-analysis identified nine different spatial patterns (components) where gray matter
concentrations in schizophrenia patients differed significantly from controls. Here, the nine pat-
terns are shown in order from most significant to least. For the first seven components, patients
had less gray matter than controls. Note that the spatial patterns were not defined by a brain
atlas but rather revealed by the analysis of voxels. Red areas represent voxels where the differ-
ences were more highly statistically significant (z score > 2.5). Reprinted with permission from CN
Gupta, VD Calhoun et al., Patterns of Gray Matter Abnormalities in Schizophrenia Based on an In-
ternational Mega-analysis, Schizophrenia Bulletin (2014) doi: 10.1093/schbul/sbu177.
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among those clusters (using multivariate
approaches). Schizophrenia researchers also
struggle with sample sizes that may be insuf-
ficient to reach statistical significance. 

Seeking to generate reliable, replicable
results, Turner and her colleagues set out to
conduct an international mega-analysis of
gray matter concentration using a multi-
variate approach and a large dataset. They
gathered together MRI images from eight
prior studies, including scans of 936 healthy
controls and 784 people diagnosed with
schizophrenia. The method they used—
called parallel independent components
analysis (ICA)—lets the data speak for it-
self, revealing spatial patterns that co-occur
in patients compared to healthy controls.
And the data did speak, revealing nine
“components” or spatial patterns of interest.
One pattern in particular caught the re-
searchers’ attention: reduced gray matter
concentration in three areas (superior tem-
poral gyrus, inferior frontal gyrus and in-
sula) of the brains of schizophrenic patients.
And the pattern was highly replicable. “You
can find this over and over again in chronic
schizophrenia,” Turner says. “You can put it
in the bank.” 

Is there potential for similar mega-analy-
ses to reveal patterns in other mental ill-
nesses? “Oh my goodness, yes!” says Turner.
But she also points to the ENIGMA consor-
tium as a model for future work. Rather than
a mega-analysis, which brings all the data to
one lab, ENIGMA leaves the data where it
is and sends software scripts to participating
investigators whose results are then com-
bined. “ENIGMA gets more power out of
collaboration and cooperation than we
could out of doing our own little studies,”
Turner says.

For example, in 2008, the dynamic wave
of gray matter loss that occurs as schizophre-
nia develops was revealed in a collaborative
effort by 40 labs around the world led by
Paul Thompson, PhD, professor in the
Keck School of Medicine at the University
of Southern California and director of the
ENIGMA Consortium. In work published
in 2008, Thompson and his colleagues also
used time-lapse imaging to study the effects
of various schizophrenia medications on the
brain over the course of a year. Remarkably,
they found one medication, olanzapine, that
seemed to reduce gray matter loss compared
with others. 

Turner and her colleagues are now com-
bining imaging and genetics approaches to
schizophrenia to see if there’s a relationship

between the pattern of gray matter loss they
observed in their mega-analysis and genetics.
“Let’s see if there’s a relationship between
this imaging pattern and cases/controls in
GWAS,” she says. An earlier project with a
smaller number of subjects suggested the pat-
tern of loss in schizophrenic patients is heri-
table. The results of Turner’s team’s genetics
work are due out soon.

ENIGMA, which stands for Enhancing
NeuroImaging Genetics through Meta-
Analysis, is also driving forward with the
emerging field of neuroimaging genomics.
The idea is to use brain
images to screen the
genome for common vari-
ants that might affect the
brain. To date, such ap-
proaches have identified
genes linked to such
things as brain or hip-
pocampal size as well as a
few genes linked to
Alzheimer’s Disease. 

These early studies
suggest, however, that
neuroimaging sample sizes
will need to be quite large
if they are to avoid the
problem of false posi-
tives—genes that seem
linked to imaging features
in a particular sample but
cannot be replicated in
other samples. This con-
cern has led to the
ENIGMA Consortium’s
efforts to combine images
from many labs. 

To date, the ENIGMA
Consortium’s Schizophre-
nia and Bipolar Working
Groups have been focused
on extracting meaningful
information from neu-
roimages. But with support
from the NIH’s Big Data
to Knowledge (BD2K)
program, they hope to
soon publish work that ties
these results to genetics.  

