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g u e s t  e d i t o r i a l

For those who are not practitioners of dynamical
simulation methods, such as molecular dynamics
(MD), one of the biggest misconceptions relates to

time. Specifically, the mismatch between the timescales
that the simulation can reach compared to what is exper-
imentally relevant. Indeed, typical MD simulations are in
the nanosecond to microsecond timescale regime. If the
desired phenomenon of interest occurs on the second
timescale, one would never see it.

This mismatch often leads people to say that these
simulations don’t work, whereas they’re often doing ex-
actly what they should be—reporting on the timescales
that they purport to cover. In this sense, it’s like saying
that one’s car doesn’t work as a transportation device
when you only let it run a few seconds and you never
leave the garage. 

Once one recognizes this challenge, the natural next
step is to devise means to defeat it—to get that car out of
the garage, so to speak. In this issue of BCR, we’re featur-
ing a story that digs into this problem of time in dynami-
cal simulations. In recent years we’ve seen a revolution
in molecular dynamics simulations in this regard—one
headed in multiple yet potentially complementary direc-
tions. Most of these approaches, at heart, depend on two
key assumptions: 1) Typical atomistic simulations have
detail that in some sense is not needed, and 2) One can
build such models in a systematic, transparent and repro-
ducible manner.

This duality is apparent in modern coarse-graining
methods that systematically devise simpler models of mo-
lecular interactions by building up from atomistic simu-
lations. For example, instead of representing a protein as

GuestEditorial

a set of atoms, each
modeled by its own
sphere and interatomic interactions, one may set a
single amino acid molecule (composed of several atoms)
as the base unit, thus modeling at a much coarser scale.
While coarse graining itself is quite old, what sets modern
coarse-graining methods apart is the systematic derivation
of models from more detailed models. For example, one
might run an atomistic simulation for some time in order
to derive the parameters for a simpler, coarse-grained
model. This aspect of the work marks a shift away from in-
tuition-based modeling toward data-driven, systematic
methods, which has many appealing aspects.

Another approach has been to coarse grain not the in-
teractions but the dynamics itself. If one cares about the
millisecond (10-3 seconds) timescale, why would we want

to run molecular dynamics with femtosecond (10-15 sec-
onds) scale dynamical steps? One example of this ap-
proach is the use of Markov State Models which throw
out the uninteresting, very fast timescales (femtoseconds
to nanosecond) to gain a dramatic efficiency in calcula-
tions, especially in terms of parallelization, i.e., using
many short trajectories to reproduce very long timescales.
Generating 1000 trajectories each at the microsecond
timescale and using them to predict the millisecond
timescale is considerably more tractable than a single tra-
jectory on the millisecond timescale.

It’s interesting to consider the future of these ap-
proaches. As both spatial and temporal coarse-graining
methods become even more systematic and statistically
driven, one can imagine how they can start to merge to
build the best physical model possible. This future gets
particularly exciting when one considers how the “big
data” approaches that are starting to revolutionize other
fields might also impact dynamical simulation. With such
a combination, reaching the millisecond timescale—now
out of reach for all but a few researchers—could become
routine, enabling molecular simulation to achieve goals
that are barely conceivable today.  nn

Misconceptions 
of Time

DETAILS

Vijay S. Pande is professor of chemistry, structural
biology and computer science at Stanford University.

BY VIJAY S. PANDE, PhD
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In simulations of human activities such as running,
hundreds of individual musculotendon models turn
on and off to swing the arms and legs. Naturally, these

simulations can only be as accurate and efficient as the
underlying musculotendon models. 

So how accurate and efficient are the most commonly
used muscle models? It can be hard to say: Rarely do re-
searchers determine how well their models match biological
reality or how efficiently they use computational resources.
To address that problem, Simbios postdoc Matthew Millard,
PhD, collaborated with Thomas Uchida, PhD, Ajay Seth,
PhD, and Scott Delp, PhD, at Stanford’s Neuromuscular
Biomechanics Laboratory to perform the most comprehen-
sive evaluation yet. The work, which was published in the
January 2013 issue of the Journal of Biomechanical Engineer-
ing, produced a new muscle model library that has been in-
corporated into OpenSim, a freely downloadable software
for simulating human and animal movement.

These are “muscle models without compromises,” says
Millard, now a postdoc at the University of Duissberg-
Essen. That is, they are both biologically accurate and
computationally efficient. And with the extensive suite
of benchmarks the Simbios team developed and ran, they
have the data to prove it. “With luck,” Millard says, “our
benchmark tests will be extended and improved to serve
as standard tests for the community.”

Muscle Models Without Compromises
Millard and his colleagues went to great lengths to en-

sure that the characteristic force-length and force-veloc-
ity curves that define their muscle models actually fit
experimental data for real muscles. “The curves people
are used to using have been made for convenience and in
some cases are very different from the curves seen in ex-
perimental literature,” Millard says. He and his colleagues
also made sure biologists would be able to easily and in-
tuitively interact with and edit the curves in OpenSim. 

The team also improved on the efficiency of simulat-
ing inactive muscles, which are computationally expen-

sive to simulate for purely mathematical, nonintuitive
reasons (a singularity in the state equations is approached
as activation tends to zero). They added a damping effect
to the commonly used equilibrium musculotendon model,
which resulted in simulations that were up to ten times
faster in tests using an explicit integrator (the most com-
monly used integrator for musculoskeletal simulation).
This is an important improvement because many muscles
are turned off during normal activities.

Proving Models’ Mettle: Benchmarking
While long tendons must be simulated as elastic ele-

ments for accuracy, short stiff tendons can be approxi-
mated as inelastic to reduce simulation time. But how
long can a tendon be before this approximation becomes
inappropriate? Millard compared the forces generated by
simulated muscle fibers attached to various lengths of
rigid or elastic tendons and using different integrators.
Turns out, if the length of the tendon is less than the
length of the fiber, it doesn’t stretch enough to make a
big difference in the musculotendon’s force profile. 

Millard and his colleagues also benchmarked the biolog-
ical accuracy of the equilibrium, damped, and rigid-tendon
models by comparing them to biological muscle that is fully
activated and partially activated, relying on data provided
by the Sandercock laboratory at Northwestern University.
Force profiles generated in simulations of maximally acti-
vated muscles using the damped muscle model were a close
fit for experimental evidence, whereas simulations of sub-
maximally activated muscles diverged slightly from experi-
mental results, suggesting the need for further work to
understand how muscles respond at less than full activation. 

Now that the models are available online, along with the
extensive benchmark tests and results, a researcher who wants
to simulate a muscle with a specific architecture and specific
type of integrator can choose an
appropriately accurate and com-
putationally efficient model. “It is
our hope,” Millard says, “that our
efforts will accelerate research to
improve muscle models, and ulti-
mately research of human and an-
imal movement.”  nn

SimbiosNews

DETAILS (For more information)

Video: http://www.youtube.com/user/SimbiosMovies

Paper: “Flexing Computational Muscle: Modeling and
Simulation of Musculotendon Dynamics,” Journal of
Biomechanical Engineering 135(2):021005 (2013)

Benchmarking code and data:
https://simtk.org/home/opensim_muscle 

Simbios (http://simbios.stanford.edu) 
is the National Center for Physics-
Based Simulation of Biological 
Structures at Stanford.

Benchmarks for 
Musculotendon

Models

BY KATHARINE MILLER

This schematic shows a simplified illustration of a muscle (top); a simplified
geometric representation of muscle fibers and tendon for musculotendon
modeling (middle); and a simplified musculotendon model (bottom).
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The essential elements of human fertiliza-
tion are clear: sperm swim through the

uterus, travel up the fallopian tube, and fer-
tilize an egg. Not as well understood are the
the nitty-gritty details of how sperm navi-
gate the curvaceous fallopian tube, boost
their chances of reaching the egg, and pierce
the egg’s outer layer. 

New computational models are helping
researchers hone in on answers to these
questions using such tools as agent-based
simulations and classic mechanical engi-
neering principles. 

The studies could eventually improve di-

agnosis and treatment of infertility, a prob-
lem that’s gaining more attention as couples
increasingly wait until they’re older to con-
ceive. Clinics currently test basic properties
such as the number and movement of
sperm, but knowing which other character-
istics are important for fertilization could
help doctors pinpoint the problem, calculate
a couple’s chances of successful conception,
and filter sperm for the best candidates. Sci-
entists also could use this knowledge to de-
sign new male birth control treatments—for
example, by knocking out functions essen-
tial for sperm motility. And sperm might

even inspire better “micro-swimming” de-
vices that deliver drugs in the bloodstream.

Navigating the Oviduct
A team at the University of Sheffield

has focused on interactions between sperm
and the female oviduct, a tube connected
to the uterus where fertilization occurs
(known as the fallopian tube in humans).
In the past, researchers had modeled indi-
vidual sperm moving in a fluid. But little
had been done to account for the shape of
the oviduct which, contrary to popular be-
lief, is not simply a cylinder but includes

MODELING SPERM: 
The Finer Points of Fertilization

A visualization of the data gener-
ated by an agent-based model of
sperm moving through a mouse
oviduct. The smaller dots represent
individual sperm, and the larger
pink spheres represent eggs. Cour-
tesy of Mark Burkitt.
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complicated bends and internal folds. “It’s
the first time that anyone’s looked at how
the sperm move about, using a conceptual
model, within a representation of the oviduct
environment,” says Mark Burkitt, PhD, who
reported the results in his 2011 doctoral the-
sis and is now director of the consulting and
software development company Scientific
Online Systems Ltd.

