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g u e s t  e d i t o r i a l

W hole genome sequencing (WGS) and whole
exome sequencing (WES), which sequences
only the protein-coding regions of the genome,

have already begun to transform clinical medicine. They
are being used to home in on the causes of rare and undi-
agnosed genetic diseases, determine appropriate cancer
treatments for a given tumor, and match drugs and doses
to an individual’s genomic makeup. But as WGS takes on
greater relevance in the clinic, it is increasingly important
to consider the benefits and challenges of this technology.

Currently, the technology used for genome sequencing
requires scientists to fragment the DNA into thousands
of small pieces—“short reads”—that are then sequenced
in parallel. After aligning the fragments to a human ref-
erence sequence, algorithms determine the patient’s con-
sensus sequence. Next, scientists compare the patient’s
DNA to the human reference sequence using a variety of
computational tools that vary widely in their speed,
strengths and limitations. This “variant calling” provides
a list of the 3 to 3.5 million positions where individuals
differ from the reference, with about 100,000 of these
variants being very rare or novel. 

Various aspects of each step in the process generate
downstream consequences. First, short fragments can be
misaligned when they exactly match more than one ge-
nomic region. Second, the ability to identify genetic vari-
ants is highly dependent on the depth of coverage, or the
number of sequence reads that line up at each position in
the genome. Compared with WES, WGS is generally ex-
pected to provide improved coverage of certain genomic
regions, such as introns and other noncoding regions that
are associated with disease risk and drug response. How-
ever, in a recent study published in JAMA,1 we found that
while WGS coverage is fairly high, there is still incom-
plete coverage of some important inherited disease genes.
Finally, while variant calling algorithms often reliably
identify single nucleotide variants, we and others have
found that they are less consistent when it comes to iden-
tifying insertions, deletions, and larger variations (i.e.,
copy number variants or structural variants). This is a no-
table limitation, as these types of variants are often par-
ticularly important in genetic diseases.

Determining which variants matter for disease risk is
also nontrivial. In the JAMA paper, we used automated
variant annotation to help prioritize variants most likely
to be impactful. We found that 50 to 100 variants per per-
son (fewer in the undiagnosed diseases context) typically
merit manual review to determine their implications for
disease. Manually evaluating these candidate variants
takes an average of 50 minutes of curation time. One
challenge is that available information is often conflicting

GuestEditorial

or limited. For instance, while
specific variants may be present in variant
databases, several studies have found that these databases
contain high error rates, with up to 25 percent of variants
incorrectly categorized as disease causing when in fact
they may be common benign variants.2

Each of these technical, computational and interpre-
tation challenges is currently being addressed. Advances
in sequencing technology, such as long read sequencing,
should allow identification of larger types of variations
while also reducing errors in alignment and assembly. In-
complete coverage of specific genomic regions can be tar-
geted with orthogonal approaches. And improved curated
variant databases will greatly assist with variant assess-
ment and the interpretation bottleneck in clinical WGS.  

WGS thus has a very bright future. Clinical WES has
already demonstrated a diagnostic yield of approximately
30 percent—a sensitivity higher than many routinely used
genetic tests.3 As sequencing becomes more accessible and
reliable, knowledge of disease-gene relationships expand,
and bioinformatics algorithms improve, our ability to in-
terpret WGS in any context will rapidly advance.   nn

NOTE:

The information presented represents the author’s
own views and does not necessarily represent the
views of Stanford Hospital and Clinics, Lucile
Packard Children’s Hospital and/or Stanford Uni-
versity or its affiliates.
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Pharmaceutical research is notoriously expensive. To
find safe and effective drugs cost-effectively, some re-
searchers seek new uses for medications that have al-

ready leaped the hurdles of the FDA approval process. One
systematic approach to such drug-repurposing projects in-
volves virtual screening of molecular structures to identify
compounds likely to have a particular desired effect. But
these efforts have uncovered a problem: “Different databases
give different chemical structures for the same drug name,”
says Paul Novick, PhD, who recently completed his doc-
torate in Vijay Pande’s lab at Stanford University. 

Novick decided to address that problem by creating an
algorithm that automatically evaluates the structures of ex-
isting medications in various public databases. The curated
database he created, called SWEETLEAD, is de-
scribed in the November 2013 issue of PLoS One.

Virtual screening is very sensitive to precise
structural information, Novick says. “A good
compound might rank really low and a crappy
molecule with a wrong structure might score
highly,” he says. “Missing out on potential active
compounds is a big concern.”  

Unfortunately, the patent literature and regu-
latory documents that describe the molecular
structure of existing medications are not currently
available in downloadable form, Novick says. And
reviewing that literature to re-enter all of the com-
pounds manually would be both tedious and poten-
tially ineffective. “It opens you up to the same kinds
of errors that led to the original problem,” Novick
points out. “And as new drugs are approved, you
want an automatic system for inclusion.”

To create the SWEETLEAD database, Novick
and his colleagues started by querying multiple
databases (PubChem, ChemSpider, DrugBank,
and others) for the chemical IDs that match a particular
drug or herbal isolate’s name. The algorithm then compares
the structures for those IDs to see if there is a majority or
consensus structure. If yes, then SWEETLEAD tags the
name to that structure. For drugs with no majority or con-
sensus structure, Novick manually reviewed the patent lit-
erature and then tagged the accurate structure. 

Novick concedes that there is no de facto reason to trust
majority structures except that they are well used by re-
searchers who are highly motivated to correct errors. But
as a final check on SWEETLEAD’s accuracy, Novick com-
pared the structures to a several other databases. “Where
there were discrepancies, our structures were accurate
more often than theirs,” he says.

The SWEETLEAD database includes 3,600 molecules,
including 2,000 approved drugs, many recreational drugs,
and numerous chemical isolates from traditional and
herbal medicines. “These represent a good starting point
for further study by anyone doing repurposing projects,”
Novick says. 

In addition, Novick says, SWEETLEAD can be used
to explore commonalities among approved drugs. For ex-
ample, the database can be used to challenge the rules-
of-thumb (such as Lapinski’s rule of five) that many
pharmaceutical researchers use to define whether a mol-
ecule is drug-like or not. “Researchers frequently ignore
compounds that violate these rules, missing out on po-
tentially active compounds,” Novick says. 

Novick has already used SWEETLEAD to identify sev-
eral compounds that are a few steps away from clinical tri-
als, including one for treating Chagas disease and another
for Dengue fever. He’s hopeful they will be effective at the
same dose for which they are already approved, which
would allow them to skip Phase I clinical trials.  

But even if these efforts
don’t pan out, Novick says,
“From a drug discovery perspec-
tive, any compound from our
database identified as a drug
candidate would definitely be a
sweet lead.” nn  

SimbiosNews

DETAILS 

SWEETLEAD is publicly available at simtk.org/home/sweetlead.

Curating Drugs’ Potential with SWEETLEAD

The structure of indinavir, a protease inhibitor approved for treatment of
HIV and AIDS, exhibits different stereochemistry (red circles) in PubChem
(A) compared to ChemSpider (B).  The PubChem structure was correct and
received a high score for it’s potential to inhibit HIV protease (C) while the
incorrect structure from ChemSpider received a low score.  

BY KATHARINE MILLER

Simbios (http://simbios.stanford.edu) 
is the National Center for Physics-
Based Simulation of Biological 
Structures at Stanford.



of General Medical Sciences (NIGMS).
“We need a more nuanced classifica-

tion,” Lyster says. So a few years ago, he de-
cided to create just that. “The main goal is
to get a quantitative handle on what NIH
invests in bioinformatics and biomedical
computing so that we can convey this infor-
mation to the public and do a good job of
planning future expenditures,” he says. 

It is impossible to manually review thou-
sands of annual grants to determine which
ones involve computational work. “It has to
be done automatically, using an algorithm
that’s clever enough to get around the fact
that words like ‘model’ have different mean-
ings in different areas of biomedical re-
search,” Lyster says. 

In collaboration with Calvin Johnson
and William Lau at the NIH Center for In-
formation Technology, Lyster developed and
fine-tuned a support vector machine (SVM)

Philip Bourne’s recent appointment as As-
sociate Director for Data Science at the

National Institutes of Health (NIH) signals
the growing importance of bioinformatics
and biomedical computing in achieving the
NIH mission. Yet the NIH Institutes and
Centers don’t have reliable information
about how much they spend on computa-
tional science. For fiscal year 2011, for ex-
ample, NITRD (the Networking and
Information Technology Research and De-
velopment program), reported that the NIH
invested $551 million in computational
science. But that report focused heavily on
information technology and “high-end com-
puting,” which does not completely or ac-
curately cover the world of scientific
computing, says Peter Lyster, PhD, pro-
gram director in the Division of Biomedical
Technology, Bioinformatics and Computa-
tional Biology at the NIH’s National Institute

approach to cataloging the NIH expendi-
tures in various subfields of bioinformatics
and biomedical computing. They started by
categorizing computational science into six
sub-areas that are in line with NIH priori-
ties: applications and modeling, informatics,
high-throughput data-intensive scientific
methods (such as next-generation sequenc-
ing, proteomics), imaging and signal analy-
sis, high-end computing, and software and
productivity. Lyster then used his expert
knowledge of the field to identify a training
set of about 1500 NIH projects across these
areas. After training the SVM algorithm on
biomedical concepts and key phrases ex-
tracted from Lyster’s set of identified proj-
ects, the algorithm retrieved additional
projects from the entire NIH research port-
folio relevant to the six categories. Lyster re-
viewed a sampling of the results to confirm
that the algorithm returns good hits. 

The outcome of the team’s effort is sum-
marized in the figure shown below. Because
the categories are overlapping, it is not pos-
sible to calculate the total investment in
bioinformatics and biomedical computing
by adding up the columns. Furthermore, nu-
merous NIH projects involve both compu-
tational and experimental work. But Lyster
estimates that the total investment exceeds
$900 million. 

After testing, validating and hardening
the algorithm further, Lyster hopes to make it
publicly available. “It should prove useful to
both the NIH and grant applicants who will
be able to see at a glance which institutes sup-
port their area of research,” he says. nn

DRILLING FOR INSIGHT: 
NIH Funding for Biocomputing

Fiscal year 2011 funding for extramural (outside
NIH) research into bioinformatics and biomedical
computing (BICB) is shown separately for three
institutes—NIGMS, the National Human Genome
Research Institute (NHGRI), and the National In-
stitute of Biomedical Imaging and Bioengineer-

ing (NIBIB)—as well as all the other NIH institutes
and centers (ICs) combined. NIGMS funds a broad
portfolio of computation research across all cat-
egories, including a particular focus on applica-
tions and modeling. NHGRI, on the other hand,
funds quite a lot of research under informatics

and high-throughput computing, which is con-
sistent with its mission to fund basic research in
genomics. And NIBIB, which has a mission that
encompasses bioengineering and bioimaging,
funds a significant amount of research in imag-
ing and signal analysis. 

3Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures
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With the headline “Easing Epilepsy
With Battery Power,” the New York

Times on March 24, 2014, described an im-
plantable device for controlling epileptic
seizures in patients who do not respond to
medication. Developed by NeuroPace and
recently approved by the FDA, the RNS®

System is trained to recognize an individual
patient’s seizure pattern and then deliver
electrical stimulation to stop seizures before
they can take off. 

For some patients, the device is a god-
send, yet it works for only a subset of pa-
tients and even for those, its effectiveness is
limited: “Fifty-five percent of patients expe-
rienced a 50 percent or greater reduction in
seizures two years post implant,” the

company’s press release declared, and most
will continue to take medication.While the
NeuroPace RNS® System could certainly be
considered a victory for computation (it uses
machine learning and could benefit an esti-
mated 400,000 Americans), there’s no ques-
tion that better treatments are still needed.
In recent years, even as medicines and sur-
gical techniques have reduced seizure fre-
quency for roughly 80 percent of patients
with epilepsy, many people remain treat-
ment-resistant. 

During a seizure, voltage activity in the
brain becomes synchronous. Interconnected
neurons go from a state of independent pro-

cessing to being connected in a massive cas-
cade, says William Stacey, MD, PhD, assis-
tant professor of neurology and biomedical
engineering at the University of Michigan.
It’s what engineers would call a feed forward
loop: Because one neuron fires, another one
does until they are all firing together. “What
makes a system in its normal behavior
suddenly go into this self-sustaining ava-
lanche?” Stacey asks.  It’s a question that has
long puzzled clinicians and researchers alike.

Whether computational approaches can
provide a helpful answer will require a
bridging of the gap between the scales of
clinical and computational research, Stacey
says. Clinicians measure electrical activity
at a relatively large scale—using four-mil-
limeter electrodes spaced one centimeter

apart on the surface of the brain. “All
you can do with that type of spatial res-
olution is tell when an area of brain has
already started to have a seizure,”
Stacey says. 

The scale of computational mod-
els of seizure, on the other hand,

ranges widely. Some researchers
model individual cells and then
connect them into small net-
works; others describe similar

cells using lumped parame-
ters of their average behav-
ior and then simulate their
behavior to see if it repli-

cates reality; still others
create mathematical

models of dynamic
networks across

SEIZURES, IN THEORY:
Computational Neuroscience and Epilepsy

Neuropace recently
announced FDA ap-

proval of its RNS® System
for detecting seizures
and delivering deep
brain stimulation (DBS)
to stop them. The de-

vice is implanted in the
cranium with either one

or two leads for detecting
the seizure and  provid-
ing neurostimulation to
the targeted brain areas.