In a Nature paper
published in January
2015, the ENIGMA net-
work showed the poten-
tial promise of such work.
That study found eight
common variants (SNPs)
that consistently predict
the size of structures on
brain MRI scans from
over 30,000 people from

33 countries worldwide. Although non-ge-
netic factors are clearly important, a tantaliz-
ing question is whether these genetic variants
that correlate with brain structure also corre-
late with risk for brain diseases. For example,
those eight genetic hotspots seem to affect
the size of several brain regions implicated in
schizophrenia, and some of them appear to
affect risk for Alzheimer’s disease, Parkinson’s
disease, and obsessive-compulsive disorder
(OCD). An ongoing partnership between
the Psychiatric Genomics Consortium and
ENIGMA is comparing the two groups’ find-
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Recent neuroimaging genetics research by ENIGMA identified ge-
netic variants (SNPs) associated with volume differences in various
parts of the brain.  These Manhattan plots are colored with a scheme
to match the corresponding structure in the central diagram. Two
different measures of genome-wide significance are shown with a
gray dotted line (P = 5 × 10−8) and a red dotted line (P = 7.1 × 10−9).
The most significant SNP within an associated locus is labeled.
Reprinted with permission from Macmillan Publishers, Ltd., DP Hibar
et al., Common genetic variants influence human subcortical brain
structures, Nature (2015). doi:10.1038/nature14101.
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ings to see if risk genes for schizophrenia
might exert their affect by influencing the
composition and integrity of the brain. 

Schizophrenia and 
the Networked Brain:

According to a separate theory, differ-
ences in the brain’s wiring could increase
vulnerability to schizophrenia. In the brain,
wiring means white matter—the bundles of
axons that connect distant regions of the
brain to one another.

Researchers can create wiring diagrams
of the brain by tracing the diffusion of water
along neuronal bundles, a method known
as diffusion tensor imaging (DTI). And re-
searchers like Sporns can then analyze
these static images as networks. This ap-
proach has revealed some interesting
things. For example, Sporns and his col-
leagues have found that highly connected
parts of the human brain are also highly
connected to each other, a characteristic
called a “rich club.” And, intriguingly, in
schizophrenic patients, the connections be-
tween the members of the rich club are
somewhat impaired while connections
among less highly connected nodes are not.  

Sporns thinks the rich club nature of the
structural connectome is key to the brain’s
ability to function coherently. Our brains
are constantly interacting with our environ-
ment and integrating information from
many sources—our senses, memories, mus-
cles, skills, internal physical states—to make
sense of the world and guide our behavior in
an integrated fashion. “Rich club, with its
distributed pattern of highly connected hub
nodes is analogous to a highway system for
accomplishing this integrative task,” Sporns
says. But if a pathological mechanism weak-
ens or disturbs that rich club connectivity,
there’s a penalty that is expressed in brain
disorders such as schizophrenia, he proposes. 

Having uncovered the brain’s rich club
structural network, Sporns decided to explore
the relationship between static anatomical
networks and functional networks that are
much more dynamic, with changes on the
scale of seconds or faster.

When brain researchers talk about func-
tion, they usually mean either how electrical
activity changes among electrodes placed in
the brain during an electro-encephalogram

(EEG); or how blood flow in the brain
changes over time (while at rest or doing a
specific activity) as measured using func-
tional magnetic resonance imaging (fMRI).
“These methods produce a time series of
neural activity using electrodes or voxels,”
Sporns says. “There’s no movie that directly
shows how neurons send messages to each
other.” So when researchers talk about
functional connectivity in the brain, they
are referring to activation patterns cross-
correlated among different brain regions. 

Just as network approaches can help re-
searchers understand the structural connec-
tome, so too can they reveal interesting
features of the functional network. Previous
work had shown that the functional net-
works of schizophrenia patients had reduced
global communication capacity. Could that
be due to reductions in rich club density? To
find out, Sporns and his colleagues looked
at structural and functional connectivity in
the same patient population. And they
found an increased coupling between the
two types of connectivity in schizophrenia

patients. That is, functional interactions
were more directly related to the brain’s
anatomical connectivity in patients than in
controls—possibly indicating less flexible or
dynamic brain function in patients. 

“Network approaches have given us a
way of looking at schizophrenia from a dif-
ferent vantage point than we’re used to,”
Sporns says. “And they’ve given us some hy-
potheses that we can now go out and test.” 

In a functional MRI, various parts of the
brain light up together or separately in pat-
terns that change through time. In the past,
most fMRI studies have evaluated differ-
ences between patients and controls by es-
sentially averaging these patterns during a
particular activity and time period. These
averages do reveal differences between peo-
ple with and without schizophrenia. “But
two brain regions might be highly correlated
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in the first few seconds and decline in cor-
relation immediately,” says Vince Calhoun,
PhD, executive science officer at the Mind
Research Network and distinguished profes-
sor of electrical and computer engineering
at the University of New Mexico. “If you
just look at average connectivity, you’ll miss
the change.” 