Burkitt’s team chose to employ agent-
based modeling, with each sperm repre-
sented as an individual entity. The sperm
followed a specific set of rules—for exam-
ple, they stuck to the oviduct wall and
switched to a more mature, “capacitated”
state with a certain probability; and died
shortly after becoming capacitated. The re-
searchers also analyzed histology images of
mouse oviducts and developed algorithms
to recreate the oviduct’s 3-D structure.

When Burkitt’s team removed bends and
folds from the oviduct model, “we ended up
with massive amounts of polyspermy,” he
says. Polyspermy occurs when more than
one sperm fertilizes the egg, resulting in a
non-viable embryo. The results suggest that
the oviduct’s complicated geometry pre-
vents too many sperm from reaching the egg
at once. “The purpose of the complexity of
the internal system is to allow a slow pro-
gression of these sperm,” Burkitt says.

Asymmetrical Motion
To reach the egg, sperm have to swim in

specific patterns. Each sperm’s tail, called
a flagellum, beats in a sine-wavelike mo-
tion to propel the cell in a straight line. But
the sperm also must enter a state called hy-
peractivation, in which the tail bends more
in one direction than another and makes
the sperm swim in circles. Hyperactivation
might help the sperm free itself after get-
ting stuck to the oviduct wall, and switch-
ing between linear and circular paths could
improve its chances of finding the egg. “If
you’re just going straight, you could poten-
tially swim right by it,” says Sarah Olson,
PhD, assistant professor of mathematical
sciences at Worcester Polytechnic Institute.

In a study published in the Journal of
Theoretical Biology in 2011, Olson’s team
investigated how sperm switch to hyper-
activated movement. Scientists know that
calcium signals play an important role: To
become hyperactivated, sperm need chan-
nels in the cell membrane that let calcium
in. Olson and her colleagues hypothesized
that the calcium influx makes motor pro-
teins called dyneins on one side of the fla-
gellum generate more force than normal,
causing the tail to beat asymmetrically.

To test this idea, Olson’s team modeled

a simplified sperm moving through fluid and
linked calcium levels in the tail to forces
driving its movement. The team accounted
for calcium flowing into the flagellum from
its environment and calcium released from
an internal store in the sperm’s “neck.” The
model generated tail waveforms character-
istic of hyperactivation, matching the pat-
terns seen in mouse and bull sperm. And the
virtual sperm swam in circles as expected.

Final Steps in Fertilization
One of the last steps is penetrating the

egg, which requires breaching an outer layer
called the zona pellucida. Receptors on the
sperm bind the egg’s surface, and the sperm
releases enzymes to soften the barrier. De-
fective binding between sperm and the zona
pellucida is a major cause of failure to fer-
tilize an egg in vitro.

In a study published in the Journal of The-
oretical Biology in 2012, Amit Gefen, PhD,
associate professor of biomedical engineer-
ing at Tel Aviv University, and a colleague
modeled this process using mechanical en-

gineering principles: They compared the
mechanical forces generated by the sperm
propelling itself forward to the chemical
binding forces generated by receptors lock-
ing in place. In simulations of normal sperm,

the chemical forces were 4 to 17 times lower
than the mechanical forces. But in a simu-
lated sperm with an unusually sparse popu-
lation of receptors (one-sixth that of the
normal sperm), they were 63 times lower.
With insufficient locking, Gefen speculates,
a sperm’s powerful forward motion might
make it slide across the egg’s surface instead
of staying put.

This year, Gefen’s team published a
study with a slightly different approach in
Computer Methods in Biomechanics and Bio-
medical Engineering. The team used finite el-
ement modeling to represent the geometry
of the sperm and egg wall more precisely.
The researchers tested three shapes of
sperm heads, ranging from sharp to blunt,
and simulated softening of the egg wall. Not
surprisingly, they found that sperm with
sharper heads pierced farther into the egg.
The model also suggested that the zona pel-
lucida must soften to 10 percent of its orig-
inal stiffness to allow penetration.

Gefen envisions that fertility clinics
could one day test sperm’s ability to soften

an artificial, egg-mimicking material in the
lab. But practical applications aside, he is
fascinated by the science of how fertiliza-
tion—the beginning of life—happens. “This
is why we’re all here,” he says.  nn
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A simulation of the deformations generated when a sperm head pushes on the surface of an egg.
Courtesy of Amit Gefen, Department of Biomedical Engineering, Tel Aviv University.
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In a radiological image, a tumor’s edges
might appear fuzzy or crisp; its shape

could range from oval to many-lobed; and
its density and texture might vary across
the tumor. To determine whether and how
those characteristics matter, researchers in
the new field of radiogenomics are extract-
ing as much information as possible from
every pixel and correlating it with gene
expression and cancer survival rates. 

The work has the potential to increase
our understanding of tumor biology and
offer patients personalized medicine based
on both imaging and genetics.

The field now seems poised to take off,
says Robert Gillies, PhD, chair of cancer
imaging and metabolism at the Moffitt
Cancer Center in Tampa, Florida. “The
whole idea of extracting large amounts of

quantitative data from images has been
around for a long time, but it’s taken a
while for the computational power to
catch up with us,” he says. 

Shades of Gray
In radiogenomics (also known as ra-

diomics), researchers convert images to
mineable data in high throughput, Gillies
says. So the radiologist’s “fuzzy edge” be-
comes a numerical descriptor, reproducible
between physicians using the same rating
scale or calculated by a computer based on
the arrangement of pixels in shades of gray. 

Radiomics data come in a few flavors,
such as semantic and computational, says
Sandy Napel, PhD, professor of radiology
at Stanford University. Semantic features
are word descriptors, such as round, oval
or star-shaped, assigned by a human. Com-
putational features are numerical values
calculated from pixel patterns.

For example, one way to describe a

tumor’s “texture”—whether it’s mostly uni-
form or mottled in density—is for computer
software to compare the intensity of each
pixel with those of its neighbors. The more
alike the intensities are, the less textured
and more homogeneous the tumor. By
changing the parameters of the analysis, a
computer can describe texture in numerous
different ways, Gillies says. 

He’s using imaging features, such as
density and contrast, to study the tumor
microenvironment. Tumors can have a
strong or weak blood supply from the vas-
culature, which shows up as a high or low
perfusion of injected contrast agents on an
MRI. And they can be more or less dense,
which appears as high or low contrast with
surrounding tissues. Gillies wants to clas-
sify tumors—in brain, breast, lung and

connective tissue—based on which mi-
croenvironments are present, and corre-
late that score with patient data such as
treatment and survival. 

Eventually, Gillies hopes radiologists
will build databases of tens of thousands of
patient images. A radiologist could log on
with a picture from today’s patient; compare
it to images from patients past; and predict,
based on those past patients’ clinical histo-
ries, the best treatment options.

Images Plus
Beyond simply correlating images and

clinical data, radiogenomicists can mix in
molecular information, such as a tumor’s
genetic mutations or gene expression pro-
file. Normally if physicians want to know
about the biochemistry and gene expres-
sion in a tumor they need a physical piece
of it. But that same information may be
buried in the medical images obtained
noninvasively—if researchers can figure

out how the cancer’s molecular biology in-
fluences the pictures they see. 

In a 2012 paper in the journal Radiology,
Sylvia Plevritis, PhD, associate professor
of radiology at Stanford, together with
Napel and other colleagues, showed it
could be done. The team examined CT
scans and gene expression profiles from 26
people with lung cancer. They compared
the gene expression data with 180 different
image descriptors, both semantic and com-
putational. Because the participants were
newly diagnosed, with no data available on
survival or relapse, the researchers looked
for correlations between gene expression
and prognosis in a public database. Com-
bining those two analyses, they found that
tumor size, shape and edge sharpness were
most strongly linked to gene expression

that correlated with prognosis. 
For example, tumors that include air-

filled structures, called internal air bron-
chograms, often upregulated a gene called
KRAS. And KRAS overexpression, ac-
cording to public databases, is an indicator
that a tumor will likely recur. Other stud-
ies have offered conflicting results as to
whether internal air bronchogram is a pos-
itive or negative sign, so more research is
necessary. However, this and other corre-
lations in the paper suggest the potential
value of imaging in making prognoses. 

Plevritis cautions that this was a small
proof-of-principle study. “It just says that
we should do more, and we are,” she says.
The team has recruited around 75 new
lung cancer participants so far, and is also
looking into similar studies with breast and
liver cancer.

With large enough datasets, computers
might pull out tumor features that humans
would never notice, Napel says. “The tech-

DIGGING INTO PIXELS: 
Radiogenomics Extracts Meaning
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nology is here; it could be implemented
today,” he adds. But there are logistical
challenges. For one, data acquisition is not
standardized across different institutions:
Some use different slice thicknesses for 3-D
images, or apply different filters. Similarly,
no standardized methods exist for how peo-
ple or computers convert those images into
comparable, numerical data. 

Other obstacles include time and money.
Radiologists’ schedules are already full sim-

ply reading scans; they have no time to de-
velop a new way of doing their business,
Gillies notes. What’s needed, he says, is a
“sandbox” where radiologists can experi-
ment with information technology to build
annotated image databases. He estimates
the price tag for a single center like that at
$17 million—and there would need to be
many such centers. Storing and moving the
petabytes of data would cost a fortune,
Napel adds.