Courtesy of NeuroPace.
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the entire brain. 
Many of these models are difficult to val-

idate experimentally. That’s because there’s
currently no way to know if the connections
in a physiological model are accurate and it’s
not possible to measure the network dynam-
ics across the entire human brain, Stacey
says. But that is changing. “We stand at the
cusp of a very rich time in unraveling the
dynamics of seizures,” he says. Computa-
tional models are getting bigger and brain
recordings are getting smaller. “As soon as
they are at the same level—and we’re
close—then everything on the computer
can be validated and we’ll be able to play
with the model to produce predictions.”

The Devil in the Details
Modeling individual cells and connect-

ing them into networks to study what
makes them go haywire in epilepsy is one
appealing approach, Stacey says.  “It’s a very
intriguing problem for people interested in
dynamics,” he says. “And it allows us to
model the brain’s actual
physiology, though it can
be difficult to validate
that the neuronal con-
nections in such models
are accurate.” 

It’s also very easy to
make a network have a
seizure using a model of
a cell. In a normal brain,
negative feedback keeps
firing neurons from get-
ting out of control. “It’s
very easy to break that
feedback in a computer
model,” Stacey notes. “It
makes you wonder why
everybody doesn’t have
seizures.”

Yet researchers who
build physiologically de-
tailed network models
and simulations of epilepsy say they are
valuable for generating hypotheses that get
tested in the lab and then iterated back
through the model. Theoden Netoff, PhD,
associate professor of biomedical engineer-
ing at the University of Minnesota, is one
such researcher. He wondered whether com-
puter models might provide a better under-
standing of how and why deep brain
stimulation (DBS), which is sometimes used
to treat epilepsy by sending regularly sched-
uled electrical energy to the brain, stops or
shortens some seizures but not others. The
team was particularly focused on determin-
ing whether changing the frequency of DBS

would shorten (or lengthen) the duration of
so-called tonic-clonic seizures, in which a
person first goes rigid (the tonic phase)
and then starts to jerk uncontrollably (the
clonic phase).

Netoff and his colleagues used a stan-
dardized computer model of an individual
brain cell to build a 3,000-cell excitatory
neuronal network that exhibits network
statistics not unlike those in a rat visual cor-
tex. The network is also capable of epileptic
activity (it can both synchronize and desyn-
chronize). They then added various fre-
quency pulses of stimulation to simulate the
model network’s response to DBS. The re-
sult: The model predicts that DBS fre-
quency affects the duration of the different
phases of seizure in a way that is directly re-
lated to the neuron-firing rate and the level
of synchronicity. For example, during the
tonic phase, using a DBS frequency that
matched the neuronal firing rate brought
the tonic phase to a close more rapidly,
while a frequency slightly below the neu-
ronal firing rate shortened the clonic phase.  

The work, which was published in Fron-
tiers in Neural Circuits in February 2013,
suggests that a closed-loop feedback system
that can adjust DBS frequency in response
to changes in the neuron-firing rate would
offer greater control over seizure duration.

Indeed, in a computer simulation, when an
adaptive algorithm controlled the fre-
quency of DBS, it was more effective in
truncating seizures. Netoff is currently run-
ning experiments to test these predictions.

Lumping It
Because it is difficult to use detailed

models to study the extensive brain regions
involved in epilepsy, some researchers are
using lumped parameter models (also
known as macroscopic models or neural
mass models), that use average behaviors
of particular cell types. Fabrice Wendling,
PhD, research scientist at Laboratoire
Traitement du Signal et de L’Image, Uni-
versité de Rennes 1, in Rennes, France,
who has used this approach for some time,
noticed that these models couldn’t recreate
one of the signatures of epilepsy: high-fre-
quency oscillations known as fast ripples.
Concerned that his macroscopic models
might be missing something, Wendling set
about decoding the parameters of the

macroscopic model by relating them to the
parameters in more detailed models. By de-
veloping a detailed model for the same sys-
tem that he was modeling macroscopically,
he was able to see what lay behind the
macroscopic model and understand why it

Wendling uses lumped parameter models to simulate seizures in the brain. For example, in this
model (A) of the thalamocortical loop, three compartments (cortical, thalamic and reticular) each
contain relevant subpopulations of neurons connected in a way that is compatible with brain con-
nectivity patterns (B) inferred from the literature (PMC = pre-motor cortex; RtN = Reticular Nucleus;
CMN = centromedian nucleus of the thalamus). The model then simulates the average behavior of
those regions rather than the detailed behavior of each neuron. Reprinted from Mina F, et al., Mod-
ulation of epileptic activity by deep brain stimulation: a model-based study of frequency-depen-
dent effects, Frontiers in Computational Neuroscience, 7:94 (2013).
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couldn’t exhibit fast ripples. Essentially,
such ripples develop in the detailed model
when specific sets of pyramidal neurons
are weakly synchnronized. “It makes sense
that the lumped model can’t see the fast
ripples because it assumes the activity in
each subpopulation of cells is highly syn-
chronized,” Wendling says. When the re-
searchers increase excitability in both
models, however, the same sharp epileptic
spikes appear. “Once both models can gen-
erate the same type of epileptic activity (for
example, epileptic spikes) then it’s much
easier to see which parameters at the de-
tailed level correspond to the macroscopic

parameters,” Wendling says. The work was
published in the European Journal of Neu-
roscience in 2012.

Since that time, Wendling has used his
macroscopic model to help understand the
relationship between DBS frequency and
treatment success. For example, his team
created a model of the thalamocortical net-

work that includes multiple cell types in sev-
eral compartments of the brain. They then
trained the network to reproduce a particular
patient’s EEG recordings during seizure, and
simulated various frequencies of DBS on the
network. These simulations reproduced the
patient’s unusual and interesting response to
DBS: His seizures typically stopped in re-
sponse to low and high but not intermediate
frequency stimulation. The work, reported
in July 2013 in Frontiers in Computational
Neuroscience, posits a possible explanation
based on what happened in the model—
low-frequency stimulation inhibited the
feed-forward nature of the patient’s seizure

while high frequency stimulation
inhibited thalamic output.  Inter-
mediate frequency stimulation, on
the other hand, just kept the
epileptic dynamics going.  

Wendling says he’s optimistic
that DBS will prove valuable as a
therapy for epilepsy once there’s a
better understanding of how to
use it optimally.  And to gain that
understanding, he says both de-

tailed and macroscopic approaches will be
useful.  “They are complementary and nec-
essary,” Wendling says. “What you can do
with one approach you cannot do with the
other and vice versa.”  

The Whole Enchilada
Some researchers take an even broader

view of the network dynamics in epilepsy.
They look at the entire system rather than
one piece of it. Mark Kramer, PhD, assis-
tant professor of mathematics and statistics
at Boston University, for example, looks at
seizure dynamics across the entire brain dur-
ing the duration of the seizure. He then cre-
ates computer models to connect data to
mechanisms. The goal: to help surgeons de-
cide which part of the brain to cut out; or
define optimal targets for stimulation by a
device such as the one made by NeuroPace.

In work published in 2010, Kramer
and his colleagues used electrocor-
ticogram data—electrical activity meas-
ured directly on the surface of the brain’s
cortex—to build functional networks of
the coupling and decoupling of brain
areas during the course of a seizure. These
networks reveal more coupling at the be-
ginning of a seizure, less in the middle,
and then more again at the end, suggest-
ing that seizures are not simply hypersyn-
chronous events but instead exhibit more
subtle dynamics. A greater understanding
of the coupling and decoupling of brain
areas during seizure might suggest ways to
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Kramer and his colleagues construct functional
networks of brain dynamics during seizure.  In
part A of this graphic, the red dots represent the
locations of electrodes on the brain, with blue
lines showing coupled firing between various
brain locations (i) just before seizure; (ii) at
seizure initiation; and (iii) mid-seizure. The den-
sity of lines suggests that coupling is high at ini-
tiation but then becomes fractured in the middle
of the seizure. Part B displays these same net-
works among 100 electrodes in one patient’s
brain every five seconds, with the electrodes ar-
rayed around the edges of circles. The seizure
period is shaded pink and shows coupling as the
seizure starts, followed by decoupling in the
middle of the seizure, and intense coupling
again at the end.  Reprinted from Kramer MA, et
al., Coalescence and Fragmentation of Cortical
Networks during Focal Seizures, J. Neuroscience
30(30:10076-10085 (2010).
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prevent the seizure from spreading across
the brain by surgically firewalling certain
connections, Kramer suggests. “Ideally,
network tools could help us refine what
surgeons cut out,” he says. “That’s one of
our goals. We’re not there yet.”

Kramer is also interested in how seizures
end. Recent research suggests that syn-
chrony increases just before the seizure
ends. “It gets more and more similar and
then the brain shuts down,” Kramer says.
He hypothesizes that seizures end because
they cross some kind of tipping point or
critical transition. Moreover, perhaps when
seizures keep going and going (a condition
called status epilepticus), the brain’s rhyth-
mic activity tries to slow but then speeds up
again, repeatedly approaching an ending
but not quite making it. “What was nice
about the hypothesis was that it led to spe-
cific testable measures,” Kramer says. The
model simulation of the tipping point the-
ory replicated the expected brain dynamics,
with the same features of rhythmic slowing,
increased coupling, and flickering between
seizure and non-seizure states that had been
observed in functional networks during the
transition.  The work was published in Pro-
ceedings of the National Academy of Sciences
(PNAS) in 2012. 

“It’s a different way to think about seizure
termination, focusing on the mathematical
mechanisms rather than biophysiology,”
Kramer says. It’s possible, for example, that
the mathematical constraints might help
rule out other models that don’t fit the pre-
dicted pattern.  

Stacey took an even broader approach to
the tipping point question in a recent col-
laboration with Viktor Jirsa (physics) and
Christophe Bernard (neuroscience), both
at the Université de Marseille in France.
They found that seizure dynamics in any
species can be described by a common set of
abstract mathematical equations. They val-
idated the equations with data from hu-
mans, monkeys, rats, mice, zebrafish, and
flies. This work, to be published in the jour-
nal Brain in 2014 (in press), suggests that
seizures are, in fact, among “the normal
repertoire of brain activities,” Stacey says.
Moreover, they suggest that treatments
should be directed toward altering dynami-
cal properties of the brain rather than spe-
cific pathways. 

A Question of Control
Some researchers are betting that work

like Kramer’s and Stacey’s will yield a greater
understanding of seizure dynamics that
could eventually lead not only to better

treatments for epilepsy, but even to a cure.
Paul Carney, MD, professor of pediatric
neurology at the University of Florida Col-
lege of Medicine and director of the Univer-
sity’s Center Of Excellence for Epilepsy
Research and Comprehensive Pediatric

Epilepsy is especially optimistic about con-
trol theory, an approach borrowed from fi-
nance, weather, and airplane cruise control
or autopilot. “The airplane makes subtle ad-
justments as you fly,” Carney says. In the
brain, he says, there’s also a controller that

THE PROBLEM
OF PREDICTION

The NeuroPace RNS® device relies on seizure detection—spot-
ting a seizure just as it’s starting, typically only seconds before
onset. By that point, Stacey says, the seizure is already under-

way. Prediction, along with the possibility of true prevention, has to
occur sooner. “Is something already burning or is there just heat and
smoke?” Stacey says. “It’s a lot easier to put out a fire before the
flames start.”

People with epilepsy would welcome a way to know when a seizure
is coming, Carney says. “If I told you that you’d have a seizure today
at 1 p.m., you could arrange your life around it.” 

About 20 years ago, researchers got very excited about using com-
putation to predict seizures well before they start. They set about
looking for patterns in the electroencephalograms (EEGs) of people
having seizures to see if they could predict seizure onset well before
it actually starts, and at least a minute ahead of time. An initial flurry
of promising algorithms didn’t pan out because they used flawed sta-
tistical methods.  

Then in 2007, a company called Neurovista published an appropriate
statistical framework for prediction. They went on to develop an im-
plantable prediction device that can show patients, on a handheld
device, whether likelihood of a seizure is low (blue light), moderate
(white light) or high (red light) in the next few hours.  A 2013 paper
in Lancet Neurology reported that for 8 out of 11 patients tested, the
device predicted seizures accurately between 56 and 100 percent of
the time.  For investors and the FDA, that apparently wasn’t enough
of a home run, Stacey says. Funding dried up and the future of the
prediction device is uncertain.

At this point, Carney says, “The field is back to trying to understand
what’s going on rather than trying to predict seizures based on what
we know now.”
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applies gentle adjustments to keep things
within a certain dynamical range. “Can we
take advantage of those intrinsic mecha-
nisms to prevent seizures?” he wonders. Per-
haps as a seizure is ramping up, there might
be a point when intervention (turning on a
stimulator or taking a medication) would
keep the brain out of the danger zone.
“Rather than responding to the hurricane,

you break it up in advance.” 
Unlike DBS, which Carney describes as

a black box, control theorists would start by
figuring out what features in the brain can
be acted on to provide the necessary control.