So Calhoun and his colleagues decided
to scan people in a resting state to specifi-
cally look at whether connectivity dynamics
themselves might reveal patterns of brain
function that differ across people with schiz-
ophrenia or bipolar disorder and healthy
controls. The work, discussed in Neuron in
November 2014, found five states (correla-
tions among specific regions) that exist rou-
tinely in both cases and controls, but when
they looked at the “dwell time”—the per-
cent of time spent in each state—the schiz-
ophrenia patients occupied two particular
states much longer than the controls. “You
do learn some interesting things from the
averages,” Calhoun says. “But when you un-
pack it and look at what goes into that av-

erage, you actually learn a lot more.” 
Since Calhoun’s first dynamic connec-

tivity paper was published in 2009, the ap-
proach has “kind of exploded,” he says. “It
reinforces the value in looking at the data
that way.” 

Integrating Genetics 
and Phenotypes

Standard GWAS can only point to in-
dividual variants that are associated with a
mental disorder, says Igor Zwir, PhD, post-
doctoral scholar working with Robert
Cloninger, PhD, at Washington Univer-
sity in St. Louis. And many of the findings
are weak and inconsistent. In any event,
Zwir says, “Individual genes basically do
not cause mental disorder. Genes act in
concert as well as with the environment.” 

Moreover, because schizophrenia is actu-
ally a spectrum of disorders that varies widely
in severity and covers a whole range of symp-
toms from positive (such as delusions, disor-
dered thoughts) to negative (such as lack of
interest in others, inability to feel pleasure or
act spontaneously), Zwir notes, the gene
clusters that interact to produce different sets
of symptoms may be different as well. 

So Zwir and his colleagues decided to
take a self-organizing approach to a large set
of GWAS data for about 4,000 schizophrenia
patients whose symptoms and their severity
were also well documented and a similar
number of healthy controls. Without any
presumption as to which gene mutations
(SNPs) would co-occur, they partitioned the
patients based on shared sets of SNPs. They
did the same thing for phenotypes—allow-
ing the data to cluster people without any
presumption as to which traits go together. 

Next, they optimized the relationships be-
tween the clusters of SNPs and the clusters
of traits. And for each association they cal-
culated the risk. “If there’s a 90 percent risk,
then that association includes 90 percent
cases and 10 percent controls,” Zwir says. Ul-
timately, the clustering honed in on eight sets
of SNPs with associated phenotypes. 

When Zwir and his team reported these
results in September 2014 in the American
Journal of Psychiatry, the press coverage was
intense, with many publications declaring
the existence of eight subtypes of schizophre-
nia. The researchers received calls from
Time, Newsweek and even Anderson Cooper.
“Why did we have this press?” Zwir asks. “It’s
because people need to relate genetics with
disease and it isn’t often done.” 

At the same time, some members of the
research community criticized the group’s
methodology. Without weighing in on the

details of that debate, Turner commented
that no matter how one feels about the sta-
tistical details, “This is a very rich, very
reasonable approach, and the findings
made sense.” 

Moreover, because of the Zwir paper,
Turner is now trying to apply similar meth-
ods to imaging data. But it’s difficult to get
phenotypic data that’s properly standard-
ized, she says. “When you try to break it
down and look at what exactly the symp-
toms are and how bad the hallucinations
are or how bad the reality disorganization
or cognitive deficit, they are not well quan-
tified. Different people use different scales.” 

Undeterred by the critics, Zwir and his
colleagues have recently applied the same
clustering algorithm to see whether schizo-
phrenia phenotypes cluster with different
patterns of white matter loss (using DTI) in
schizophrenia. Though their sample size was
relatively small (47 patients and 36 healthy
controls) they found at least three distinct
clusters of symptoms and white matter pat-
terns—one pattern associated with bizarre
behavior; another with prominent delu-
sions; and a third with negative symptoms,
including disorganized speech. The work
was recently submitted for publication.

Integrating Genetics 
and Function 

In another effort to integrate different
perspectives, Calhoun worked on a project
to find genetic patterns that coincide with
brain functional network patterns in a group
of subjects that included patients with schiz-
ophrenia and bipolar disorder as well as their
healthy family members and healthy but un-
related controls. 