But, Gillies points out, misdiagnosis due
to incorrect scan interpretation is also costly.
If computers could assist in diagnoses and
prognoses, and catch human errors, he pre-
dicts the new methods would be “more than
cost-effective.” And similar techniques could
be useful in radiology and pathology image
analysis beyond cancer, Napel says.

“I certainly don’t propose replacing radi-
ologists with computers, but we need to in-
corporate them as allies,” Gillies says.  nn                      
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A picture worth 1,000 genes. At Stanford, researchers are correlating radiological images—such as this CT scan of a lung tumor, rendered here in
3-D—with gene expression in the tumor and with patient survival. The work could lead to better understanding of tumor biology and personalized
treatments based on imaging features. Courtesy of Amy Thomas and Shannon Walters, Stanford University.
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Discretizing Time
Researchers simulate biological molecules

to gain an understanding of how they func-
tion in living systems. These molecules move

according to the laws of physics. For very sim-
ple systems, Newton’s equations of motion
can be solved exactly. “In that sense you

could say those are simula-
tions with continuous time,” says David
Sivak, PhD, a systems biology fellow at the
University of California, San Francisco. But
for more complicated molecular systems, the
equations can’t be solved exactly, even by a
computer, he says. Breaking time into dis-
crete steps becomes a way to make the calcu-
lations computationally tractable.  

For example, a system of atoms or mole-
cules can be described by a series of differ-
ential equations that evaluate how the
particles’ positions and velocities change
over time in accordance with Newton’s sec-
ond law of motion (F=ma, or force equals

Time flows like a continuous, steady river.
And it moves forward—never back.

These facts create inherent challenges for
computer simulations of biological mole-
cules in motion. 

It would be lovely if time could be effi-
ciently simulated as a flowing variable. But
time has to march in discrete steps for
computers to handle the complex move-
ments of molecules. And that matters:
The length of the step (be it a femto-
second, a millisecond, a minute, or a
year) affects the stability and accu-
racy of a simulation; limits the
amount of total time that a simu-
lation can reasonably cover; and
generates error terms that must be
accounted for. In addition, re-
searchers add inaccuracies of their
own by coarse-graining models,
simplifying the simulations in
space as well as time to improve ef-
ficiency and cover the longer time
spans of biological interest. And
then there’s the fact that time has a
directional arrow—one that’s hard to
untangle from the energy landscape at
microscopic scales. 

Despite the challenges of simulating
time, researchers remain committed to mo-
lecular dynamics (MD) simulations—in-
cluding coarse-graining—because they
provide insight, says William Noid, PhD,
assistant professor of chemistry at Penn
State University. Indeed, he predicts
coarse-grained models will always be useful
because, as he puts it, “the human imagina-
tion and computational demands will al-
ways progress at a rate far exceeding
Moore’s law.” But it’s important to keep in
mind that these simulations are models, not

reality, Noid says. And the ravages of time
are likely to always play a role in keeping it
that way.

MATTERS OF TIME: 
Tick Tock Go the Simulations 
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mass times acceleration). An MD simulation
might then numerically integrate these
equations of motion over a series of time
steps. The computer calculates the forces on
each particle based upon their current posi-
tions and then assumes that the forces on the
particles are constant for a short increment
of time, Noid says. During this short incre-
ment, the particle positions and velocities
change due to the forces on them. The com-
puter then updates the forces on each parti-
cle based on their new positions and
velocities, and the process is repeated. Al-
though researchers use many more sophisti-
cated ways to integrate the equations of
motion to achieve greater accuracy and effi-
ciency, “most are only slight variations on
this simple mechanism,” Noid says. 

The basic assumption here—that forces
are constant during the time step—inaccu-
rately represents reality. “It’s like a movie;
It’s really a series of discrete snapshots
played fast enough that it looks continuous,”
says Greg Bowman, PhD, a research fellow
at the University of California, Berkeley.

Longer time steps reduce a simulation’s
stability as well as its accuracy. Indeed, if
the steps are too long, the molecules being
simulated start to take on unfavorable con-
formations. “You get a cascading problem.

It’s not a subtle thing: Your simulations just
blow up,” says Sivak. 

But many biological events of interest
take too long to simulate using small time
steps, given the limits of computational
power. For example, proteins take millisec-
onds to fold—a process that would take more
than a trillion femtosecond timesteps to sim-
ulate—beyond the capacity of typical com-
putational resources. On the other hand, it
takes only a thousand microsecond timesteps
to simulate a millisecond. Researchers have
to balance their desire to integrate the equa-
tions of motion as accurately as possible,
against their need to make the problem com-
putationally manageable. 

Picking a Timestep
In practice, many researchers don’t con-

template the size of the time step. They use
the default settings or recommended time
discretizations in readymade software pack-
ages, Sivak says. Or they copy the parame-
ters used by others without necessarily
evaluating where they came from or why
they were chosen, Bowman adds. When it

comes time for publication, Bowman notes,
reviewers don’t necessarily notice the de-
tails unless the paper’s results don’t make
sense. “Only then will they look back and
question the parameters.” 

A better practice, Bowman says, is to
take the time to find the right time scale for
the problem. One approach is to find the
largest time step where things don’t blow up.
Another way to think about it, Noid says, is
to find the largest time step over which one
can reasonably approximate the forces as
being constant—where the particles haven’t
moved enough to alter the forces apprecia-
bly. In the case of MD simulations, the ap-
propriate time step is determined by the
interaction that changes most rapidly, Noid
says. For simulations of atoms, this ends up
being on the order of one femtosecond—the
rate of jiggling and wiggling of bonds or
water molecules. 

When a continuous process is simulated
using discrete time, there are always er-
rors—discrepancies between the calculated
results and the true underlying behavior. Er-
rors pose another consideration for choos-
ing the duration of the timestep, Sivak says.
So, for example, researchers might observe
the error at the largest time step where
things don’t blow up and then do the same

at a smaller timestep to see how the error
changes as the timestep shortens. If they
know the level of error they are comfortable
with, they can then pick a particular time
step, he says. 

Time At Work: An Intuitive
Understanding of Timestep Error

Having selected a timestep and per-
formed a simulation, researchers also have
to correct for the errors the timestep cre-
ates. Recently, Sivak and his colleagues
took a hard look at these errors and came
up with an intuitive, physical way of think-
ing about them. The work was published in
Physical Review X in January 2013.

Errors caused by time discretization turn
out to be particularly important in so-called
nonequilibrium simulations where the con-
ditions are changing fast, such as where a
protein is being stretched. Sivak and his
colleagues found that just as you can me-
chanically put energy into a protein—by
stretching it, for example—the discretization
of time also puts energy into the protein.
“The error arises because the simulation does

additional work on the system,” Sivak says.
This realization allows researchers to quan-
tify how far out of equilibrium a simulation
is simply due to the discretization of time—
even when the system otherwise would be in
equilibrium. It becomes possible to charac-
terize this “shadow work” and correct for it,
separating the physically realistic aspects of
the simulation from the artifacts of the com-
puter method, Sivak says.

Temporal Coarse Graining and
the Time/Space Connection

To overcome the limits of computer
power, researchers often create simplified
models that allow for more efficient MD
simulations over longer time scales. The
simplifications can be spatial—e.g., treat-
ing a group of molecules as a single ball; or
temporal—e.g., using longer time steps. In
reality, says Thomas Miller, PhD, professor
of chemistry at the California Institute of
Technology, the two go hand in hand. “You
can’t coarsen spatially without coarsening
in time,” he says. If atoms are clumped into
a ball, the corresponding time scale for the
movement of the ball is slower than it was
for the atoms. “That’s two halves of the
benefit of the process,” he says. “As you
eliminate unnecessary spatial motions,

what’s left over moves more slowly so you
can take bigger timesteps.” 

In October 2012, Miller published in
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the journal Cell Reports a coarse-grained
simulation of the Sec translocon, a channel
that allows proteins to pass through cell
membranes. The feat required his team to
coarse-grain out lots of faster molecular
movements—from femtoseconds to hun-
dreds of nanoseconds—in order to focus on
the slower movements—from hundreds of
nanoseconds to the full minutes it takes for
a protein to pass through the channel. But
before doing that, they had to determine
the average effect of the faster motions.
“We had millions of hours of underlying
computer simulation time based on high-
resolution models,” he says.

The Sec translocon paper demonstrates
the degree to which complex biological ma-
chinery can be simplified while still captur-
ing a wide array of experimentally observed
phenomena in the system, Miller says.

Markov State Models: 
A Knob for Controlling 
Time and Space Resolution 

Markov State Models (MSMs) offer an-
other way to achieve longer time scales for
MD simulations such as protein folding.
An MSM can merge variations from thou-
sands of successive protein-folding simula-
tions and identify a set of relatively stable
conformations along the protein’s many
folding pathways. By choosing a timestep
for the model as well as how many states
to identify, whether 15 or 100,000, re-
searchers can dial in the degree of com-
plexity they seek. 

The idea is that you’re removing the in-
termediate steps between these stable con-
formations, sort of like reducing the frame
rate in a movie, Bowman explains. “We can
use this time and space resolution basically
as a knob to control how detailed our mod-
els are,” he says. The approach
allows the simulation of

larger proteins for longer periods of time,
permitting insight into how they function. 