One approach that is already showing
great potential is optogenetics: Using a
pulse of light to activate genes involved in

epilepsy. A device for detecting and then
automatically and optogenetically stopping
spontaneous temporal lobe seizures recently
proved effective in transgenic mice. The re-
search team, led by Esther Krook-Magnu-
son, PhD, postdoctoral fellow in the
department of anatomy and neurobiology
at the University of California, Irvine, used
two breeds of mice, each designed to ex-
press light-sensitive proteins that would ei-
ther inhibit certain excitatory brain cells or
activate the power of inhibitory (GABAer-
gic) cells. They then implanted the mice
with electrodes for detecting seizures and an
optical fiber for delivering light to the tar-
get cells. First, the detector had to be
trained on the specific mouse’s seizure data,
a not insignificant hurdle because temporal
lobe seizures are tricky to detect. Detection
also had to be fast, because it would occur
only seconds before a seizure would other-
wise start. “Computations have to be done
efficiently and at an appropriate time
scale,” Krook-Magnuson says.

For both breeds of mice, the device re-
duced seizures and seizure duration with no
obvious side effects. “Since it is ‘on demand’
rather than continuous treatment, we’re
not interrupting good network activity,”
Krook-Magnuson says. 

The work offers a tool for understanding
the roles of specific cell types in causing
and stopping seizures, and might lead to
new pharmacologic approaches, she says.
There’s also the possibility of using optoge-
netics to treat humans, although currently
the idea of transfecting a human brain with
a virus carrying the necessary genes is out
of favor, Carney notes.  “We have not been
able to convince reviewers that optogenet-
ics has a clinical future,” he says. 

But the epilepsy field’s interest in con-
trol theory goes beyond optogenetics. In
his 2012 book, Neural Control Engineering,
Steven Schiff, MD, PhD, director of the
Penn State Center for Neural Engineering,
and a pioneer of using computational neu-
roscience to study epilepsy, proposes apply-
ing non-linear control theory to models of
epilepsy at all scales—neuronal, lumped,
and whole-brain—and paints a picture of
where control theory could take the field. 

According to Carney, Schiff ’s interest
in control theory reflects a shift in compu-
tational neuroscience away from a signal
processing approach to epilepsy and to-
ward more advanced dynamical modeling.
“Ultimately we want prevention and cure,”
Carney says. “We have treatments right
now. But computational neuroscience lets
you take experiments or results to the next
level.”  nn
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In an optogenetic closed-loop system for stop-
ping seizures, Krook-Magnusson and her col-
leagues fed EEG signals coming from the mouse
brain (blue arrows) into real-time seizure detec-
tion software containing several possible algo-
rithms for recognizing changes in features such
as signal power, spikes, or frequency. The soft-
ware was tuned to recognize certain thresholds
for seizure in each mouse.  Once detected, the
experimental protocol called for administration
of light (orange arrows) in half of the events in
random fashion. The result: Optogenetic con-
trol reduced the frequency and duration of
seizures in the mice. Reprinted with permission
from Krook-Magnuson E, et al., On-demand
optogenetic control of spontaneous seizures in
temporal lobe epilepsy, Nature Communica-
tions 4:1376 (2013).
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The numbers tell the story: Prostate can-
cer is a killer. It’s the second most com-

mon form of cancer and the second leading
cause of cancer death among American
men. More than 230,000 new cases are ex-
pected by the end of this year alone, and
nearly 30,000 men are expected to die from
it in the same period.

Early diagnosis is vital, but current
methods are far from perfect; and once it
metastasizes to the bones, the disease is in-
curable. Some researchers and clinicians are
embracing computation as a means of im-
proving both diagnosis and treatment:
They’re finding better ways of detecting
and treating the cancer with robots and
magnetic resonance imaging, figuring out
how prostate cancer evolves, and homing
in on the genes that regulate the disease. 

Image Enhancement
Anant Madabhushi, PhD, wants to

use computers to get a better picture of
prostate cancer. 

Doctors typically use manual ultrasound
scans to guide their biopsy needles into pa-
tients’ prostates or to implant radioactive
seeds in the gland during a treatment called
brachytherapy—an approach that can de-
stroy tumors before they spread. But studies
show that ultrasound-guided biopsy fails to
detect prostate cancer in at least 20 percent
of patients who have it. 

MRI images, with their high resolution
and excellent soft-tissue contrast, can do a
better job of enabling both targeted biopsy
and more narrowly focused treatment of
prostate tumors. They could also fuel com-
puter-aided detection and diagnostic algo-
rithms, and be combined with other kinds of
imaging data to improve computer-assisted
surgical navigation and radiotherapy. But
manually segmenting MRI images to identify
a tumor’s borders within the prostate is not
currently standard practice, partially be-
cause it is difficult and time consuming.
Segmentation algorithms would seem to
offer a faster and better way of parsing MR
data, but they aren’t yet reliable enough for
clinical use—especially since the scans
themselves tend to be highly idiosyncratic,

with differences amongst scanners generat-
ing lots of variability in image appearance
and quality.

Madabhushi, who is associate professor
of biomedical engineering and director of
the Center for Computational Imaging and
Personalized Diagnostics at Case Western
Reserve University, has therefore been try-
ing to draw more algorithm developers into
the fray. In 2012, he was the lead organizer
for the Prostate MR Image Segmentation
challenge (aka PROMISE12), which had
11 teams from industry and academia com-
pete to see whose algorithms—some fully
automated, some highly interactive—
could best segment scores of MR images
provided by imaging centers in the United

States and Europe.
After tuning their algorithms on a train-

ing data set that included a reference stan-
dard comprised of manual segmentations by
expert human annotators, the teams down-
loaded and segmented one test set that did
not include such a benchmark, and were
handed yet another at a live workshop in
Nice, France. The organizers ranked the al-
gorithms based on how closely they ap-
proached the reference standard, and on
how well they did compared to an inexpe-

rienced human annotator.
In some particularly tricky cases, the in-

teractive algorithms, which relied on
human users to digitally paint large parts of
the images, outperformed their fully auto-
mated counterparts. But much to Madab-
hushi’s surprise, the two algorithms that
scored best overall were completely auto-
mated. Both employed active appearance
models, which use large data sets to con-
struct models of the shape and appearance
of the prostate; and on at least some meas-
ures, both managed to outdo even the in-
experienced human annotator. (In a second
challenge organized in 2013, Madabhushi’s
own team from Case Western won with a
semi-automated algorithm.)

Madabhushi hopes that the algorithms
will continue to improve, but he doesn’t
think they’ll ever completely replace expert
human annotators. “You have the autopilot,
and you can go on cruise. But you still want
the pilot there when you’re taking off or
landing,” he says, pointing out that the in-
experienced annotator still outshone most
of the algorithms in the 2012 challenge.
Which begs the question: what would hap-
pen if a whole bunch of different algorithms,
all using different approaches, joined forced

PROSTATE CANCER: 
Crunching the Numbers
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Three sets of images representing three different cases from the PROMISE12
challenge. Different colors are used to illustrate prostate segmentations by
different teams; on average, case 3 (images a, b, and c) had the best algo-
rithm scores, case 10 (images d, e, and f) had reasonable scores, and case 25
(images g, h, and i) had the worst scores. The two algorithms with the best
overall scores in the contest were fully automated; but in case 25, a large
area of fat around the gland caused most of the algorithms to make large
errors in prostate volume, and a more interactive algorithm did best.
Reprinted from Litjens G, Evaluation of prostate segmentation algorithms
for MRI: The PROMISE12 challenge, Medical Image Analysis 18:359-373
(2014), with permission from Elsevier.  



Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures 11

with a whole bunch of inexpert humans?
Madabhushi describes one possible sce-

nario in which large numbers of non-experts
(e.g., high school and college students) seg-
ment batches of MR images, and automated
algorithms check their annotations for ac-
curacy. The algorithms could identify the
best of the inexpert human annotators for
future reference; segment the harder cases
themselves; and send the ones that even
they can’t handle on to expert human an-
notators, who could then pass their own
properly segmented images back down to
the algorithms for training purposes.
Whether such a system would adequately
preserve patient privacy or gain FDA ap-
proval remains to be seen. But the ensuing
virtuous circle of data-sharing and analysis
amongst experts, amateurs, and algorithms
could, says Madabhushi, yield something
“more enriched, and perhaps more accurate,
than any individual source of information.”

Open-Source 
Revolution

If Madhabhushi envisions a future where
crowdsourcing and computer automation
enhance prostate cancer diagnosis and treat-
ment, Gabor Fichtinger, PhD, a professor in
the School of Computing at Queen’s Uni-
versity in Kingston, Ontario, and adjunct
professor of computer science and radiology
at Johns Hopkins University, sees one dom-
inated by open-source software.

In collaboration with the National Al-
liance for Medical Imaging Computing
(NA-MIC), Fichtinger led the develop-
ment of Prostate Nav, a prostate-specific
module within 3D Slicer (www.slicer.org),
the Alliance’s free, open-source platform for
visualization and image analysis. Prostate
Nav allows researchers and clinicians to use
medical robots to perform biopsies and
brachytherapy. It can create an interface
between a robot and the rest of the equip-
ment (scanners, navigation systems) in the
medical suite; register the robot to the same
coordinate system that 3D Slicer uses to
pinpoint the location of any other tracked
surgical instrument; issue commands to the
device; and even cause an animated model
of it to appear on the operator’s screen.
Fichtinger and his colleagues have used
Prostate Nav to support an entire family of
MR-compatible robots that can function
inside the bore of an MRI scanner, guiding
needles into patients with far greater accu-
racy than the standard manual ultrasound-
guided method can achieve.

Now Fichtinger is exploiting open-
source software to more quickly and effi-

ciently build systems that combine robots
and tracked surgical tools with preopera-
tive MRI, intraoperative ultrasound, and
other imaging modalities. For example, he
and his colleagues recently added color
stereo optical imaging to their software
platform to accommodate researchers who
are interested in laparoscopic prostate sur-
gery. And last year, Fichtinger’s team de-
veloped a custom system for MRI- and
ultrasound-guided prostate intervention re-
search at Harvard’s Brigham and Women’s
Hospital in just eight weeks—and it only
took that long, Fichtinger says, because of
some “funky requests” by the clinicians,
such as simultaneous image acquisition
from multiple ultrasound transducers.
Within the next decade, Fichtinger pre-
dicts that the technology will have ma-
tured to the point where it will be possible
to derive working, clinical-grade applica-
tions from open-source platforms such as
3D Slicer in a matter of days—though get-
ting FDA approval for them “will still take
a good bit of time.”

An Ecological Approach
Identifying and treating tumors in the

prostate is critical. But prostate cancer be-
comes truly lethal when it migrates else-
where. David Basanta, PhD, and Arturo
Araujo, PhD, in the Integrated Mathemat-
ical Oncology department at the Moffitt
Cancer Center in Tampa, Florida, have
therefore built a computational model that

combines agent-based techniques with con-
ventional mathematical modeling methods
to simulate how prostate cancer metasta-
sizes to bone in order to better understand,
and hopefully foil, the process.

Previously, Basanta used another hybrid
model to investigate how the protein TGF-
beta affects tumor growth. He has also em-
ployed evolutionary game theory to explain
how interactions between prostate cancer
cells, normal cells, and their shared mi-
croenvironment influence cancer progres-
sion, comparing tumor cells to invasive
species that disrupt the ecosystem of
healthy tissue. His latest work, carried out
in conjunction with a group led by molec-
ular biologist Conor Lynch, PhD, and
reported in 2014 in the journal Cancer Re-
search, builds on those earlier efforts, using
a hybrid cellular automaton model to illus-
trate how metastatic prostate cancer cells
are able to exploit elements of the bone
ecosystem, including TGF-beta and an-
other signaling molecule called RANKL, to
their own advantage.

The agents in Basanta’s model include
not only prostate cancer cells, but also the
osteoclasts and osteoblasts that break
down and build up bone tissue during the
course of normal bone maintenance. Par-
tial differential equations, meanwhile, are
used to mimic the production, diffusion,
and decay of TGF-beta, RANKL, and
other molecules that coordinate normal
bone maintenance yet also facilitate the
proliferation of cancer cells. In simulations

The ecosystem in a prostate to bone metastasis comprises several types of cancer cells interacting
with other cellular populations such as osteoblasts, osteoclasts, osteocytes and stem cells. Tumor
cells compete and cooperate for resources such as nutrients, space and growth factors. Reprinted
with permission from Basanta D, Anderson A, Exploiting ecological principles to better understand
cancer progression and treatment, Interface Focus, 3, 20130020 (2013).
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that ran for 240 virtual days, Basanta’s
model demonstrated how prostate cancer
cells manipulated levels of TGF-beta and
RANKL to create a vicious cycle of aggres-
sive tumor growth and abnormal bone for-
mation and resorption. The model was
also able to predict the efficacy of two
types of drugs that are commonly used to
slow the progress of bone metastasis, and
offered some insight into how one of
them—an anti-RANKL inhibitor—might
be used more effectively in the clinic. 

Basanta and Lynch are now testing the ef-
ficacy of TGF-beta inhibitors using both in
silico and in vivo tools, and they have joined
forces with several clinicians to develop a
computationally and mathematically en-
hanced method of personalizing treatments
for patients with metastatic prostate cancer.
Basanta hopes to use models to predict how
tumors with particular mutations might
evolve and grow in response to different
drugs, then use that information to optimize
the sequence of treatments a patient receives
“in order to reduce the tumor burden in the
bone and, presumably, extend quality of
life—and improve their chances of coming
out of this alive.”