The work, under the leadership of God-
frey Pearlson, MD, at Yale, used a large
array of genetic information (single nu-
cleotide polymorphisms) and focused on the
default-mode network (DMN) of the brain.
“It tends to be more active when you’re not
focused externally,” Calhoun says. This net-
work typically shows reduced functional
connectivity in people with schizophrenia
and bipolar disorder. Using parallel inde-
pendent component analysis, an approach
developed by Calhoun’s group, the team was
able to find genetic patterns and DMN sub-
network patterns that co-occur in a group of
subjects. “This gives us a richer set of fea-
tures that we can pull out of the data with-
out starting from a region of interest,”
Calhoun says. The group then went further,
and sought to understand the possible mo-
lecular underpinnings of the genes identi-
fied in the study. The results, published in
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(Opposite page) Calhoun and his colleagues
parsed a dataset of functional scans and ge-
netic information for schizophrenia and
bipolar patients using a method Calhoun’s
lab developed called parallel independent
component analysis. The technique revealed
five subnetworks of the brain’s default
mode network (the part that’s focused inter-
nally) and their associated genetic compo-
nents, represented here by the top 10 genes
as well as genes that feature more than
three SNPs within each network. The blocks
at right list significantly enriched ontology
terms within each genetic cluster. Arrows
pointing up and down indicate whether the
loading coefficient for that particular feature
(fMRI or gene) was significantly higher or
lower for patients or controls. Reprinted
with permission from SA Meda et al., Multi-
variate analysis reveals genetic associations
of the resting default mode network in psy-
chotic bipolar disorder and schizophrenia,
PNAS vol. 111:19 (2014).
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PNAS in April of 2014, pointed to mecha-
nisms that had been previously implicated
in schizophrenia and bipolar disorder as well
as several novel mechanisms. 

Integrative 
Systems Analysis

Michael Snyder, PhD, professor of genet-
ics at Stanford, has long been in the business
of data integration. Since the 1980s he has
been working with combinations of data in-
cluding genetics, genomics, transcriptomics
and metabolomics. “We’re pretty comfort-
able working across these areas and integrat-
ing lots of different information,” he says.

For diseases like schizophrenia and other
psychoses, such a combination could be
quite powerful, Snyder says. He bases that
assessment on recent work his team did in
the area of autism. 

Snyder and his colleagues took the en-
tire human protein interaction network
(the “interactome”) and mapped its organ-
ization at an intermediate scale. “If you
imagine all the proteins are the world, the
map we set up is kind of like at the state
level, where groups of proteins are working
together,” he says. They then took known
genes for autism spectrum disorder (ASD)
and mapped them onto these clusters. “Two
modules screamed out at us,” Snyder says.
“But especially one. Autism kids have a
high chance of mutations in our module.” 

Snyder’s team didn’t stop there. They
used whole genome sequencing to look at
25 kids with autism and found they were

enriched for mutations of genes in the mod-
ule. They then looked at what the module
does using the Allen Brain Atlas, and found
that half are expressed in most neurons but
half of them are primarily expressed in the

corpus callosum. The importance of the
corpus callosum in ASD was also confirmed
in mouse models. 

“I think this kind of analysis will be
very fruitful when applied to other areas,”
Snyder says. 

Data Fusion: 
Bringing Multiple Imaging

Approaches Together
Calhoun is very interested in pulling to-

gether multiple types of imaging to see what
they can show us about the brain. Often, re-
searchers integrate imaging data by overlay-
ing one image on another. However, such
approaches will not necessarily recognize if
a change in one area of the brain correlates
with a change in another part of the brain. 

Calhoun favors a different approach he
calls data fusion, in which each method in-
forms the other without any assumptions
about which information is more important.
“We don’t, at the beginning, make a critical
assumption that might lead us down a wrong
path,” he says. “My approach is to move the
simplification step to the end.” 

For example, at the IEEE Engineering in
Medicine and Biology Society Annual Inter-
national Conference in 2014, Calhoun and
his colleagues presented a data fusion ap-
proach to combine three types of imaging
data—functional MRI, EEG and structural
MRI (white and gray matter volumes)—in a
study comparing schizophrenia patients and
controls. They found that the combined data
was more predictive of schizophrenia status
than any single imaging modality alone. 

Treating 
the Elephant

As researchers begin to grasp hands
around the elephant, they may start to find
connections that explain how genetics and
the protein interactome play into gray matter
loss and reduced rich club network structure
across the full range of psychotic phenotypes. 

Ultimately, such an integrative approach
could lead to better diagnosis and treatment
options for the millions who suffer from
schizophrenia or other psychoses. 