Tomorrow Differs from Today:
Time’s Irreversibility and
Biological Molecules

At the macroscopic scale, we have no
doubt that time moves inexorably forward.
A glass can fall off a table and smash to
smithereens, but cannot jump back onto the

table in one piece. And we know instinc-
tively when a movie of human-scale events
is run in reverse.

But at the molecular scale, discerning for-
ward from backward is much harder. That’s
partially because everything is stochastic—
tiny molecular machines fire randomly; they
are not like steady car engines. Yet time’s for-
ward arrow does exist at the molecular level
thanks to the second law of thermodynamics
which states that isolated systems sponta-
neously evolve toward maximum entropy.
(All other laws of thermodynamics are equa-
tions that don’t care about time.) 

It’s just that spotting entropy’s signature
is tough at the molecular scale because the
energy required to break time asymmetry—
to move toward maximum entropy—is close
to the entire local energy budget, says Gavin
Crooks, PhD, senior scientist at Lawrence
Berkeley National Lab. For example, an im-

portant molecule like ATP
synthase—a tiny little mo-
lecular engine—functions at
an energy level that is not
much greater than the
scale of energy fluctua-

tions in the environment. 
Over the last ten years, Crooks and oth-

ers have made progress toward spotting en-
tropy’s signature against the fluctuating
energy background in single-molecule ex-
periments. It turns out that accounting for
time asymmetry matters greatly in MD sim-
ulations of systems that are out of equilib-
rium—just the kinds of systems that
interest Crooks. He has a grand vision of

thermodynamically realistic simulations of
walking molecules, such as myosin stepping
along an actin strand—a very non-equilib-
rium process. Such systems have their own
intrinsic time asymmetry that needs to be
untangled from the rest of the thermody-
namics. “In the long run, I would like to do
simulations of relevant biological systems
that are active, that aren’t just at equilib-
rium. And I want to get the thermodynam-
ics right,” he says. 

Bridging Time Scales
The intrinsically molecular processes

that govern our physiology include chemi-
cal reactions faster than a picosecond; bond
rearrangements that take picoseconds to
nanoseconds; changes in protein conforma-
tions that happen in microseconds; protein
folding that occurs in milliseconds; and bar-
rier-crossing events that take seconds to
minutes, Miller says. 

In biological systems, the separation of
these time scales is not always clear. One
process with higher time resolution may feed
into a process with lower time resolution.
“That complexity is potentially interesting
but very challenging for the person doing the
modeling,” says Gerhard Hummer, PhD,
chief of the theoretical biophysics division
at the National Institute of Diabetes and Di-
gestive and Kidney Diseases at the National
Institutes of Health. “To a large degree it’s
an active area of research where there are
no generally accepted and generally appli-
cable solutions.”

Miller agrees. “Spanning these big ranges
of time in biological systems is the big chal-
lenge of the field,” he says. “A whole lot of
people with a whole lot of good ideas are
trying to address that challenge.” nn
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Following on the heels of genomics, proteomics,
transcriptomics, metabolomics, and microbiomics,
the latest “omic” to seize the spotlight is generating

the kind of buzz that makes other
disciplines fluorescent green with
envy. As the name suggests, con-
nectomics maps connections—
specifically, the ones between the
neurons in an animal’s brain or
nervous system.

The advent of high-through-
put, computer-assisted techniques
has led to an explosion of connec-
tomic technologies and studies.
The field is also amassing the sort
of Big Science resources previ-
ously associated with efforts to
land a man on the moon or de-
code the human genome. The
Obama administration, for exam-

ple, recently decided to pump $100 million into the
Brain Research through Advancing Innovative Neu-
rotechnologies (BRAIN) project to develop methods
for recording neuronal activity on a large scale; while
the European Commission is investing €1 billion in
Henry Markam’s Human Brain Project in Switzer-
land—a plan to build a computer simulation of the
human brain, neuron by neuron.

At the same time, the connectomics frenzy has
come under fire. Some scientists question the wis-
dom of devoting scarce resources to the pursuit of the
human connectome when the task remains well be-
yond the scope of currently available technologies.
As Sebastian Seung, PhD, author of Connectome:
How the Brain’s Wiring Makes Us Who We Are, notes
in a widely watched TED talk (more than half a mil-
lion views and counting), the only complete connec-
tome we have is for the tiny nematode worm C.
elegans, an animal with roughly 300 neurons and
7000 neuronal connections; and the job took more
than a decade using conventional electron mi-
croscopy, which was used to resolve individual synap-
tic connections between cells. By contrast, the
human brain contains roughly 100 billion neurons
and 100 trillion connections. This is why Seung de-
scribes the effort to map the human connectome as
“one of the greatest technological challenges of all

time,” and asserts that it will “take generations to
succeed.” Others question the wisdom of concentrat-
ing on the development of new technologies in the
absence of clearly articulated scientific goals, and on
focusing so intensely on wiring diagrams that cannot
by themselves explain how our brains give rise to
feelings, thoughts, and perceptions. 

But researchers from a wide range of back-
grounds—some trained in physics or engineering, oth-
ers in neuroscience or medicine—are mounting a
serious effort to demonstrate the viability of connec-
tomics. Thus far, they have focused on two broad and
equally important tasks: devising faster and better
methods for building connectomes; and putting con-
nectomic data to good use. Their collective spadework
constitutes the true current state of connectomics—
and their success, its true promise. 

Building a Connectome 
by Taking the Middle Road 

In 1993, Francis Crick coauthored a Nature arti-
cle (“Backwardness of Human Neuroanatomy”) that
lamented the lack of progress toward a “connec-
tional map” of the human brain. Since then, not
much has changed, argues Partha Mitra, PhD,
Crick-Clay Professor of Biomathematics at Cold
Spring Harbor Laboratory. In part, he says, that’s be-
cause neuroanatomists have tended to beaver away
in their individual labs using different paradigms and
techniques. As a result, their data often doesn’t in-
tegrate well, and the models of neuroanatomy and
connectivity they develop stay locked inside their
own brains.

In a 2009 PLoS Computational Biology paper, Mitra
and a number of his colleagues proposed solving that
problem by launching a coordinated effort to con-
struct a mesoscale whole-brain wiring diagram for a
vertebrate. That proposal led to the creation of the
Mouse Brain Architecture (MBA) Project, an at-
tempt to demonstrate the attainability of a large con-
nectomic endeavor while also providing a testbed for
developing practical neuroanatomical techniques. 

As a theoretical physicist with an eye for the big

Connectome  
BEHIND THE

Connectomics 
is having 

a moment.
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picture, Mitra sought to develop a systematic method
for constructing a complete connectome using cur-
rently available technology. Taking a page from the
Human Genome Project, he developed a high-
throughput, semi-automated pipeline for imaging
multiple mouse brains using light microscopy, a
technique whose resolution lies between that of
electron microscopy, which is impractical for mam-
malian brains, and the non-invasive yet far coarser
magnetic resonance imaging (MRI) techniques used
on human subjects. 

Last June, Mitra released the first round of gigapixel
image data collected for the MBA Project. The images

can be viewed online and
explored with a virtual
microscope: Users can
zoom in on individual
neurons and their axons,

the long, slender fibers
that trail away

from neuronal cell bod-
ies and meet other cells
at synaptic junctions. De-
spite that level of detail,
the project embodies a
mesoscale rather than a mi-
croscale approach for the sim-
ple reason that, as Mitra points
out, “we’re not actually map-
ping the synapses.” Instead, the
MBA pipeline uses the morphol-
ogy of neurons—geometrical facts
such as the existence of long ax-
onal branches that span brain re-
gions—to infer patterns of connectivity. 

To gather those geometrical facts, Mitra’s team in-
jects mouse brains with four different tracers, some
of which express fluorescent proteins, in 262 uni-
formly spaced sites that were chosen with the help

of a sphere-packing algorithm. The tracers are either
absorbed into neuronal cell bodies and spread
through their axons, or are taken up by axons at
synapses and propagate up into the cell bodies. The
brains are subsequently sectioned into 20µ-thick
slices and imaged using either brightfield (i.e., white-
light) or fluorescence microscopy. 

Then comes the tricky part. The resulting two-di-
mensional images must be assembled into three-di-
mensional stacks and registered to an anatomical
reference atlas using a combination of off-the-shelf
and custom software. Next, axons and cell bodies
must all be identified, a step that presents a signifi-
cant bottleneck. Mitra’s lab is working on automat-
ing the process using machine-learning algorithms
that can be trained to identify features of interest.
For now, however, “somebody has to look through
half a million sections,” he says.

The effort should be worth it. The resulting
mesoscale connectome, while lacking details on in-
dividual synapses, will allow scientists to investigate
interesting problems at the level of major brain re-
gions and circuitry. Researchers know, for example,

that Parkinson’s disease degrades the connec-
tions between different neural circuits,

while the affective circuitry of the
brain has been implicated in dis-

orders such as anxiety and depression; and many be-
lieve that conditions like autism and schizophrenia
are caused by pathological patterns of neural connec-
tivity, or “connectopathies.” Mesoscale connectomes
could lead to better diagnostic tools for major disor-

The Mouse Brain Architecture Project
created gigapixel images of slices of
the mouse brain. Online users can
zoom in on areas of interest as
shown in this triptych. Projections
from a motor cortex AAV injection
courtesy of Partha Mitra and the
Mouse Brain Architecture project

website, http://brainarchitecture.
org/mouse/highlights.
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ders, better drug therapies, and even to a better un-
derstanding of how genetic variation influences be-
havior by shaping the wiring of the brain.