The Root of the Problem
Andrea Califano, PhD, professor of

chemical systems biology and chair of the
department of Systems Biology at Colum-
bia University, is pursuing the same goals
with a different set of computational tools.
Ultimately, Califano wants to personalize
cancer treatments by reconstructing the
regulatory networks, or interactomes, that
control different kinds of tumors. This ap-
proach would allow researchers to look be-
yond the bewildering array of genetic
mutations that accompany the various
tumor types and focus instead on the mas-
ter regulators of the disease: those genes
that are necessary for the survival of a
given form of cancer. Because they rarely
harbor genetic mutations, these master reg-
ulators cannot be identified through stan-
dard genetic sequencing. “But you can find
them by analyzing these networks,” Cali-
fano says. And once found, they may be in-
hibited by existing drugs.

That was the case in a study that Cali-
fano and his colleagues, Cory Abate-Shen,
PhD, and Michael Shen, PhD, recently
published in Cancer Cell. They began by
using an algorithm called ARACNe (Algo-
rithm for the Reconstruction of Accurate
Cellular Networks) to reconstruct two in-
teractomes: one responsible for producing
prostate cancer tumors in human beings,

and one responsible for producing them in
mice. Reverse engineering each network re-
quired sifting through hundreds of thou-
sands of possible interactions between
thousands of transcription factors and their
target genes. The team then ran a different
algorithm to determine which cancer-re-
lated transcription factors controlled ge-
netic programs that were conserved
between mice and people, and were there-

fore most likely to be significant. 
Califano and his collaborators then used

an algorithm called MARINa (Master Reg-
ulator Inference Algorithm) to identify the
transcription factors that were most likely
to induce the genetic signature observed in
aggressive prostate tumors. The seven con-
served master regulators that emerged were
then computationally analyzed for poten-

tial synergistic interactions among them-
selves, and a single pair of synergistic mas-
ter regulators—the genes FOXM1 and
CENPF—were found to drive aggressive
prostate cancer in both mice and humans.
Silencing one gene slowed cancer growth
in the mouse models; silencing both shut
it down completely. And protein expres-
sion analysis of prostate tissue samples
taken from more than 900 prostate cancer
patients at Memorial Sloan-Kettering Can-
cer Center revealed that patients with ele-
vated expression levels of both genes
experienced by far the worst outcomes—
including shortest time to metastasis, and
death. Abate-Shen and Califano have al-
ready identified two drugs that can inhibit
these master regulators. 

In addition to identifying the master reg-
ulators that induce aggressive prostate can-
cer, Califano and his colleagues have found
a cluster of genes that can be used to predict
whether tumors that seem indolent, or
slow-growing, are destined to stay that way.
It’s a crucial task, since overtreatment of
prostate cancer is both costly and poten-
tially risky, yet the only thing worse than
unnecessarily treating a person with an in-
dolent tumor is failing to treat one whose
tumor only appears to be so.

Califano’s indolent tumor work, pub-
lished last year in Science Translational Med-
icine, began with a manually curated list of
377 genes associated with the tumor-in-
hibiting processes of cellular aging and
senescence. He and colleagues used Gene
Set Enrichment Analysis (GSEA), which
ranks genes on a spectrum from most to
least expressed, to identify 17 senescence
genes that were over-expressed in indolent
mouse tumors and under-expressed in ag-
gressive human ones; then applied a deci-
sion-tree algorithm to prune them down to
a trio of genes with the greatest predictive
power. All three were validated in the lab
by Abate-Shen and were found to be under-
expressed at the protein level in biopsies
taken from prostate cancer patients whose
tumors initially appeared to be indolent,
but nonetheless became aggressive.

By combining the genes discovered in
the indolent tumor and master regulator
studies, Califano and Abate-Shen hope to
develop a comprehensive five-gene panel
that can give prostate cancer sufferers a
“complete report” on the aggressive poten-
tial of their tumors.

More accurate diagnoses, new biomark-
ers, and improved therapies: add it all up,
and computation just might make prostate
cancer’s numbers look a little less menacing
after all.  nn              
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searchers hope that teasing out these early
abnormalities will guide them toward new
strategies to protect the brain from impend-
ing damage. Other scientists are taking a dif-
ferent tack, using bioinformatics to uncover
other genes and pathways that may be
linked to Huntington’s pathogenesis. 

Neuroimaging: Structural and
Functional Brain Changes

One of the field’s biggest surprises—
which also may explain why Huntington’s
symptoms remain under the clinician’s radar
for so many years—is the brain’s incredible
ability to adapt. “We can function pretty
darn well by recruiting non-traditional parts
of our brain to work on tasks,” Johnson says.

For instance, early trouble in memory cir-
cuits can trigger the brain to rewire itself in
ways that bypass problem spots by activating
neurons from other areas. Some researchers
believe this process kicks in as a compensa-
tory process to help people on the verge of
Huntington’s retain function in the face of
early degeneration. 

Such insights come from studies that use
functional MRI (fMRI)—a technique that
measures brain activity by detecting changes
in blood flow. A typical functional neu-
roimaging session produces 20 gigabytes of
raw data, Johnson notes. “In addition to
drawing a ruler on the screen and counting
the number of voxels in a region, we need
to correlate the task being run with other

Uncontrolled writhing and jerking. Poor
judgment. Depression and irritability.

It’s hard to imagine how this unnerving mix
of movement, cognitive and psychiatric
problems arises from a single genetic blip—
one that plops unusually long stretches of
the amino acid glutamine in the culprit pro-
tein for Huntington’s disease (HD). Re-
searchers who study this brain disorder are
still puzzling over how the rogue molecule
causes so much to go awry.

What they do know is that people who in-
herit the huntingtin gene mutation are sure
to develop the disease and die of it. In West-
ern nations, the disease strikes one in every
10,000 to 20,000 people, destroying neurons
in areas at the base of the brain known as the
basal ganglia. On magnetic reso-
nance imaging (MRI) scans that
measure brain volume, regions of
the basal ganglia appear heavily
shrunken in Huntington’s patients,
relative to normal adults. By the
time symptoms appear,  “they’ve al-
ready lost a tremendous amount of
brain structure. It’s hard to regain
that,” says Hans Johnson, PhD, as-
sistant professor of psychiatry and
biomedical engineering at the Uni-
versity of Iowa Carver College of
Medicine in Iowa City. 

While structural MRI meas-
ures of brain volume can be useful
for understanding the biological
degradation that has occurred at
the time of diagnosis, Johnson
and other researchers are now
using state-of-the-art neuroimag-
ing and computational approaches
to look much earlier in the disease
process. Churning out four- or
five-dimensional data, these newer
methods burn through 1,000 to
2,000 times as much mathematical
and computational power as volu-
metric MRI. But they are yielding
valuable clues—subtle changes in
circuitry and function that seem to
lurk within the brain for years, per-
haps even decades, before symp-
toms become serious enough to
prompt a doctor’s visit. The re-

PROBING HUNTINGTON’S ORIGINS: 
Computational Approaches May Lead to Earlier Interventions 

The brains of HD patients (bottom) show progressive expansion of the ventricle (large dark area in the
middle) and thinning of the caudate (green outline) from baseline (left) until two years later (middle). And
researchers have extrapolated that change six years into the future as well (right). In contrast, a control
subject does not show much change at all (top). Animations of the series shown here are particularly com-
pelling and available online at http://www.cs.utah.edu/~jfishbau/docs/ctrl_and_hd.gif.  Courtesy of James
Fishbaugh.  
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variables such as heartbeat and breathing
rate, in order to get to the signal that we
then have to extract mathematically with
the task being performed.”

Prior fMRI analyses support the idea
that functional reorganization occurs early
in disease, but results have been mixed—
some showed a boost in brain activity while
others portrayed a decrease. Moreover, past
studies have been cross-sectional, analyzing
data on patient subgroups at just one point
in time. Researchers led by Nellie Georgiou-
Karistianis, PhD, a cognitive neuroscience
professor at Monash University in Mel-
bourne, Australia, investigated the compen-
sation issue more rigorously in a longitudinal
study known as IMAGE-HD. The team used
fMRI to monitor brain activity in three
groups of people—those with Huntington’s
symptoms, mutation carriers (approximately
15 years prior to estimated disease onset),
and healthy controls—during a working
memory task. They made the measurements
at baseline, 18 months, and 30 months.
“Our focus was to determine whether the
brain is able to compensate during the
‘pre-manifest’ stage—in some way, to
help individuals stay on task,” Geor-
giou-Karistianis says.

As her team reported in a No-
vember 16, 2013, Brain Struc-
ture & Function paper, the
answer seems to be yes. Over
the 30-month study, the fMRI
scans showed subcortical and
cortical areas firing more inten-
sively in people on the verge of
symptom onset, compared with
the other groups. In addition, con-
nections between those brain areas
appeared to be faltering. “It is possible that
the reduced connectivity may promote over-
compensation in these particular regions,”
Georgiou-Karistianis says, noting that these
areas could be used as targets for future phar-
macological intervention. “The overcom-
pensation might also be a response to the
structural brain changes that are also hap-
pening very early during the disease.”

Some of those abnormalities may show
up with diffusion-weighted imaging (DWI),
a newer type of MRI that requires massive
computing power to visualize tissue archi-
tecture. Instead of a single picture of a brain
structure, DWI generates some 80 high-res-
olution sub-pictures that help scientists
model the vibration of water molecules.
Those vibrations give insight into the in-
tegrity of the underlying tissue. Using the
analogy of an electric circuit, fMRI measures
the strength of signals whereas DWI gives
insight into the integrity of the wires that

carry the signals. For example, is the insu-
lating shell around the wires intact, or does
it have holes where it’s rubbed against some-
thing else? Does the insulation work prop-
erly? The “insulation” that surrounds the
axonal projections of neurons is known as
white matter. Diffusion MRI helps re-
searchers determine how the white matter
bundles are organized, whether they’re
packed densely or loosely, for example.

A team of researchers led by Jane
Paulsen, PhD, a professor of psychiatry at
the University of Iowa, Iowa City, used dif-
fusion-weighted imaging to measure white
matter changes in the prefrontal cortex of
people with prodromal Huntington’s dis-
ease. These individuals perform slightly
worse than normal but not poorly enough
for disease diagnosis. For
the study, they
did various

cognitive tasks that
required them to identify
words or colors, or link numbers together.
In a paper published in April 2013 in
Human Brain Mapping, Paulsen and col-
leagues reported that myelin sheath in-
tegrity and other white matter measures
seemed to track with cognitive readouts in
those areas. “For example, in the word-find-
ing task, white matter deficits showed up in
the part of the brain needed for word pro-
cessing,” noted Johnson, who was a coau-
thor on the research. 

Bioinformatics: 
Other Genes and Pathways

While neuroimaging afficionados strive
to understand the earliest stages of Hunt-
ington’s by probing the brain’s inner work-
ings, others are coming at the issue using

bioinformatics. Their computational strate-
gies are scouring massive gene-expression
datasets for pathways that are altered by
mutant huntingtin.

The huntingtin protein is expressed in
many cell types, but scientists don’t under-
stand quite what it does. It interacts with
a huge number of proteins and has struc-
tural features found in organizers of molec-
ular complexes.

The huntingtin (HTT) mutation is also
intriguing. All of us have CAG (cytosine-
adenine-guanine) trinucleotide repeats in our
huntingtin gene. In fact, we can have up to
35 HTT CAG repeats and still be considered
normal. In rare cases, people with 27 to 35
HTT CAG repeats can have children with

HD if the inherited repeat increases to
more than 35 CAGs. Some

people with 36 to 39 re-
peats do not show

symptoms, but
having 40 or

more re-

peats virtually guarantees disease. The size of
the HTT CAG repeat mutation correlates
inversely with age of symptom onset—in
general, the more HTT CAG repeats, the
earlier a person will develop disease.

The prevailing view holds that the hunt-
ingtin mutation acts through full-length ex-
pression of the gene. “We’re not dealing
with a protein that loses function. It’s either
gaining function or getting dysregulated,”
says James Gusella, PhD, who directs the
Center for Human Genetic Research at
Massachusetts General Hospital in Boston.

Until recently, researchers doing gene
expression studies to understand the effect
of the HTT CAG repeat assumed they
would get the strongest signal by analyzing
extreme populations—that is, genomes with
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White matter pathways (pur-
ple lines) connecting putamen with pre-

frontal and motor cortex falter in people who
have yet to show overt Huntington's symptoms.

Courtesy of Govinda Poudel and IMAGE-HD.



Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures 15

strong disease mutations and those devoid
of mutations. Hence, they have compared
two groups: patients with HD symptoms and
normal patients (controls). These dichoto-
mous analyses failed to take into account
differences in CAG repeat length. 

Gusella and his colleagues therefore took
a different analytical approach:  They corre-
lated gene expression across the continuum
of HTT CAG repeats from low to high (15
to 92) in 97 lymphoblastoid cell lines (the
training set). They used the results to math-
ematically predict CAG repeat numbers in

a set of 10 cell lines (the test set). The proof-
of-concept study showed that differences in
transcript levels can detect the continuous
effects of increasing HTT CAG repeat
length and provide an approach to discover-
ing factors contributing to the pathogenic
process, which also increases with HTT
CAG repeat length. The expression changes
appeared in genes involved in chromatin re-
modeling, energy metabolism and axonal
transport, suggesting that CAG repeats have
downstream consequences on molecules in-
volved in these pathways. However, how

these systems connect is not clear, Gusella
says. “The big picture hasn’t yet come to-
gether.” The work appeared in Human Mo-
lecular Genetics in April 2013. 