Turner looks forward to the day when a
brain scan and genetic test can help physi-
cians steer people toward appropriate treat-
ments based on a molecular understanding
of what’s going on; or allow early interven-
tions in young people, to prevent gray mat-
ter loss before it can get started. To get there,
many perspectives on the psychotic brain
will have to collectively tell one story. nn

Snyder and his colleagues identified genetic modules (#2 and #13 above) in the human protein in-
teractome that are enriched for autism-associated genes (in red). The topological modules are
physical clusters on the protein interaction network where member genes intensively interact with
each other but sparsely interact with non-member genes on the network. The zoom-in view of
module #13 is colorized to show known autism genes (red) and genes affected by autism spectrum
disorder–associated de novo copy-number variations (green). Genes annotated by both were in
blue. Reprinted from J Li, M Shi, Z Ma, S Zhao, et al., Integrated systems analysis reveals a molecular
network underlying autism spectrum disorders, Molecular Systems Biology, 10 (12) 2014.
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Machine learning is the process of automatically
building models from data. In the past two
decades, researchers in many fields of study

have been generating these models from progressively
more data. Because this has led to higher quality learned
models, researchers are using even greater quantities of
data that require more and more complex distributed
computing systems. These systems consist of many hard-
drives connected to many machines (CPUs)—often com-
modity computers to keep costs down. But with many
commodity machines come many failures: Hard-drives
die; operating systems fail; and someone might trip over
a power cord in the data center. The need to problem-
solve such single points of failure renders distributed com-
puting quite cumbersome. One solution: Use cleverly
designed software to make applications running in clusters
more fault-tolerant. Specifically, researchers turn to soft-
ware known as cluster programming frameworks.  

The most successful of these is Apache Spark. Built by
the AMPLab at the University of California, Berkeley,
and now controlled by Databricks, Spark provides users
with a distributed array that is fault-tolerant. Many re-
searchers are already accustomed to programming with ar-
rays in their favorite programming language. Spark
provides much of the same functionality that arrays pro-
vide, with the convenience of the array being seamlessly
distributed across a cluster. These arrays are called Re-
silient Distributed Datasets (RDDs). They can be large
and stored on disk, with the portions that are in use
swapped in and out of RAM for faster access. Because the
generic idea of distributed arrays has nothing to do with
any particular programming language, Spark is able to
provide clean APIs in Python, Java, Scala, and R.

There are many ways to create RDDs, but the world
only lets you create RDDs in ways that can be automati-
cally tracked. The recipe for an RDD is saved along with

the RDD, so that in the event
of a machine failure, the part
for which the machine was responsible can be re-
built. Called “lineage,” this recipe is the primary fault-tol-
erance mechanism in Spark.

Given that programming with arrays has been histor-
ically successful, it is no surprise that RDDs have also en-
joyed fast adoption. Spark provides four libraries out of
the box that take advantage of the power of RDDs:

• ML: Machine learning algorithms and matrix
computations

• GraphX: Graph processing library for handling
large graphs

• Streaming: Handling streams of data (e.g., web
logs or stock tickers)

• Dataframes: Easy access to tables of
heterogeneous data, similar to those found in R
and Python

These open-source libraries are developed in
a concerted effort across many universities and
companies. For example, several Stanford stu-
dents have worked with me to create the basic
building blocks for linear algebra in Spark, such
as the singular value decomposition. Only the
most widely used and tested algorithms are added
to the above libraries. However, there is a vibrant
community of people developing Spark packages
that can be installed with a single command line.
Databricks maintains this package listing at
http://spark-packages.org. Together, the Spark
ecosystem and its community make big data eas-
ier to handle.  nn
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SeeingScience

T he bright light needed to see molec-
ular activity inside a living cell can
quickly alter or even halt the very

thing scientists want to observe. But a new
technique developed by Eric Betzig, PhD,
Group Leader at the Janelia Research Cam-
pus, offers fantastic 3-D resolution of living

cells for longer time periods without pho-
totoxicity. Called lattice light-sheet mi-
croscopy, the technique uses ultrathin light
sheets derived from two-dimensional opti-
cal lattices. Rapidly scanned plane-by-plane
through the specimen, these light sheets
provide excellent illumination with mini-
mal damage to the cell. Betzig, who won the
2014 Nobel Prize for Chemistry for other
work, calls lattice light-sheet microscopy
“the high-water mark” of his career. nn

Lattice light-sheet microscopy allows the imaging of
molecules inside living cells. Here, HeLa cells progress
through mitosis with chromosomes (in orange) and
the 3-D growth and retraction of microtubule com-
ponents shown as points with lines colored according
to their velocity. Credit: Betzig Lab, HHMI/Janelia Re-
search Campus; Mimori-Kiyosue Lab, RIKEN Center
for Developmental Biology. Reprinted with permis-
sion from B-C Chen et al., Lattice light-sheet mi-
croscopy: Imaging molecules to embryos at high
spatiotemporal resolution, Science 346:6208 (2014).
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