Building a Connectome 
at the Microscale 

Meanwhile, Mitra’s Cold Spring colleague An-
thony Zador, MD, PhD, co-founder of the Com-
putational and Systems Neuroscience (Cosyne)
conference, is working on a microscale approach to
building connectomes that would dispense with
microscopes altogether.

As someone who studies attention and auditory
processing, Zador wants a way to model and interro-
gate neural circuits in silico in order to streamline the
lengthy and laborious process of running experiments
to determine how groups of neurons feed information
to one another. Doing that, however, requires a quick
and inexpensive method for tracing the synaptic con-
nections between individual cells. If Mitra’s mesoscale
approach to identifying axonal pathways is akin to
sketching the major highways in the United States,
says Zador, he’s interesting in identifying “each and
every street, road, and country lane.”

Zador was initially inspired by the Brainbow tech-
nology invented by Harvard researchers Jeff Licht-
man, MD, PhD, and Joshua Sanes, PhD. Brainbow
uses genetically engineered neurons to express ran-
dom combinations of up to four fluorescent proteins,
producing brightly colored collections of cells that
can be imaged using fluorescence microscopy. But
the technique is limited to a palette of just a couple
of hundred colors—not nearly enough to uniquely
label all of the neurons in even a small sample of
brain tissue—and offers limited resolution. So Zador
began looking for optical alternatives to fluorescent
proteins. Eventually, he realized that he could do
away with them entirely and use DNA barcodes in-
stead. “The readout for the fluorophores is a micro-
scope. The readout for the barcodes is an Illumina,”
says Zador, referring to the ultrafast next-generation
gene sequencing machines. Zador described his ap-
proach, called BOINC (“barcoding of individual
neuronal connections”), in a PLoS Biology paper pub-
lished last October.

With the help of a recombination enzyme that
can scramble bits of genetic code, Zador instructs
neurons to generate short random sequences of
DNA. In theory, a sequence containing just 20 ran-
dom nucleotides could uniquely label 2x1012 neu-
rons, more than enough for the 100 million or so
neurons in a mouse brain. Once the neurons are la-
beled with these randomly generated barcodes, Zador
traces their connections by having a transsynaptic
virus spread the barcodes from cell to cell. That has
the effect of turning each neuron into a “bag of bar-
codes” that contains not only its own unique DNA
label, but also the unique identifiers belonging to

each neuron that’s connected to it. Some more ge-
netic engineering technology is used in vivo to join
each neuron’s barcode with the barcodes from neu-
rons to which it is connected by a synapse, creating
sequences of fused barcodes that represent networks
of neurons; harvesting and reading the fused bar-
codes with a high-throughput sequencer yields a con-
nectivity matrix. Computation plays a role in several
places: Zador and his colleagues had to develop novel
algorithms to clean up the barcodes, correct for any
sequencing errors, and determine the connectivity
matrices. They have been running proof-of-principle
experiments using neurons cultured in an incubator,
and have successfully completed each step in the
process in isolation. Despite some remaining techni-
cal hurdles, Zador expects to combine all of the steps
within a matter of months. 

Sectioning the brain before extracting the DNA
for sequencing will allow Zador to identify the brain

Zador and his colleagues convert neuron connectivity into
a sequencing problem that can be broken down conceptu-
ally into three components—labelling neurons with unique
DNA barcodes; associating barcodes from synaptically con-
nected neurons; and joining host and neighboring (invader)
barcodes into pairs for sequencing. Reprinted from Zador
AM, Dubnau J, Oyibo HK, Zhan H, Cao G, et al. (2012) Se-
quencing the Connectome. PLoS Biol 10(10): e1001411.
doi:10.1371/journal.pbio.1001411, (2012).
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region that each neuron comes from. And the use of
genetic technology ought to allow Zador to deter-
mine the particular kinds of neurons (e.g., inhibitory,
excitatory) involved, too. Inhibitory neurons, for ex-
ample, express a particular enzyme that is encoded
in mRNA; by tagging the appropriate mRNA in a
given batch of neurons with barcodes, Zador should
be able to identify the inhibitory ones. That would
add a level of detail about the identity of individual
neurons that would be hard to come by even using
electron microscopy; and if his sequencing approach
works, it would be cheaper and faster than anything
currently out there. In his PLoS paper, Zador esti-
mates that sequencing the connectome of a mouse
cortex would cost $40,000 at current rates, “and
could easily drop several orders of magnitude in a few
years.” Sequencing a fruit fly brain would cost one
dollar, and doing C. elegans would be “essentially
negligible.” That would put neuroscientists in a po-
sition to quickly and inexpensively map brain cir-
cuits, allowing them to develop testable hypotheses
and design experiments far more efficiently.

Using Connectomes 
To Understand Behavior

Some researchers are already using connectomics
to understand behavior. In a December 2012 paper
published in Cell, for example, Daniel Bumbarger,
PhD, used differences in neural connectivity to help
explain the divergent feeding behaviors of C. elegans
and its nematode cousin, P. pacificus. Unlike C. ele-
gans, which feeds exclusively on microbes, P. pacificus
is capable of switching into predator mode and eating
other nematodes. Typically, neuroscientists have ex-
plained such behavioral differences by looking at the
physiology of the neurons involved, or the neuro-
transmitters that modulate them. But Bumbarger,
who is a postdoctoral fellow at the Max Planck Insti-
tute for Developmental Biology in Tuebingen, Ger-

many, wanted to see if those differences in feeding
styles could be related to differences in patterns of
synaptic connectivity. So he compared the wiring di-
agrams for the pharyngeal nervous systems of the two
worms—a task that first required imaging the 300µm-
long pharynxes of several P. pacificus specimens using
an electron microscope, something that in itself took
nearly two years of work. 

What he found was striking. Despite having basi-
cally the same number and types of neurons in their
pharyngeal nervous systems—a remarkable conserva-
tion of cell identity—the two nemotode species dis-
played a “massive rewiring of synaptic connectivity,”
Bumbarger says, with P. pacificus demonstrating much
higher and more complex connectivity than C. elegans.

To better understand how differences in connec-
tivity might be driving differences in behavior, Bum-
barger turned to graph theory, the branch of
mathematics that gave rise to network analysis.
Graphs are defined as sets of nodes connected by
edges, or lines; consequently, graph theory can be
used to analyze the characteristics of virtually any
network, including neural ones in which the nodes
are brain regions or neurons, and the edges are axons
or synapses. To compare the relative importance of
the various neurons shared by C. elegans and P. paci-
ficus, Bumbarger computed a variety of measures
that evaluate the centrality of nodes within their
networks—measures like degree centrality, for ex-
ample, which counts the connections associated
with a node, and PageRank centrality, which gauges
the probability of stopping at it. (PageRank helps
Google rate the importance of webpages.) He also
developed a new tool, called focused network cen-

Bumbarger and his colleagues compared the synaptic connectivity of the two
nematode species C. elegans (A—based on previous work by others) and P.
pacificus (B), both shown here in a two-dimensional representation. Nodes in-
dicate neurons (blue), muscle cells (red), and other network outputs (yellow).
Edges curve clockwise from the presynaptic to the postsynaptic node and are
colored the same as their postsynaptic partners, with edge width indicating
connection weight, or strength, according to multiplicity of synapses. Bum-
barger and his colleagues also mapped differences in PageRank centrality onto
the P. pacificus network (C). Node size is proportional to magnitude of the dif-
ference in PageRank between C. elegans and P. pacificus. Orange nodes have
a higher centrality in P. pacificus, whereas blue nodes have a higher centrality
in C. elegans. Nodes with connections to anterior pharynx output cells (red
edges), including those nodes proposed to control predatory feeding, have a
higher PageRank in P. pacificus than in C. elegans. Nodes with connections to
posterior pharynx outputs (blue edges) have a higher PageRank in C. elegans
than in P. pacificus. Reprinted with permission from Bumbarger, DJ et al., Sys-
tem-wide Rewiring Underlies Behavioral Differences in Predatory and Bacter-
ial-Feeding Nematodes, Cell 152:109-119 (2013). 
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trality, to determine which parts of each network
were most important to particular nodes.

Among other things, Bumbarger found that there
was a general shift in network focus between the two
species, with more going on in the anterior portion
of P. pacificus’ pharyngeal network than in the pos-
terior portion—precisely the opposite of C. elegans.
He also found that while information tended to fol-
low the shortest path across C. elegans’ pharyngeal
network, information flow in P. pacificus was more
indirect, suggesting more complex processing that
could correlate with its more diverse feeding behav-
iors. And there were significant differences in con-
nectivity and information flow associated with the
two neurons that play the largest role in regulating
feeding behavior in both worms.

It’s hard to know exactly what all this means in
terms of function, but Bumbarger’s findings point the
way toward experiments that could help explain how
differences in connectivity and network architecture
affect behavior. He’d now like to do laser ablation
experiments on both species—blasting away at those
two neurons, for example—to see what, if any,
changes in feeding behavior ensue.

Simulating a Human 
Connectome: Spaun

Worms are one thing, people another. And the
amount of time it took Bumbarger to map just a tiny
piece of P. pacificus’ total connectome—let alone
begin to understand its functional significance—
gives some indication of why even the most ardent
advocates of mapping the human connectome see it
as a very long-term goal. But that hasn’t stopped
some researchers from taking the data that’s already
out there and using it to model human behavior.