Future: Bigger Datasets
In the long run, gaining a more complete

picture of Huntington’s disease progression
will require a pooling of many different types
of studies—gene expression, fMRI and DWI
and others, Johnson says. “Investigating it
jointly rather than independently is really
where the future promise is.”  nn

In synthetic biology labs around the world,
brainstorming has often begun at the same

place: in front of a whiteboard. Marker in
hand, researchers jot down the parts needed
to form a new circuit, draw lines and arrows
to show how they interact, and scrawl notes
about how to assemble the parts into an ap-
propriate whole. 

“It’s usually based on intuition, and what
we know has worked in the past,” says Tim-
othy Lu, MD, PhD, who heads up the Syn-
thetic Biology Group at the Massachusetts
Institute of Technology. 

The whiteboard has been used to design
many novel genetic programs—whether
aimed at turning bacteria into biosensors or
forming networks of enzymes to churn out a
particular product. But the way of the white-
board might be fading. As circuits become
more and more complex, and researchers
move toward the design of larger networks
and whole-cell programs, it’s becoming
harder to manage all the required parts for a
new project in hand-written dry erase. 

“When I was looking at a simple circuit
with two inputs, I could by hand iterate
through all the possible states of the sys-
tem,” Lu says. “Now, I’m interested in
things with six or eight inputs, and intu-
ition starts to fail.”

Costas D. Maranas, PhD, professor of
chemical engineering at Penn State Uni-
versity, concurs. While synthetic circuits of
a decade ago had a single switch and just a

few inputs to alter genes, Maranas is trying
to reconstruct and regulate the entire
repertoire of pathways involved in a mi-
crobe’s metabolism.

And it’s not just the number of switches
that adds complexity. Adding new enzyme
activity into a bacterium is more compli-
cated than just adding the enzyme. Take ni-
trogenase, for example, which Maranas and
collaborators at Washington University
would like to be able to control within a
cyanobacterium. Getting the right levels of
nitrogenase activity, he adds, doesn’t just
mean having the right levels of gene and
protein expression, but also accurately re-
producing the light to dark transitions and
providing sufficient energy in the form of
ATP to power the nitrogenase.

To help manage this complexity, re-
searchers are developing, refining, and ap-
plying computerized design programs that
track the parts involved in their systems
and pinpoint the best method to assemble
a new circuit. There’s not yet one program
that fulfils the dream of “plug and play” bi-
ology—where a few simple clicks choose
the parts for the essential biological circuits
and, voilà, synthetic life! But several pro-
grams are emerging as crucial to the field. 

Inspired by Engineering
In the mid-2000s, Jean Peccoud, PhD, a

computational synthetic biology researcher

at Virginia Tech’s Bioinformatics Institute,
was working on recreating the genetic net-
works that control cell division in yeast.
Like other synthetic biologists, Peccoud
viewed the components of the network—
genes, promoters, ribosome binding sites,
and terminators, to name a few—as discrete
parts, with defined functions, that could be
shuffled around between networks. But he
realized that no software existed that could
track which parts worked together, guide
how the parts could be plugged into genetic
circuits, and model how a proposed circuit
would function. 

“It seemed reasonable to assume that
synthetic biology would need some com-
puter-aided-design tools just like any other
engineering discipline,” says Peccoud. CAD
programs are heavily relied on by electrical
and mechanical engineers, for example, to
design electrical circuits or structures on the
computer before they’re created and tested. 

So his lab began developing such a pro-
gram for biology. The result: GenoCAD, an
open-source, synthetic biology CAD soft-
ware. GenoCAD manages lists of genetic
parts and gives users an interface where
they can set design rules, apply them to
their system and then assemble genetic
parts into plasmids. It also includes a simu-
lation engine to test new circuits. 

In the December 2013 issue of ACS Syn-
thetic Biology, Peccoud and two collaborators
describe using GenoCAD to create a set of

DESIGNING LIFE’S LAYERED CIRCUITS: 
Tools of the Trade
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quire a strong set of software tools and
provide an example for the rest of the field
to follow. 

Predictive Power Still to Come 
Peccoud admits that the weakest part of

GenoCAD is the newest addition to the
program—the simulation engine. “Being
able to run simulations of the behavior of a
synthetic genetic system before making it is
the holy grail of synthetic biology,” he says.
“The science is not there yet but it is our
hope that a tool like GenoCAD can help
support the research necessary to under-
stand gene expression better.”

Lu says that getting more accurate sim-
ulations of biological circuits will require
more data on how different organisms in-
teract differently with the various parts that
make up circuits. 

“In other engineering disciplines, the
manufacturer of a system will give you pa-
rameters that define that particular sys-
tem,” Lu says. Those parameters can be

grammatical rules for building novel syn-
thetic transcription factors from seven differ-
ent types of parts. The program was able to
generate eight possible designs that met all
the rules governing what parts were required
and what order they should fall in. The rules,
which were derived from experimental infor-
mation, can be revised and updated over
time. As new synthetic circuits are tested in
living cells, their success or failure can help
guide the design of future circuits. 

A Growing Toolbox
In addition to GenoCAD, there are a

rapidly growing number of synthetic biol-
ogy tools, Peccoud says. He adds that his ul-
timate goal isn’t for GenoCAD to beat out
other tools. “I don’t think it should be a
goal to converge to one tool,” he says. “Our
field is so new that it is necessary that peo-
ple explore different avenues.”

When designing DNA to characterize
new promoters, George McArthur, PhD,
a chemical engineer at Virginia Common-
wealth University, turns to a dif-
ferent software program for
nearly every step of the process.
Aside from GenoCAD, he uses a
ribosome binding site (RBS) cal-
culator that develops an RBS of
whatever binding rate he needs;
a tool that produces inert spacer
sequences; and the automated
DNA assembly program J5 that
gives him a list of primers for use
in assembling the sequences he
designs in GenoCAD. 

“As a user, I’d love to have
everything in one place,” McArthur
says. “And already it’s great that a
lot of these tools adhere to the
same file standards. I think that
eventually we’ll have different
collections of software that aggre-
gate together.”

One effort to encourage the
consolidation of tools—or at
least the development of a start-
to-finish synthetic biology design
protocol—is DARPA’s “Living
Foundries: 1000 Molecules” pro-
gram. Approximately $110 mil-
lion in grants will be doled out
by the end of 2014 to scientists
who aim to build infrastructures
for engineering biological mole-
cules. The proof of principle for
any infrastructure will be the de-
sign and production of 1,000 new
molecules. But following through
to such an outcome will likely re-

entered into CAD software to make your
computer models accurate. “But in biology
these days, no one has defined what, say,
the E. coli parameter set is,” he points out.
Even if a circuit is completely worked out
in one strain of E. coli, he says, moving it
to a new strain can drastically change how
it functions. 

Recently, Stanford scientists created a
whole-cell computational model of the
circuits within Mycoplasma genitalium, a
human pathogen. Lu has collaborated
with the Stanford team to start putting
synthetic circuits into the organism. With
the whole-cell model at his disposal, he
hopes to start predicting how new circuits
will work in the organism. But even that
has been slow going, he says, and it’s just
one bacterium. 

Even without full predictive power
though, programs like GenoCAD are push-
ing the boundaries of synthetic biology,
offering a more modern “whiteboard” to
sketch out complex circuit designs and or-
ganize growing libraries of biological parts.

By giving users a place
to organize the gram-
matical rules that gov-
ern their design process,
and the parts that they
want to use, it makes the
design step of the stan-
dard engineering “de-
sign, build, test” cycle
that much easier.  nn
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Seven molecular building
blocks, each shown here
in a different color, can
be arranged in numerous
ways to form a functional
transcription factor. But
rules dictate which parts
come first and which are
required, similar to gram-
matical rules regarding
sentence structure. Using
the design program Geno-
CAD, researchers can deter-
mine which grammatical
arrangement of parts will
work best for their system,
using the molecules they al-
ready have. Reprinted with
permission from Purcell, O,
Peccoud, J, Lu, T, Rule-Based
Design of Synthetic Tran-
scription Factors in Eukary-
otes, ACS Synth. Biol., DOI:
10.1021/sb400134k. Copy-
right 2013, American Chem-
ical Society.



Editor’s Note:
In addition to asking 10 experts to
weigh in on Eric Jakobsson’s 2005 Top
Ten Challenges for the field of
biomedical computing (Top Ten
Retrospective, in this issue), BCR asked
Ruth Nussinov, PhD, to reflect on the
last decade and offer a new list.
Nussinov, who is a professor of genetics
at Tel Aviv University School of
Medicine and senior principal scientist
and principal investigator at the
National Cancer Institute, came up with
a Top Twelve that melds advances of
the last decade with related challenges
for the future. Not surprisingly, this list
overlaps somewhat with Jakobsson’s.
But the two stories make a nice pairing:
Their similarities clarify the continuity in
the field, while their differences let the
shifting nature of the scientific
enterprise shine through.  >

A Top Twelve List for Biocomputing: 
A Decade of Progress and Challenges Ahead



When asked to choose the most significant compu-
tational biology advances of the last decade, I wel-
comed the opportunity to reflect on the field. But

soon the daunting nature of the task be-
came clear: The field has come a long way
in ten years and is so broad (covering the
entire range of biomedicine) that the pos-
sible choices are numerous. Moreover,
there may well be entire categories of re-
search that haven’t come to my attention.
On top of that, there’s the question of sub-
jectivity: The significance of any research
advance is a matter of opinion. 

To make the job tractable, I opted not
to identify specific research papers but in-
stead to focus on broad topic areas where
computation has made, and will continue
to make, a major contribution.

It is my sense that, these days, compu-
tational biology is closely tied to experi-
mental research. And this is an advance in
itself (see #1). Thus, the progress described
here is not purely computational in nature;
it is tied to biomedicine. And that’s as it
should be.

1.Mainstreaming 
Computational Biology

Ten years ago, as the National Institutes of
Health were preparing to fund the National Centers
for Biomedical Computing, we lived in a different
world. The field of computational biology, though
established, was dispersed and not entirely trusted
by mainstream biological and medical researchers.
Today, by contrast, computational biology is inti-
mately connected to the rest of biomedicine. It’s eas-
ier to collaborate across disciplines. And laboratory
researchers have a better understanding of the value
of using computational models for hypothesis gen-
eration, as well as the need to iterate through a cycle
of modeling and laboratory testing. In sum, compu-
tational biology has become more closely integrated
with experimental work, to the betterment of bio-
medicine as a whole. 

It’s a change that’s also reflected in societal expec-
tations about computation’s potential generally. This
attitude shift is felt throughout the field: Computa-
tional biologists now get the respect they are due. 



Looking to the future, I see computational biol-
ogy increasingly taking the lead in the medical sci-
ences. I expect experimentalists will frequently find
themselves testing hypotheses generated by compu-
tational analyses of massive datasets.

2.Individualizing
Sequencing

Over the past decade, sequencing technologies
have changed the face of genomics at an unprece-
dented pace, spurring new opportunities in compu-
tational biology. The one billion dollar cost of the
first two human genome projects has dropped by a
factor of a million. Soon a completely different and
novel approach called single molecule sequencing
may become viable. The method involves pulling a
DNA strand through a membrane with a nanopore
designed to measure tiny base-specific changes in im-
pedance across the pore. 

This technique has great promise. For example,
it will be possible to compare corresponding se-
quences in diseased and healthy tissue of a single
human being. Such methods may lead to early
screening of ailments and epidemics, and suggest
more effective personalized treatment decisions. 

Eventually, single molecule sequencing may also
permit delivery of drugs (attached to DNA via sticky
ends) to specific locations using complementary se-
quences. Such an approach has already been pro-
posed and could be used to target malignant
genomic aberrations. 

3.Imaging Molecules
in Action

A vast improvement in our ability to image living
systems at all levels has been the key to many crucial
developments and is likely to remain so into the fu-
ture. Over the last decade, X-ray crystallographic
imaging has proven its efficacy by revealing struc-
tures of thousands of proteins and by successfully
decoding the structure of a whole RNA-protein
complex—the ribosome.

Recent advances in nuclear magnetic resonance
(NMR) imaging have led to gains of a complemen-
tary but more dynamic nature. Whereas X-ray crys-
tallography captures the single dominant native
structure of a protein, NMR can often verify the ex-
istence of several and even dozens of transient alter-
nate forms of a protein structure. Understanding the
range of possible shapes a protein can take will help

in the development of drugs.
There have also been remarkable advances in

the imaging of single cells, individual organelles,
and even single molecules using fluorescence,
electron microscopy, atomic probes and other
techniques. These allow researchers to follow mor-
phological and dynamical changes over reasonably
short timescales. 

In sum, molecular imaging tools now at our dis-
posal not only allow the reconstruction of static
protein structures, they can track transitions be-
tween structures, as well as reveal the kinetics and
dynamics of such things as gene transcription and
splicing. As we move forward, such tools, com-
bined with computational approaches, may be able
to track processes in the living cell across space,
time and environment, ultimately revealing cross-
scale relationships such as those between cellular
outcomes and morphogens (signaling molecules
involved in tissue development), genetic muta-
tions, post-translational modifications or patho-
genic proteins. 

4.Going Beyond
the Genome

In the nature versus nurture debate, there’s been
a surprising shift toward nurture over the last ten
years, with computational analyses playing a role in
discoveries on both sides. 

In support of nature, an ever-increasing number
of human traits—including even the tendency for
happiness—have been found to have a genetic com-
ponent. And epigenetic activity affecting the dy-
namics of gene expression has been found in the
areas of DNA that don’t code for specific proteins
(areas previously considered “junk DNA”). Indeed
sections of DNA that are physically far away from a
protein-coding location can critically affect function. 

On the side of nurture, recent developments
show the importance of DNA methylation and
post-translational modifications of proteins as well
as other changes that aren’t built into the genome
but instead develop during the course of an organ-
ism’s life. For example, prion disease and type A di-
abetes directly stem from the misfolding of proteins
even in the absence of purely genetic causes. This
undermines the notion that the sequence of amino
acids in a protein uniquely determines its conse-
quent shape and function, and weakens the linkage
between genetic information and phenotypic traits
exhibited by a cell or organism. Nurture—which
causes cellular changes during an organism’s life—
matters.

Looking forward, computational tools will con-
tinue to play a role in pursuing an understanding of
both nature and nurture and how they interact. 



5.Approaching Protein
Folding Sideways

Researchers would love to be able to accurately
predict a protein’s shape simply by knowing its
amino acid sequence. That’s because a protein’s
shape can yield an understanding of the protein’s
function and reveal the likelihood it will bind to
other molecules, including drugs.

Naturally occurring proteins typically fold quickly
in vivo into the correct, native, functional form. Yet
predicting the complete, tertiary structure of proteins
by using only sequence information and a reliable
force field has challenging chemical, geometric and
combinatorial aspects. It may be an intractable NP
hard problem that requires approximate solutions.

Rather than attacking the problem head-on, re-
searchers have spent the last decade developing al-
ternative strategies—using known fold motifs,
sequence homologies and the many existing struc-
tures in the Protein Data Bank (PDB)—to piece to-
gether a reasonable guess for the folded form that
can be further refined and improved by additional
information and calculations. 

Though we’ve come a long way toward efficient
handling and quick access to protein structural infor-
mation via a large variety of different types of queries
of massive structure/sequence data, there remains an
ongoing need to efficiently and reliably exploit these
data in order to predict accurate shapes.

Having determined a protein’s accurate three-di-
mensional structure, computational researchers can
move on to the task of determining its function in the
cell, including how it cooperates with larger assemblies
in biological systems. In the past decade, for example,
coarse-grained molecular dynamics simulations have
revealed how various proteins interact with the cell
membrane. Moving forward, as greater computational
power comes on line, we can expect larger and ever
more detailed simulations, which will reveal valuable
clues to the workings of proteins and cells.

6.Untangling
Networks

Over the past decade, computational work has
helped highlight the extent to which the program-
ming of life relies on complex biological networks.
Such networks include the basic metabolic cycles
that have been remarkably conserved throughout
evolution, as well as more complex networks that
regulate various cell functions. The onset of many
diseases, including cancer, is often related to a mal-
function of these intra- and inter-cellular commu-

nication networks. Going forward, computational
modeling and simulation, together with experimen-
tal efforts to decode complex feedback loops (the
hallmark of regulation), are likely to play a major
role in generating a deeper understanding of biolog-
ical networks at all levels. 

7.Tackling the Brain:
From Artifical Intelligence
to the Connectome

Computer programs inspired by the central nerv-
ous system and designed to “learn” from their envi-
ronments have been around for some time now. They
can steer robots through diverse terrain and are being
increasingly successful at tasks such as computer vi-
sion and speech recognition. In recent years, some
researchers have even attempted to replicate the be-
havior of neurons and the brain on a computer, with
the intention to both gain an understanding of the
brain and build more powerful computers. 

Advances in computationally intensive imaging
modalities, such as functional MRI and diffusion ten-
sor imaging, have also increased our understanding of
the brain’s anatomy in health and disease. Unlike
computers, which store data and perform operations
at specific locations within their chips, we now un-
derstand that both memory/data and operations in
our brain seem to be distributed over many neurons
and synapses. It is this richness that may underlie the
phenomena of associative memory and thinking. Pat-
terns of closed loop sympathetic multi-neuron firing
may eventually prove to be the basis of consciousness.

Among the most exciting developments of the last
decade are the emerging efforts to map the human
“connectome”—the connections among all of the
neurons of the brain. Since the human brain network
is more complex than that of the entire worldwide
web, its complete mapping will likely be a challenge
for the next decade or two. Like the human genome

project of the 1990s, such a connectome project may
mobilize a concerted effort and accelerate its achieve-
ment. Though we will likely face many challenges in
taking on such a project, the potential benefits to be
gained from a deep understanding of the (mis)func-
tion of the human brain and mind are extraordinary.

Since the human brain network is more
complex than that of the entire worldwide
web, its complete mapping will likely be a

challenge for the next decade or two. 



8.An Explosion of
Computing Power:
More Is Not Enough

Large-scale genome sequencing (and the shot-
gun method in particular) would be impossible were
it not for massive computer power and associated
efficient, fast algorithms for sequence alignment.
Likewise, molecular dynamics simulations of large
biological molecules, recently honored with a
Nobel Prize in chemistry, depend on vast computa-
tional resources. So too does the dawning age of big
data, with its need for efficient storage and quick
access in order to probe for patterns and clues and
gain a more comprehensive understanding of bio-
logical molecules, cells, tissues and organisms. 

Thanks to increasing miniaturization, computing
power has increased exponentially. However, the va-
riety and complexity of biological information is
growing much faster than computational power.
Many researchers deal with computational limits by
varying the computational resolution of their mod-
els and simulations as the scale of the task increases.
But the desire to understand biological complexity
in all its glorious details makes that approach less
than satisfying. 

Barring a true breakthrough that provides mas-
sive amounts of computational power more effi-
ciently, we will soon be inundated with
un-analyzable and therefore largely useless amounts
of information. Most potential solutions remain, at
this point, more hypothetical than practical—in-
cluding quantum computers, light-based computers,
or an unforeseeable but profound theoretical insight
that can vastly improve algorithmic speed. I am
somewhat more hopeful that the machinery of
DNA/RNA/proteins may prove useful in comput-
ing. An all-purpose universal DNA computer likely
remains too far in the future, but researchers are al-
ready turning to less ambitious lower-level utiliza-
tions, such as having complementary DNA probes
efficiently search large DNA libraries. When and if
any of these possibilities materializes, biomedicine
will be ready with the data to take advantage of it.

9.Moving Forward with 
Molecular Prosthetics:
From Synthetic Biology 
to Nanobiology

Just as computation has been instrumental in de-
signing large-scale prosthetics, such as artificial hip
bones, so too is it proving valuable for designing and

synthesizing potential molecular bio-prostheses. For
example, synthetic biologists are designing robust
substitutes for certain amino acids, which can still
be integrated into living proteins. The advent of
nanotechnology and nanobiology may further close
the enormous gap between large- and small- scale
prosthetics by allowing useful intimate interfacing
of biological and hardware components at many in-
termediate scales.

Imagine, for example, the creation of nanocir-
cuits using sticky-end unpaired single stranded por-
tions of DNA that can spontaneously attach with
high specificity to complementary ends of other
double helical chains; or the induced self-assembly
of multi-cellular biological structures that can in
turn control the assembly of various other nano-
hardware pieces designed to interact with it; or
novel materials such as the magical graphene,
bucky-balls and carbon nano-tubes being integrated
into tissues to collect electronic impulses. It is even
conceivable that bionic ears could be designed to in-
crease the range of audible acoustic waves. 

Such possibilities raise societal questions as well:
For example, to what extent do we want nanoma-
chines roaming our bodies? But it’s clear that as
these issues are being explored, computation will
play a role.

10.Confronting the
Complexity of Cancer

No single field of medical research manifests
more clearly the diverse, distributed and multifac-
eted nature of biological information than the study
of cancer and cancer therapy, making it an excel-
lent testbed for computational approaches. Indeed,

the last decade has seen computational work con-
tribute toward a better understanding of cancer on
numerous fronts—from basic biology to diagnosis
and treatment. 

Computational researchers have worked hand in
hand with experimentalists to map the pathways

No single field of medical research 
manifests more clearly the diverse, distributed 

and multi-faceted nature of biological information
than the study of cancer and cancer therapy,

making it an excellent test-bed for 
computational approaches.



and biological networks associated with the initia-
tion, growth and spreading of cancer, as well as the
critical junctions where these can be blocked via ap-
propriate drugs or drug cocktails. High-end molecu-
lar dynamics simulations have started to reveal the
mechanisms by which several oncogenic mutations
in key cancer-related proteins (such as Ras and p53)
wreak havoc in the cell. 

On the diagnostic side, scores of biomarkers for
many common forms of cancer have been identified
with the help of computation and are being widely
used. Since cancer is most likely induced by syner-
gistic pathways, further work is needed to determine
whether clusters of markers may jointly serve as
more reliable indicators. 

Insofar as treatment and therapy are concerned,
novel combinations of drugs are being suggested for
experimental testing based on computational
screening. At the same time, physics-based tech-
niques are helping clinicians deliver more accurate
and localized radiation to cancerous cells. 

And then there is the Big Data organizational and
analytical effort to identify patterns of driver muta-
tions and genes, which is beginning to tap into the
vast data from cancer patient cohorts in electronic
medical records. 

Despite this progress, there remains a long road
ahead. We need to computationally combine and
integrate data types across a range of scales with the
aim of predicting which mutational combinations
will be oncogenic, and which drugs will benefit in-
dividual patients. The successes of the last decade
have laid the groundwork for such an effort. 

11.Decoding the
Microbiome

The last decade saw our initial efforts to decode
the microbiome—the microscopic life that resides
within our own bodies. The importance of this in-
ternal ecological niche to human health is becoming
increasingly clear. The microbiome includes not
only well-known disease-causing microbes, but also
thousands of species of bacteria, such as E. coli, with
which we have a symbiotic relationship. 

The discovery that transplanting specific bacteria

from fat individuals to lean ones and vice versa can
transfer tendencies toward obesity or reverse it sug-
gest a much more subtle and deeper layer of inter-
play between humans and the huge variety of species
inside them. Understanding how this phenomenon
works at a molecular level will require intensive
computation and may aid in our fight against obesity
as well as other diseases. It could also provide a di-
agnostic tool, as enhanced populations of specific
bacteria may signal disease onset as well as provide
potential clues for treatment. 

The time for directly channeling the vast diversity
of life inside our bodies to our own medical advan-
tage has come.

12.Building Life 
from Scratch: 
From Life’s Origins 
to Synthetic Biology

With the various burgeoning datasets now avail-
able, computational researchers are digging into the
origins of life as well as designing new forms of syn-
thetic life capable of performing novel tasks. 

Researchers are simulating computational models
of various evolutionary theories to predict which are
most realistic, including theories of how self-repli-
cating molecules arose from a primordial mix of or-
ganic molecules; whether RNA or proteins—or for
that matter, metabolism—came first; and how pro-
teins have evolved. They are even exploring whether
alternative evolutionary schemes are possible on
Earth or elsewhere in the cosmos. 

At the same time, the last decade has seen the
launch of synthetic biology as a powerful field.
Achievements include computational models that
predict the minimum genome required to support
life and validation of that prediction by inserting the
genome into a cell to produce a self-replicating or-
ganism. In addition, researchers are designing engi-
neered organisms capable of sensing environmental
toxins or producing biofuels. 

As these fields progress, their revolutionary im-
plications will likely amaze us in ways I cannot begin
to imagine.  nn
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How well has each of these challenges been met?

And, with the benefit of hindsight, were they the right challenges in the first place?

Status 10 years ago:  
In 2005, Jakobsson hoped the next ten years

would see researchers advance our ability to “pre-
dict the efficacy and side effects of lead compounds

using computer modeling
and simulation,” thereby re-
ducing the need for human
testing while also saving
time and money spent in the
laboratory. 

Update by: 
Arthur Olson, PhD, professor

in the Department of Integrative
Structural and Computational
Biology at the Scripps Research
Institute

Progress made: 
We’ve made a lot of progress in terms of how

many people are doing in silico screening.  There
seems to be a larger and larger community of peo-
ple doing virtual screens, many of whom are not
computational chemists. The tools have improved

because the toolmakers have had to respond to
the demands of all these users. The chemical li-
braries have become larger, better characterized
and more focused. The peer-reviewed science
using virtual screening that has been published
over the past 10 years has also been staggering. I
believe that structure-based drug design has in-
formed development of many of the new drugs
that have come out in recent years. I’m guessing
that this was the case with the Hepatitis C antivi-
ral drug from Gilead, which made the news re-
cently as a cure for the disease. 

In terms of specific advancements, we’ve im-
proved the ability to rank the results of screening.
We do broad screens using quick docking meth-
ods and then pass the top candidates along for
evaluation using more computationally intensive
methods (calculating molecular dynamics-based
binding free energies). While the basic theoretical
framework hasn’t changed that much in the past
10 years, properties that were difficult to estimate
10 years ago are now possible because computing
has become so much more powerful and available.
The docking algorithms have also gotten incre-
mentally better. For example, we’ve improved
how we model water during a docking calculation;
this can make a significant difference in which
poses are selected. We’re also making better use of
parallel computing—the fact that the analysis by
molecular dynamics can be broken up into multi-
ple runs and information exchanged between
them can improve sampling and throughput. 

Challenges ahead: 
We still face the challenge of designing syn-

thetic drugs that modulate protein-protein interac-
tions. Most successful small molecule drugs at this
point have been targeted to individual protein ac-
tive sites. While solving this problem won’t require
any new physics, it will require new algorithms that
can model complex interactions efficiently. 