Chris Eliasmith, PhD, a theoretical neuroscientist
at the University of Waterloo in Ontario, Canada
and author of the forthcoming book, How to Build a
Brain, has developed a large-scale computational
model of the human brain made up of two and a half
million virtual neurons. Known as Spaun (for Se-
mantic Pointer Architecture Unified Network), the
model, which is described in a 2012 Science paper,

In these screenshots from movies of Spaun processing an
input image, the spiking neural networks in the model are
mapped to the corresponding anatomical areas. For exam-
ple, the highest level of visual hierarchy lies at the back of
the brain (in the inferotemporal cortex); the motor areas
in the middle; and executive control in the front. When
shown the number two, the visual area responds; and
when prompted by a question mark to write the number,
the motor area kicks in, recognizing not only the number
but details such as the numeral two’s loop (or lack thereof),
demonstrating its ability to capture this subtle visual dif-
ference. Screenshots taken from http://nengo.ca/build-a-
brain/severaltasks, courtesy of Chris Eliasmith.
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can see with a simulated eye and write with a simu-
lated arm. Eliasmith and his colleagues used as much
neuroanatomical and biological data as they could to
build Spaun; its simulated neurons are grouped into
20 anatomical structures (primary visual cortex, pri-
mary motor cortex, and so on) that are wired to-
gether in a realistic manner, mimicking functional
brain areas that communicate with one another to
reproduce a variety of cognitive behaviors. 

Spaun was designed to perform eight basic tasks,
including one that involves viewing a sequence of
digits displayed on a screen, remembering them, and
writing them down. Spaun can do it, but just like a
real human being, it’s better at remembering the items
at the beginning and end of the list. It also performs
about as well as most people would on a reasoning
task that resembles the kinds of problems included on
a common IQ test.

The fact that Spaun can do these things almost
as well as people can, while also making the same
kinds of mistakes they do, lends credence to the as-
sumptions about brain wiring and function upon
which it is based. For example, Spaun’s ability to
handle a diverse set of tasks is made possible by the
way in which its virtual basal ganglia—a group of
neurons that are associated with functions such as
motor control and procedural learning—route infor-
mation through simulated synaptic connections to
different portions of its virtual cortex depending on
the job at hand. To some degree, the system is even
capable of changing its connection weights, or the
strength of the connections between its neurons, a
property that is believed to play a key role in memory
formation, information processing, and behavior.

The model is far from complete. “It’s large-scale
in a way, but it’s 40,000 times smaller than the

brain,” Eliasmith says. And while it is capable of en-
acting very small variations on the routing schemes
supplied by Eliasmith and his colleagues, Spaun will
have to figure out how to rewire itself more substan-
tially in order to learn new tasks. Still, the practical
benefits of a (relatively) large-scale model of a func-
tioning brain are already apparent. 

On the one hand, Spaun should help neuroscien-
tists figure out why specific connections matter, and
how neural anatomy and physiology underwrite be-
havior. That, says Eliasmith, will help them under-
stand how our brains relate to who we are and what
we do. On the other hand, while Spaun can replicate
normal cognitive behavior, it can also be used to

model the cognitive decline associated with aging,
or the damage inflicted by diseases like Parkinson’s
and Alzheimer’s.

Broken Connectomes: 
Understanding 
Brain Trauma

Damage is precisely what Reuben Kraft, PhD, as-
sistant professor of mechanical engineering and
member of the Institute for Cyberscience at Penn
State University, wants to understand—and prevent.
While working at the Army Research Laboratory,
Kraft began trying to model traumatic brain injury
(TBI), the signature injury suffered by American
troops in Iraq and Afghanistan. Studies have linked
TBI to chronic traumatic encephalopathy, a progres-
sive neurodegenerative disease that affects both sol-
diers who are subjected to blast and concussion, and
athletes such as boxers and football players who suffer
repeated head injuries. Colleagues in the Transla-
tional Neuroscience Branch introduced him to con-
nectomics, and Kraft, enticed by the combination of
imaging and network analysis, was off and running.
In a PLoS Computational Biology paper published last
August, he and his collaborators used magnetic res-
onance imaging, biomechanical modeling, and graph
theory to examine how a blow to the head might af-
fect an individual’s neural network.

Kraft used a technique known as finite element
modeling to turn standard MRI scans taken from a
graduate student at the University of California,
Santa Barbara, into a three-dimensional model of a
human head that included everything from skull and
skin to brain tissue and cerebrospinal fluid. He then
combined that model with a low-resolution connec-
tome constructed via diffusion tensor imaging (DTI),
a form of MRI that traces the approximate location
of bundles of axons by analyzing the movement of
water molecules along the fibers.

DTI provides far less detail than microscopy, but
the technology is well suited to the kind of
macroscale study that Kraft wanted to perform. By
the time they were done, Kraft and his colleagues had
a 3-D model kitted out with a connectome in which
the nodes represented anatomical regions of the
brain rather than individual neurons, and the edges
represented the axonal highways that linked them
together. By throwing in experimentally based mod-
els that predict how cells die off in the hours and days
following an initial insult, Kraft was able to predict
how the connectome would evolve over time after
an impact to the head, with connections between
brain regions degrading or disappearing completely
as cells expired. He then analyzed the local and
global effects on the network using graph theoretical
measures of efficiency and connectivity. The system
proved to be surprisingly robust: Even in the worst-

The practical benefits 
of a (relatively) large-
scale model of a 
functioning brain are
already apparent. 
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case scenarios, with many connections lost, none of
the brain regions wound up being completely discon-
nected. Moreover, Kraft suspects that the extreme

damage predicted at the outer limits of the model
doesn’t actually occur in nature, suggesting the exis-
tence of a protective or regenerative mechanism that
has yet to be defined mathematically.

Kraft is already working on a follow-up paper that
will use the model to examine network response and
degradation in the face of blast injuries, which differ
mechanically from physical impacts. Ultimately, he’d
like to see this kind of biomechanical/connectomic
model used to predict the likelihood that a particular
person might be susceptible to long-term neurodegen-
erative disease following traumatic brain injury of any
kind, whether sustained on the battlefield or the grid-
iron. That information could form the basis of a “pro-

tective portfolio” that might include recommenda-
tions about activities to avoid or precautionary meas-
ures to adopt—like not going out for the football

team, or wearing a particular kind of helmet.
It’s the kind of idea—practical, useful, maybe even

possible—that makes a proposal to map the human
connectome seem like something that even the most
skeptical critic could support.  nn

Finite element simulations coupled with cellular death predictions are used to
specify injuries to white matter and subsequent damage over time. Damaged
edges are shown in red, and node size increases as connections are lost. The
predicted evolution of damage is shown for 24 (a and b), 48 (c and d), 72 (e and
f), and 96 hours (g and h). Reprinted from Kraft RH, Mckee PJ, Dagro AM,
Grafton ST, Combining the Finite Element Method with Structural Connectome-
based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechan-
ics. PLoS Comput Biol 8(8): e1002619. doi:10.1371/journal.pcbi.1002619 (2012).
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Betting on

Six Startups Jockey
FOR A Place AT THE Table
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“Once you can produce a better faster genome,
thanks to Illumina and others, the bottleneck shifts
downstream to processing, making sense of, and in-
terpreting that data,” says Jorge Conde, MBA, co-
founder and chief financial officer at Knome. 

Each new startup seeks to turn whole genome se-
quences (or whole exome sequences—the portion of
the genome that codes for proteins) into meaningful
information. But each is also making a different bet
about what approaches will succeed on the open mar-
ket. Some companies plan to serve biotech or phar-
maceutical researchers while others target clinical
researchers or physicians and hospitals. Some focus
on one step of the interpretive pipeline while others
cover the whole shebang. Some provide cloud-based
services, while others are betting on embedded plat-
forms. And some rely on open-source algorithms and
databases while others look to polish proprietary ones. 

Which combination will ultimately prove success-
ful is anyone’s guess. But right now, “there’s a lot of
buzz,” says Nicholas Schork, PhD, founder of
Cypher Genomics and professor of molecular and ex-
perimental medicine at the Scripps Research Insti-
tute. Researchers and medical institutions that are
buying sequencing machines to do genomic profiling
need someone to turn to who has a clue about the
data they generate. “The time is definitely right to
think about interpretation,” Schork says.

Sequence Crunching 
Gaining knowledge from genomic data—the

strings of C’s, G’s, T’s and A’s that constitute the
standard output from a next-generation DNA se-
quencer—follows a series of fairly predictable steps,
and some startup companies are putting their eggs in
baskets defined by those steps. 

Bina Technologies, for exam-
ple, is focused on optimizing
what’s called secondary analysis,
the essential data-crunching step
that happens immediately after the
DNA sequence comes off the
next-gen sequencer. That step re-
quires software that first aligns an
individual’s DNA sequence with
a reference sequence and then
picks out the differences between
that individual’s sequence and
the reference (a process known as
variant-calling). 

Bina is betting that the speed
and accuracy of secondary analysis

will matter in a clinical context, says Mahni Gho-
rashi, MBA, director of marketing at Bina. Physi-
cians don’t want to wait two weeks to determine
appropriate cancer treatments based on genetic dif-
ferences between tumor cells and normal cells, he
says. They want that information now. 

And for newborns whose lives are at risk, “they need
the information in 48 hours or less,” Ghorashi says. 