20/20 Hindsight: 
Given the advances of the last decade, was this

challenge the right one? Yes, this was the right
challenge a decade ago, and it’s still the right chal-
lenge for the next decade. The payoff could be
very, very large in terms of human health.

CHALLENGE 1

In Silico
Screening of 

Drug Compounds
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Status 10 years ago:  
In 2005, molecular simulation and analysis

methods could “capture the essence of the mech-
anism of biomolecular function, but could not
predict that function with quantitative accu-
racy,” Jakobsson wrote. He hoped the decade
would lead to improved capability in this regard,
enabling a precise understanding of the conse-
quences of mutations and other biological vari-
ations, and the ability to design molecules for
medical nanotechnology. 

Update by: 
Predrag Radivojac, PhD, associate professor

of computer science and informatics at Indiana
University

Progress made: 
I think this particular challenge has not been

met if we look strictly. Since 2005, we have broad-
ened the concept of function tremendously and
now understand the “breadth” a lot better. Today,
we think of function in more specific terms (such
as whether a residue binds to a protein or DNA)
and at more levels (for example, a protein may par-
ticipate in a specific reaction, in the cell cycle, or
in a disease). As a result, we have not reached this
goal because of the many new challenges we have
discovered along the way. 

Still, we have made a lot of progress in the past
10 years. We can now predict many aspects of
function surprisingly accurately, such as certain
metal-binding residues, catalytic residues, ligand-
binding sites and protein-DNA binding sites. All
these different aspects of function have some
specificities in their methods; there’s no silver
bullet to address all of them. But each of these lit-
tle sub-fields has pushed things forward. I believe
that in the next 10 years we will be able to deliver
on the goal of predicting the consequences of mu-
tations and sequence variants; and we will see
some fascinating discoveries.

There have also been individual success stories,
where researchers were able to achieve an engi-
neering level of precision of function prediction.

For example, David Baker’s group designed a pro-
tein with particular functionality de novo by struc-
tural modeling of an enzyme with increased
catalytic activity. This is exactly what this chal-
lenge had in mind.

Challenges ahead: 
The 2005 article does not talk about the fact

that proteins are dynamic molecules. To predict
function at an engineering level of precision, we
will have to have some sort of dynamic models
both at the micro and macro levels, including large
irregular movements. And this will require ad-
vancements in mathematical, computational, and
physical approaches. Current methods do not scale.
We cannot model motions of proteins at the ap-
propriate granularity and length of time in order to
be able to extract the signatures of motion that
would be predictive of function. Another impor-
tant challenge is that structure data are noisy, re-
flecting many experimental artifacts. We have to
find the right statistical and machine learning ap-
proaches to model the uncertainty in the structure
data, and then integrate it with other types of data
in order to be able to infer function. 

20/20 Hindsight: 
Given the advances of the last decade, was

this challenge the right one? This challenge was
the right one. I would have refined it slightly, to:
predicting function from structure and dynamics
of complex molecules. We discovered that we
have a lot of sub-problems to solve. The stars
need to be aligned for us to be able to deliver on
this challenge. But I definitely think it was the
right challenge.

CHALLENGE 2

Predicting Function 
From Structure of 

Complex Molecules 
at an engineering level of precision
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Status 10 years ago:  
In 2005, Jakobsson noted that there

were many more known protein se-
quences than structures.  He hoped that
through a combination of accelerated
experimental structure determination
and improved techniques for mining
known structures to determine the rules for predicting un-
known structures, researchers would gain the ability to as-
sign a structure to every sequence. Jakobsson believed this
achievement would advance the field of biomedicine in
many ways.

Update by: 
Adam Godzik, PhD, professor and program director of

bioinformatics and systems biology at the Sanford Burnham
Medical Research Institute 

Progress made: 
I think this is the challenge where the most progress has

been made. We don’t have a tool that works every time; but,
compared with 10 years ago, the progress has been amazing.
Ten years ago, you would look at predicted structures and
just cringe; now some of them are as good as real.

Much of the progress is due to David Baker’s efforts
with the Rosetta algorithm for energy-based predictions.
The tool doesn’t work for every case, but when it works,
it works fantastically. The second big thing that hap-
pened is people started to realize the importance of dis-
tant homology prediction (finding sequence relationship
with proteins that have already been characterized exper-

imentally). This approach is actually much more power-
ful, because in addition to giving clues about 3D struc-
ture, it also tells you about what the protein does. With
advancements using hidden Markov models, we can now
recognize much more distant relationships than we did
10 years ago. 

The CASP (Critical Assessment of Protein Structure
Prediction) experiments also gave the field an enormous
push, because blind tests and judges allow you to actually
see what is working and what is not. 

Challenges ahead: 
Currently the energy-based methods work well for

cases where one energy term dominates, but often get it
wrong when there are multiple opposing forces. We’d
like to advance this to the point where it works in every
case. For distant homology prediction, we’re still missing
a lot. Sometimes after a structure is solved experimen-
tally, we realize that there were homologies we missed.

20/20 Hindsight: 
Given the advances of the last decade, was this challenge

the right one? I think it was perfect. And, because of CASP,
the progress has been verified every year.

Status 10 years ago:  
In 2005, Jakobsson saw an opportu-

nity for modeling to take advantage of
the extensive data that had been gath-
ered on the spread of infectious disease
and the consequences of various strate-
gies of intervention. Such models, he
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hoped, would provide a basis for rational, in-
formed, real-time decision making in combating
natural epidemics and bioterrorist attacks.

Update by: 
Stephen Eubank, PhD, professor in the Vir-

ginia Bioinformatics Institute and Population
Health Sciences department at Virginia Tech. 

Progress made: 
There are three big areas where there have

been some substantial changes: (1) surveillance
(what feeds into the models), (2) the models
themselves, and (3) the use of modeling evi-
dence to inform decision making in govern-
ment agencies.  

In the past decade, the scope of surveillance
has broadened from simple factors, like vaccina-
tion, to more complex social behaviors such as
whether or not people stay home from work when
they’re sick. We are beginning to get a better
handle on measuring people’s behaviors and how
they change during an outbreak. 

The models themselves have also advanced. Models
10 years ago usually assumed homogenously mixed pop-
ulations. Now, we’re using high-resolution network-
based models that model every single person in a large
region. People come and go, and they change their be-
haviors in reaction to things they hear on the news or
their perceptions of what’s going on around them. So
the system’s not stationary and it’s not well mixed. And
the new network-based models are able to take both of
those things into account. 

Finally, we’ve made a lot of progress in getting deci-
sion makers to pay attention to what the models say.
One of the things that might have made people hesitate
before is that the models were so generic it didn’t seem
as if they could really be applied to any specific circum-
stance. But by creating these highly resolved models
that are representative of particular places and particu-
lar outbreaks, I think we’ve managed to convince folks
that, yes indeed, these models should be taken seriously.  

Challenges ahead: 
I think the jury is still out on a lot of the new sur-

veillance techniques; there’s something there and there
has got to be some way to use the flood of information
coming at us from sources like social media, but I don’t
think we’ve perfected that art yet. We also need faster
turnaround on traditional disease reporting surveil-
lance, which hasn’t been brought into the electronic
era. There’s still a one to two week delay in getting re-
ally good, accurate information from emergency depart-
ments and clinics up to a scale where the modelers can
get hold of it. 

20/20 Hindsight: 
Given the advances of the last decade, was this chal-

lenge the right one? I think it was right on the money.

Status 10 years ago:  
In 2005 there existed no efficient and effec-

tive way to organize data from biomedical lit-
erature into computable databases from which
accurate interpretive and predictive models
could be constructed. Jakobsson hoped the en-
suing decade would see better access to the
abundance of information about the function-
ing of genes, gene products, and cells that was
then buried in published papers.

Update by: 
Graciela Gonzalez, PhD, associate profes-

sor of biomedical informatics at Arizona State
University

Progress made: 
In the past decade, there has been signifi-

cant progress on this challenge. We’ve ad-
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vanced the furthest in our ability to recognize named-enti-
ties—specific genes, diseases, chemicals, drugs, and other
entities—mentioned in biomedical text. For many entities,
the problem is considered pretty much solved. By retraining
machine-learning-based tools such as our system, BANNER
(http://banner.sourceforge.net/), or others like it, one can

have an entity recognition system
with little effort. We’ve also pro-
gressed along the next step in the
pipeline: entity normalization. For
example, once you find a gene, you
need to know exactly which gene
it is referring to out of multiple pos-
sible mappings (homologues for
different species). There are differ-
ent systems available for different
entities. For example, the NIH’s
National Center for Biotechnology
Information (NCBI) recently re-
leased DNorm (Disease Name
Normalization), an automated tool
for determining specific diseases
mentioned in biomedical texts.
Finding and normalizing entities
are key steps towards enabling in-

telligent systems. There has also been significant progress
toward integration of data from the literature with exper-
imental results. For example, the NCBI links GenBank

sequence data or genome data in the GEO database back
to the literature in PubMed.

Challenges ahead: 
Where the challenge remains is in connecting all these

pieces of knowledge into larger, complex systems and hunt-
ing out causal relationships between entities. When I
moved to this field in 2005, we wanted to use text-mining
tools to model and make inferences from biological path-
ways, such as protein-protein interaction pathways; but we
couldn’t do that as there was no system available to extract
them. This still remains a challenge. Nobody has solved
the problem of pathway extraction. The NCBI links
notwithstanding, the challenge remains how to coherently
integrate all the experimental data being produced, such
as whole genome sequencing data, with knowledge from
the literature so a scientist can automatically hone in on
support for or against a hypothesis or novel theory. In
short, there is still a large gap from data to discovery.

20/20 Hindsight: 
Given the advances of the last decade, was this chal-

lenge the right one? I think this was the right challenge
because the literature remains a major source of valuable
yet hidden knowledge. Every paper that’s written repre-
sents months or even years of work by a team of scientists.
But it’s practically impossible to find them all without a lot
of help from an automated system.

Status 10 years ago:  
In 2005, so-called “com-

plete” genomes were far from
“complete,” Jakobsson wrote.
He hoped the research com-
munity would select eukaryotic
and prokaryotic model organ-
isms for a focused attack on
complete annotation, and use
all experimental, bioinformatics, and data-mining tools on
these organisms. As a sequel to complete annotation, he
challenged researchers to elucidate the target organisms’
complete metabolic, signaling, and homeostatic pathways
and networks. 

Update by: 
Terry Gaasterland, PhD, professor of computational

biology and Genomics Director, Scripps Genome Center
University of California, San Diego

CHALLENGE 6

Complete Annotation 
of the Genomes
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Status 10 years ago:  
Jakobsson wrote in 2005, about his

concern that “the relatively primitive
information technology environment
supporting the delivery of health care”
resulted in extra expense and avoidable
error. He called for “a nationally inter-
operable system of medical records to
support transferable patient records, di-
agnosis and treatment based on integrating the
patient record with relevant basic and clinical
knowledge, and efficient patient monitoring.”
The deployment of personalized medicine would
be, he believed, a logical consequence and exten-
sion of this computerization. 

Update by: 
Lucila Ohno-Machado, MD, PhD, professor

of medicine, University of California, San Diego

Progress made: 
Of the top-ten challenges Jakobsson listed in

2005, this is one of the ones that has made the
most progress. In the past decade, electronic health

Progress made: 
In the past ten years, the genomes of many different species

have been sequenced and the 10,000 genomes project headed by
David Haussler at University of California, Santa Cruz, is making
progress toward sequencing the genomes of many more. But per-
haps the biggest thing that we have done in the past decade is to
become capable of dealing with incomplete genomes. We’ve
started to understand that no genome is ever truly complete.
Every individual has its own genome and all these genomes are
inter-related—so we have local variation, and we have large-
scale variation. The best we can do are snapshots and draft
genomes. As a community, we’re becoming comfortable with this
and even building tools to leverage this knowledge. 

The single most important contribution to genomics over the
last 10 years, beyond the data, is the one-stop shopping that has
emerged through the UCSC genome browser project. The com-
munity needed a common way to view, manipulate, and manage
genome data; and David Haussler’s team built that. They’re pro-
viding production-quality comparisons and calculations across
many prokaryotic and eukaryotic genomes. Also, in the past
decade, the development of short-read high-throughput se-
quencing has been of utmost importance. The community has
exhibited such creativity in using the high-throughput sequenc-
ing—to sequence anything from new genomes of new organisms
to RNA to DNA binding sites to nascent transcripts.  

There has also been enormous progress toward elucidating

target organisms’ complete metabolic networks. For example,
in 2007, Bernard Palsson’s lab at University of California, San
Diego published a detailed in silico model of human metabolism.
Using that model and others, researchers can simulate the effect
of virtual knockouts as a prelude to laboratory testing.   

Challenges ahead: 
Ever bigger datasets need ever faster and more efficient data

storage arrays. The University of California, San Diego, Super
Computer Center presents a prototype of how to provide this
kind of computing power to a local community. What we’ve
done here is we’ve all bought pieces of the larger system. For
example I spent $20,000 to buy nodes and because of that I
have access to a two million dollar computer. I’d love to see
this happen over and over again at many universities. Another
challenge is clinical phenotyping. For annotating the human
genome in a disease-aware way, the computational biologists
have to be in lock step with the physicians. 