To meet that demand, Bina built a big-data plat-

form for genomics. Called the Bina Genomics Plat-
form, it pairs specialized software with specialized
hardware that’s designed to sit right next to the se-
quencer and analyze the data as it’s generated.
“We’re able to take a process that used to take days
or weeks and reduce it down to under four hours,”
Ghorashi says. At Stan-
ford, which is using the
Bina platform as part of a
pilot program for new-

A handful of startups are wagering that 
genome interpretation is the next big thing.  

Why is this business space so hot? 

June 2011

$6.25 million in Series B funding
announced March 2013

14

Researchers and clinicians

Bina Genomic Analysis Platform—
an embedded system of software and
hardware for secondary analytics

Pilots with Stanford University and 
the Palo Alto Veterans Administration
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THE BET:
Bina Technology  

That the speed and
accuracy of secondary analysis
will matter in a clinical context.
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born screening, it used to take 10 days to process one
genome on a shared computer cluster. “They are now
processing 10 genomes a day, a 100x acceleration,”
Ghorashi says. 

Bina is only one of several companies that are fo-
cused on secondary analysis. DNANexus, Realtime
Genomics and Appistry (not interviewed for this
story) also focus on this area. In addition to its hard-
ware version, Bina also offers its platform over the
cloud, as does DNANexus. Realtime Genomics’ new
genome analytics platform for the study of early
childhood disease can be embedded locally or ac-
cessed on-demand in Amazon’s public cloud. And
Appistry licenses GATK, the genome analysis tool
kit developed by the Broad Institute. Each
company makes claims of speed and accu-
racy akin to Bina’s, and other companies
described below also incorporate secondary
analytics as a part of their pipelines. 

From Variants 
to Interpretation: 
Predictive Modeling

The output from secondary analytics soft-
ware, such as Bina’s platform, is a variant file.
To determine whether any of the variants are
associated with disease, researchers or physi-
cians must put those files through another
computer pipeline (tertiary analysis) using a
different product—one either developed in-
house by the client or provided by another
company—at least until Bina adds that step
to its platform, which it plans to do. “We
planted our flag upstream and our goal is to
ultimately own the pipeline to guarantee ac-
curacy,” Ghorashi says. But several other startups
begin where the Bina platform lets off. Cypher Ge-
nomics and Knome, for example, are two startups that

specialize in this space. 
At the most basic level, tertiary

analysis involves querying whether
the genome contains variants that
have already been discussed in the
literature and are known to be as-
sociated with disease. But that’s
just the beginning. Given that a

human diploid genome contains 3 billion base pairs
and each genome has about 10 million variants in it,
according to the National Library of Medicine, most
variants found in an individual’s genome will not be
described in the literature. Therefore, Conde says, at
a bare minimum, interpretive pipelines need to in-
clude algorithms for predicting how a variant, though
unknown, might be relevant for disease. Most com-
panies, including Knome and Cypher, incorporate
several open-source predictive algorithms to accom-
plish this goal. “If you don’t do that, you’ll only be
looking for the keys under the streetlamp, as the story
goes—because that’s where the light is,” Conde says.

In addition to open-source algorithms, Cypher li-

censed proprietary approaches developed at Scripps
Research Institute by Schork and Ali Torkamani,
PhD, a founder of Cypher Genomics and assistant
professor of molecular and experimental medicine at
Scripps. “Cypher Genomics has tools that can assign
functional labels to virtually every variant in the
genome—not just those that have been discussed in
the literature,” Schork says. As a simple example: If
a gene variant codes for an amino acid substitution
in a particular protein, Cypher’s tools could predict
whether that change would be likely to affect the

THE BET:
Cypher Genomics

That its analytical 
tools for genome interpretation,
including some proprietary
approaches licensed from Scripps
Research Institute, will prove
useful to pharmaceutical and
other researchers.   

2011

Not publicly disclosed

5

Pharmaceutical companies, research groups, and clinical partners

Cypher Analytics—a pipeline for ranking candidate gene variants in rare diseases;
conducting family studies; and performing genetic association studies. The pipeline includes
variant-impact prediction and gene-phenotype prediction.

Contracts with pharmaceutical companies and research groups
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protein’s structure or function—even if that variant
has never been seen in the literature. Cypher also has
tools for winnowing down from millions of variants
to those that are likely responsible for a particular
trait—be it a disease or drug response. And they have
tools for leveraging annotations to make claims
about groups of people, for example, individuals who
do or don’t respond to a drug. 

Knome offers similar capabilities. “You need to
be able to rapidly compare genomes to one another,”
Conde says. For example, if a family member is sick
and other family members are both sick and healthy,
Knome’s software can ask for mutations in genes
that are predicted to affect protein function or struc-
ture in sick individuals where that variant is very
rare and is not present in healthy individuals. “That
very quickly filters you down to the needle in the
haystack,” Conde says. In a study conducted on a
family in British Columbia, Knome researchers used
this strategy to find the sixth known genetic cause
of Parkinson’s disease. The same approach can work
with unrelated individuals. 

Knome’s pipeline also includes “nifty algorithms,”
Conde says, that look first for identical point muta-
tions, then for mutations in the same gene, and then
ultimately for mutations in genes that are part of the
same pathway. In that final step, he says, “we tend
to get very interesting hits.” This is important be-
cause unrelated people with the same disease or drug
response are likely to have different mutations that
fall within similar pathways. 

For example, a pharmaceutical company asked
Knome to look for gene variants that could explain
why a group of unrelated people didn’t respond to a
particular drug. Knome’s algorithms found that the
nonresponders all had some level of mutation in dif-
ferent genes in the same network for metabolism of
a particular starch. “To us it meant nothing,” Conde
says. But the pharmaceutical company used that
starch to stabilize the drug. “People with that meta-
bolic deficiency were excreting the drug and the
body was never really seeing it.” 

Both Cypher and Knome provide genomics in-
terpretation services for pharmaceutical and biotech

companies as well as clinical researchers. 
In addition, Knome has created a product called

KnoSYSTM100, an end-to-end system for interpreting
human genomes and exomes. The company is essen-
tially betting that as the cost of sequencing goes down

and the resolution of data goes up, clinics will shift
from ordering an occasional test for a specific gene,
to sequencing and storing whole exomes or genomes
and querying them in silico whenever a test is needed.
“That’s why our platform exists,” Conde says. 

Diagnostic Odysseys
Some of the splashiest genomics news in recent

years involved diagnostic odysseys—cases where
whole genome sequencing was used to diagnose and
treat patients with unique or very rare diseases. Both
Knome and Cypher offer inter-
pretation pipelines for diag-
nostic odyssey patients—ways
to sift through genetic variants

THE BET:
Knome  

That as the cost of sequencing
goes down and the resolution of
data goes up, clinics will shift from
ordering an occasional test for a
specific gene, to sequencing and
storing whole exomes or genomes
and querying them in silico
whenever a test is needed.

2007

~$12 million

“Under 50”

Pharmaceutical, medical, and academic researchers 

KnoSysTM100—a fully integrated, locally installed, hardware and 
software system for the interpretation of human genome sequence data. 

KnomeDiscovery—an end-to-end solution for interpreting large numbers 
of human whole genomes and exomes—starting with sequencing and 
ending with a interpretation findings report.

Discovered a new gene for Parkinson’s disease



22 BIOMEDICAL COMPUTATION REVIEW Summer 2013 www.biomedicalcomputationreview.org

to find the likely culprit. 
SVBio offers a combination of secondary and ter-

tiary analytics to that same end. But SVBio differs
from Knome and Cypher in its clinical rather than
research focus. “Clinical companies come from a dif-
ferent mindset,” says Dietrich Stephan, PhD, SVBio’s
CEO. “Rigor levels are much higher than for a re-
search product.” 

Because data that comes off next-gen sequencers is
not in a form that can be used in the clinic, SVBio does
a lot of massaging of the primary data in the alignment

and variant calling step,
Stephan says. And when
assigning pathogenicity
to a variant, they have to
make sure they aren’t re-
lying on a polluted pub-
lic database. 

In addition to accu-
racy, SVBio wants to be
comprehensive. It’s not
helpful to tell someone
“you have a variant of
unknown significance.”
Instead, according to
Stephan, SVBio can say
with 99.5 percent preci-
sion, whether the variant
is a mutation or polymor-

phism, based on classifiers that are trained on all the
historical data. Many labs do this, including Knome
and Cypher, but according to Stephan, “Few have
gone to the level we’ve gone to in terms of training
complex classifiers on hundreds of attributes across
300,000 variants with publicly stated precision met-
rics around pathogenicity.”

In January 2013, the Mayo Clinic’s Center for In-
dividualized Medicine teamed up with SVBio to
build a robust software pipeline for interpreting a pa-
tient’s exome sequence—the portion of human DNA
that codes for proteins—in a clinical setting. The sys-
tem will go live in June. 

What attracted the Mayo Clinic to SVBio? “We’d
talk about sensitivity and specificity
on a per patient basis,” Stephan
says. “And we’d talk about the low
probability of missing a diagnosis

across a specific number of patients. They liked that.”
One thing’s for sure: Getting the contract with

Mayo didn’t hurt business. “This stuff is really com-
plicated and nuanced and multifaceted,” Stephan
says. “Being able to say Mayo Clinic is using it makes
things a lot easier.” 