20/20 Hindsight: 
Given the advances of the last decade, was this challenge

the right one? Because we’ve realized that no genome is ever
complete, its annotation can never be complete as well. Thus,
Jacobsson’s goal was per se unattainable. Nevertheless, I think
it was exactly the right challenge. You lay out the ideal, you
shoot for Mars, and you might get to the moon.   

CHALLENGE 7
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records (EHR) have been widely adopted, thanks to
large investments from the government. In 2005, we
were talking about institutions not even having elec-
tronic health records; now we’re talking what to do
with them. There are still challenges, but we are at the
next level now. So, it’s a very exciting time in our field. 

The next major breakthrough is also on the hori-
zon. In late December, the Patient-Centered Out-
comes Research Institute (PCORI) awarded $93.5
million for the creation of PCORnet, the National
Patient-Centered Clinical Research Network. The
network will securely link EHR data for millions of
patients, which will enable large-scale comparative
effectiveness research—figuring out which types of
medical care work best. Someday, EHR data may
even be linked to bio-samples, such as DNA sequenc-
ing data or proteomics, with an eye toward personal-
ized medicine. With huge numbers of patients, we

will be able to correlate responses to particular ther-
apies with very specific biomarker profiles.    

Challenges ahead: 
The technology for enabling preservation of privacy

has evolved a lot, and that’s removed many barriers. But
we still need to improve data quality and standardiza-
tion. We need to promote a broad understanding from
patients, clinicians, administrators, and researchers, of
what it takes to make these data useful. 

20/20 Hindsight: 
Given the advances of the last decade, was this

challenge the right one? Yes, this was the right chal-
lenge for the past decade. But it will also remain a key
challenge for the next decade. The challenge will not
be as primitive, but it will still be there. It’s not going
to be solved overnight.

Status 10 years ago:  
In 2005, Jakobsson observed that “many use-

ful tools for systems biology have been created,
but they are not integrated into computational
environments that provide for automatic inter-
action of multiple programs and functionalities
to address generally useful issues in biomedicine.”
The tools themselves also need improvement in
their scope of applicability, computational effi-
ciency, and ease of use, he wrote. The aim: a
much-needed computational environment for
information-based modeling of pathways, net-
works, cells, and tissues.

Update by: 
Markus Covert, PhD, associate professor of

bioengineering at Stanford University

Progress made: 
There has been a lot of motion in the space

particularly from pathways to cells and cells to tis-
sues. I wouldn’t say this challenge has been ac-
complished, but it’s going well. I remember that
during the first funding initiative on multiscale
modeling, that term was still being defined, even
at the programmatic level. But I don’t think peo-
ple would have that same confusion now.

In terms of tool integration, we still don’t have
a unified, integrated, seamless situation. Centers
for systems biology are bringing different profes-
sors together, but there isn’t a one-stop shop

CHALLENGE 8
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where you can find all the tools you
need for your modeling interests.
People have tried to start a biomod-
els database, but it’s challenging be-
cause you don’t always know in
advance what you will want to store.
So it’s still largely up to individual
teams to make their models widely
accessible. 

Along these lines, we developed a
comprehensive whole-cell model
that predicts phenotype from geno-
type (Cell, July 2012). For this model,
we’ve been trying to give people ac-
cess at a variety of levels. We’ve made
a knowledge base that is structured to
hold all the information that you
would need to run a model.      

Challenges ahead: 
Many problems could be solved if

systems biology would reach even
further outside of itself. It’s already a
highly interdisciplinary field, but we
need to take another major step for-
ward that would literally involve
talking to people who you think you
have nothing in common with. For
example, systems biology tools could
be greatly improved by an influx of
industry talent. The best coding in
the world is not happening in sys-
tems biology; it’s happening at com-
panies like Google and Facebook.
For our whole-cell model, we hired
a software engineer from Google for
six months; and I was very impressed
by how much we needed that soft-
ware help. I have also realized that
we have a lot of visualization tools
that can be used for education, but
few that can be used for exploration
and discovery. To develop these
more sophisticated visualization
tools, we’re going to need artists and
graphic designers, as well as coders. 

20/20 Hindsight: 
Given the advances of the last

decade, was this challenge the right
one? This challenge was not the best
specified one, probably out of neces-
sity, but Jakobsson definitely did
show some foresight. We’re in that
space now; we’re progressing along
the vector he outlined.

Status 10 years ago:  
In 2005, biomedicine used substantial computing re-

sources at all levels, from the desktop to high-end super-
computing centers, but “a large fraction of these
resources are not efficiently used, as the hardware and
software are not tuned to each other,” Jakobsson wrote.
He believed that addressing this problem would allow
research to advance more rapidly. 

Update by: 
Vijay Pande, PhD, profes-

sor of chemistry, structural bi-
ology and computer science at
Stanford University

Progress made: 
This challenge is an ongoing

issue. People have gotten much
better at tuning software to
hardware, but the challenge has
gotten even harder. As time
goes on, the hardware is getting
more heterogeneous, and get-
ting the best performance out of
it requires more effort. So, as
people have advanced on this
challenge, the goalposts have
been pushed back as well. 

On the hardware side, the
key breakthroughs are advances
in graphics processing units
(GPUs) and in how people
handle large amounts of mem-
ory. But GPUs are very spe-
cialized. And to roll out an
engineering algorithm and

have it run on them very quickly is a challenge. We
and others have been trying to push the area of do-
main-specific languages, which are intentionally not
general purpose and can easily be ported to GPUs.
This approach has been quite powerful, allowing us
and others to rapidly create code that still executes
quickly. So, these languages have been a major break-
through on the software end. 

Challenges ahead: 
With each generation of new GPUs, we have to

CHALLENGE 9
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re-tune our domain-specific languages. So the constant
maintenance of doing this is an ongoing challenge. Sus-
tainable funding is also a challenge. People think software
is written and then it’s done. But software is like your
lawn—it needs constant maintenance and upkeep to make
sure it remains in good shape. With our current funding
system, it’s very difficult to sustain codes over long periods
of time. Many people have chosen to commercialize their
software. But this leads to a closed-off system that slows

the community down. Compared with a decade ago, the
NIH is doing much better on this issue, but I would like to
see even more progress.

20/20 Hindsight: 
Given the advances of the last decade, was this challenge

the right one? It certainly should be one of them. Whether
it should be in the top 5, 10, or 20, could be debated. But
it’s certainly a significant challenge.  

Status 10 years ago:  
To help forestall a likely

shortage of quantitatively com-
petent researchers, Jakobsson
called for the adaptation of biomedical com-
puting tools to education at all levels in order
to capture their power to motivate youngsters

to pursue biomedical research
careers. He believed that the
same developments that were
making biomedical computing
tools useful to experimental
researchers could also make
them the basis of compelling
problem-solving educational
environments for students. 

Update by: 
Brian Athey, PhD, profes-

sor and chair of computational
medicine and bioinformatics
at the University of Michigan

Progress made: 
I think we made good

progress at getting computa-
tional tools out there, thanks
largely in part to the National
Centers for Biomedical Com-
puting (NCBCs). The imag-
ing pipeline that came out
of the Center for Computa-
tional Biology NCBC, LONI,
was a key to the Alzheimer’s

Neuroimaging Initiative. Andrea Califano’s
network biology tools in cancer have made

a dramatic impact on our understanding of
systems biology and cancer. The National
Center for Biomedical Ontology put to-
gether collections of ontologies that are
being used worldwide. 

But it is a fundamentally different world
that we’re living in now compared with 2005
because of the proliferation of data. A decade
ago, we were focused on computing tools and
software; that focus has now been eclipsed by
big data analysis. The computer is more in
the background; the data and information are
in the foreground.

Challenges ahead: 
There’s more of a need than there was

even 10 years ago for training. Most biomed-
ical researchers, from the basic to the clini-
cal sciences, are dealing with heterogeneous
digital data. They need to learn how to ac-
cess and analyze these data. We need to
bring forward basic exposure and instruction
about data science at all levels from under-
graduates through to the faculty. 

20/20 Hindsight: 
Given the advances of the last decade,

was this challenge the right one? It was the
perfect challenge, very important to put on
the list. And it’s important to keep it on the
list for the next decade, with a new focus on
data and information. 

CHALLENGE 10 Promoting the Use of 
Computational Biology 
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A deluge of data is transforming science and indus-
try. Many hope that this massive flux of informa-
tion will reveal new vistas of insight and

understanding, but extracting knowledge from Big Data
requires appropriate statistical tools. Often, very little can
be assumed about the types of patterns lurking in large
data sets. In these cases it is important to use statistical
methods that do not make strong assumptions about the
relationships one hopes to identify and measure. 

In this tutorial we consider
the specific problem of quanti-
fying how strongly two vari-
ables depend on one another.
Even for data sets containing
thousands of different variables,
assessing such pairwise relation-
ships remains an important
analysis task. Yet despite the
simplicity of this problem and
how frequently it is encoun-
tered in practice, the best way
of actually answering it has not
been settled. 

One standard approach is to
compute the Pearson correla-
tion coefficient. Unfortunately,
Pearson correlation has severe limitations.  First, it only
applies to variables that are continuous real numbers; it
cannot be used when either variable represents a discrete
category, such as gender. Second, the assumptions under-
lying Pearson correlation are violated by relationships that
are nonlinear or have many outliers. Such violations can
result in correlation values that conflict with more intu-
itive notions of dependence. 

A more general way of quantifying statistical depend-
encies comes from the field of information theory. This
branch of mathematics arose from a classic 1948 paper by
Claude Shannon titled “A Mathematical Theory of Com-

munication.” Although Shan-
non’s immediate purpose was to
describe information transmission
in telecommunications systems, his work illuminated deep
truths that have since had a profound impact on fields as
diverse as engineering, physics, neuroscience, and statistics. 

Shannon argued that the concept of “information” can
be formalized by a mathematical quantity now known as
“mutual information.” Mutual information quantifies the

amount of information that the value of one variable re-
veals about the value of another variable. It is measured
in units called “bits:” A value of zero corresponds to no
dependence whatsoever, while larger values correspond
to stronger relationships.

Importantly, mutual information retains its fundamen-
tal meaning regardless of how nonlinear a relationship is.
Mutual information can also be computed between vari-
ables of any type, be they continuous or discrete. Some
hypothetical relationships illustrating this are shown in
the accompanying figure.  

Computing mutual information from data is compli-
cated, however, by the difficulty of estimating a
continuous probability distribution from a lim-
ited number of samples. Fortunately, there are al-
gorithms that can solve this problem well enough
for many practical purposes, and estimating mu-
tual information becomes easier the more meas-
urements one has.

Mutual information therefore provides a sen-
sible alternative to Pearson correlation in many
Big Data settings. As better ways of estimating
mutual information are developed, this impor-
tant concept from information theory is likely to
become increasingly useful in data analysis ef-
forts, both in science and in industry.   nn
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His research combines theory, computation, and experiment
in an effort to better understand quantitative sequence-
function relationships in molecular biology. An expanded
discussion of mutual information and its merits as a statistic
can be found in the recent paper, Kinney, JB and Atwal, GS
(2014) Equitability, mutual information and the maximal
information coefficient, PNAS 111(9):3354-3359. 

Data from three hypothetical relationships with corresponding mutual information values shown.
Mutual information can quantify dependencies regardless of whether one or both of the variables
in question are continuous numbers (e.g., a person’s height and weight) or discrete categories (e.g.,
a person’s gender or after-dinner food preferences).
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versity of Oxford has turned to a physics-
based strategy often used to depict atmos-
pheric flows and oceanographic currents.
It’s called streamline visualization.

“It is really well-adapted to large mo-
lecular systems,” says Chavent. Indeed, he
has used the method to render images of
lipid flow in membrane simulations, such

as the one shown here. Such ren-
derings help researchers see the

complex dynamic among
different types of mem-

brane lipids as well as
between lipids and

membrane-embed-
ded proteins. The
insights gained
could lead to a

greater understanding of how drugs and
viruses interact with membranes.

To create the streamlined visualiza-
tions, Chavent divides a detailed mem-
brane model into a grid of cells. He then
associates a vector to each cell, creating
a vector field. The streamline approach
connects the vectors together. “Instead
of focusing on every lipid, which is quite
complicated and may blur the view, we
obtain a larger view to focus on the mem-
brane as an ensemble,” Chavent says.
The approach may also prove valuable
for visualizing smaller systems consisting
of many molecules, such as water flow
around macromolecules, Chavent says. 

Chavent is currently developing a
streamline visualization plugin that will
work with VMD, a popular molecular
visualization program. The method is
freely available at the following address:
http://sbcb.bioch.ox.ac.uk/flows/. nn

s e e i n g  s c i e n c e
SeeingScience

A s computational power grows, re-
searchers can model and simulate
larger and larger molecular com-

plexes. To visualize such systems in ac-
tion, Matthieu Chavent, PhD, a postdoc
in Mark Sansom’s laboratory at the Uni-
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Streamlining Lipids

This streamline visualization, which recently won first place in the
Biophysical Society Art of Science Image Contest 2014, displays
lipid movement in a spherical vesicle membrane bilayer. The outer
leaflet is depicted by colored streamlines—white lines are higher
velocity than blue. Brown lines represent the inner leaflet with

speed not shown. The rendering is based on a lipid vesicle model
developed by Syma Khalid, PhD, senior lecturer in computational

chemistry at the University of Southampton. The visualization reveals
flowing movements as well as vortices around the proteins (not

shown) that move like rafts in a lipid sea. These circular movements were
difficult to see using other methods. Courtesy of Matthieu Chavent.
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