Soup-to-Nuts Research 
and Diagnostic Services

Personalis1 is one company that’s gone full bore
into clinical research and diagnostics, with the goal of
enabling accurate clinical grade insights into genomic
data. They start with a DNA sample, sequence it in-
house, do the alignment and variant calling, and an-
alyze the variants to identify those with potential to
cause disease. “It’s a kind of soup-to-nuts offering,” says
John West, MBA, the company’s CEO. “We allow a
customer to go from sample to insight.”2

By owning the whole process, West says, Personalis
can innovate every step of the way. “We’re doing some-
thing novel in each area to achieve higher accuracy.” 

So, for example, exome sequencers don’t actually
catch all the genes. Coverage can be inadequate for
many reasons, including sequencer bias against re-
gions rich in guanines and cytosines (GCs), or be-
cause repeats are difficult to sequence, says Richard
Chen, MD, chief science officer at Personalis. Be-
cause there could be something medically important
in those gaps, Personalis has innovated to fill those
holes—creating what they call ACE TechnologyTM.
“You don’t have to wonder if the variant you’re look-
ing for isn’t listed because it wasn’t covered by the
sequencing,” Chen says.

Similarly, Personalis has taken a close look at
secondary analysis. “There are so many details
there, and mastery of the process is not trivial,”
Chen says. Many companies use standard tools and
align against a standard reference that itself in-
cludes rare alleles. So Personalis has created its own
reference genomes that contain the most common
alleles for people of different ethnic backgrounds.
“It gives us better alignment and variant calling,”
he says. The company is also improving on public
tools that are good for calling certain types of vari-
ants but do poorly on others, such as inserts/dele-
tions and structural variants, Chen says. “For
case-control analysis, accuracy in sequencing and
alignment really matters so that the real biology can
be dissected from the noise in the data.”

When it comes to the tertiary analytics—bringing
biological meaning to genomic datasets—Personalis
has also exclusively licensed and extended several
large high-quality, manually curated databases in-

THE BET:
SVBio  

That a physician-
centric approach will prove
attractive to large clinical
enterprises.

2011

Undisclosed funding 
by Sequoia Capital

20

Hospitals and physicians

Cloud-based genome 
diagnostic services

Contract with Mayo Clinic

1 Russ Altman is principal investigator for Simbios, which funds
this magazine. He is also a founder and scientific advisor to Per-
sonalis as well as a personal friend of this author.  He did not,
however, play a role in the writing or editing of this story.

2 Knome and SVBio also offer sequencing but they do not, so
far, do it in-house.
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cluding PharmGKBTM, a pharmacogenomics data-
base; the Personalis Variant Database, a large data-
base of disease-related variants; and Regulome
software, from the ENCODE project. All three of
these were originally licensed from Stanford for ex-
clusive commercial use. They have also built an an-
notation engine that integrates over 30 different
databases. “In doing so we’ve reached a level of ac-
curacy and comprehensiveness that is beyond what
others are doing,” Chen claims. 

Personalis also runs sophisticated analytics (not
unlike those run by Cypher and Knome) to identify
differences between cases and controls at the variant

level as well as at the gene and pathway level. And
their tools can analyze genomic data from an indiv-
dual or family with the aim of discovering the ge-
netic cause of a particular disease or characteristic.
“We have developed a detailed process to apply
what we know about the family and the biology to
make the most likely variant stand out from the
crowd,” Chen says. 

Initially, Personalis is focusing on the clinical re-
search market. In February, the Veteran’s Adminis-
tration contracted with Personalis to analyze 1000
genomes this year, with an option to do the same for
thousands more patients in the coming years. It’s a
piece of the VA’s Million Veterans Program—an ef-
fort to build a vast DNA data repository and correlate
it with the VA’s extensive electronic medical records. 

Moving forward, the company would like to start
working with hospitals and clinics. “It’s hard work to
get to the level of accuracy required for clinical de-
cision-making,” Chen says. “It’s a higher standard
we’re holding ourselves to, but a necessary standard,
whether you are doing research or using sequencing
results to make life or death decisions for people.”

What about Open-Source?
All of the companies described here make use of

some open-source tools. But they are betting there

will nevertheless be a market for their services.
Ghorashi says that although the open-source

movement has been “really good” at developing al-
gorithms, Bina adds value by making sure the open-
source tools interoperate optimally. “These algorithms
are written by biologists who don’t necessarily take
that extra step,” he says. 

Schork agrees. “At the end of the day, the delivery
of the information is just as important as the accuracy.
And the open-source tools don’t do as good a job with
delivery.” Companies are set up to make it easy to sift
through the data and present results in an effective
way, he says. “That is not typically in the domain of

the academic or weekend scientist.”
But at least one company is making a dif-

ferent bet. “A lot of people starting compa-
nies are spinning them out of academic lab
efforts and replicating what’s available in the
open-source community,” says Jonathan
Hirsch, CEO of Syapse. “The useful thing a
company can do is make the use and delivery
of those easier, not replace the algorithms.”

In secondary analytics, for example,
Hirsch thinks the bioinformatics commu-
nity wants to directly use open-source tools
like GATK (from the Broad Institute) and
Bowtie (out of Johns Hopkins University).
“If there’s a choice between proprietary al-
gorithms and the open-source algorithms,
usually it’s the open-source algorithm that’s
going to win,” he says. He points to Spiral
Genetics and Seven Bridges Genomics as
companies that are focusing on helping
customers run the open-source algorithms

more efficiently by offering delivery mechanisms
and a distributed computing platform. There’s also
GnuBIO, he says, which integrates the secondary
analytics on the sequencer. “In the future, you won’t
need a separate secondary analytics process,” he says.
“The machine will do the work, just as it performs
the primary analytics today.” He says the same thing
about knowledge bases: He pre-
dicts that the public ones will
dominate, such as ClinVar. 

These views have influenced

THE BET:
Personalis

That a soup-to-nuts
interpretation pipeline with
innovations around issues of
accuracy at every step along  
the way will be the preferred
product for clinical research. 

2011

$20 million

25

Clinical researchers but moving 
toward hospitals/physicians

Soup-to-nuts diagnostics. 
From DNA sample to analytical report.

Contract with VA to sequence and 
interpret 1000 genomes as part of 
the VA’s Million Veterans Program
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Syapse’s business model. “We don’t do content,” he
says. Instead, Syapse is building what he calls “the
software infrastructure for omics medicine.” For con-
tent, Syapse hopes to partner with any or all of the
companies described above. “We are not going to be
the ones to choose the winner, so we want to partner
with all of them.” 

Syapse is essentially a semantic computing com-
pany that builds a graph
data structure that can
leverage open-source on-
tologies for structuring
biomedical terms and re-
lationships. The goal is to
make it easy to query the
data to get a useful result.
The company has two
target audiences: data
generators and clinics.
For the data generators
(hospital labs, diagnostic
companies), Hirsch says
Syapse will provide off-
the-shelf software for
managing, structuring,
querying and reporting
omics results. And for
clinics, they will build an

omics medical record. It will allow the clinical site to
connect omics data with the electronic medical record
in a clinical decision support system that can recom-
mend appropriate courses of action to physicians. 

“Content is something that will eventually be free
and open,” Hirsch says. “So to me, the most impor-
tant thing becomes the off-the-shelf software that
enables users to make use of their data.”

Where are 
the Big Dogs?

If genome interpretation is a
hot niche, it seems reasonable to

ask why the sequencing companies (such as Illumina
and Life Technologies) aren’t jumping in. 

For secondary analytics, Ghorashi agrees that Illu-
mina is interested. “Their customers don’t want the
raw data files. They want the alignment and call
files,” he says. But at the same time, he notes, “quite
a bit of innovation needs to happen,” and startups are
better poised to move quickly. 

For tertiary analytics, Schork says that the se-
quencing companies have plenty of activity just stay-
ing at the top of their own market without branching
out into interpretation. “They see themselves as the
iPad and these other companies are the apps,” he says.  

If the clinical space develops more, Conde says, “it’s
pretty clear that Illumina would want to dominate.”
But right now, “there’s plenty of evidence to suggest
that there’s a role for new companies like ours.” 

How will it play out?
While it’s anyone’s guess which business model

will prevail, one thing’s clear: The appearance of
multiple startups with an interest in genome inter-
pretation foreshadows a potential sea-change toward
personalized medicine. Torkamani says the time is
ripe for making sense of the data in certain areas,
such as pharmacogenomics, diagnosis of rare condi-
tions, and cancer. “There’s plenty of actionable in-
formation there,” he says. And although there’s still
work to be done before genomics will make a dent in
chronic common diseases, “even there, a few bits and
pieces of information are starting to appear,” Torka-
mani says. He points to ApoE for Alzheimer’s disease
and various risk markers for macular degeneration. 

There remains a risk that the hype cycle for
genome interpretation is only just starting. If patients
go through testing and are told “you have these vari-
ants but we don’t know what they mean” or, worse,
are told predicted meanings that turn out to be false,
companies could unintentionally cause harm to pa-
tients—and also to the entire industry. 

Many of the things the current batch of startups
hope to accomplish are entirely reasonable goals, says
Mark Gerstein, PhD, professor of biomedical infor-
matics, molecular biophysics and biochemistry, and
computer science at Yale University, who is not per-
sonally involved in any genomics startups. But, he
says, “There’s a long way from an idea to having evi-
dence that it’s proven.” For example, connecting vari-
ation to disease is still an area of intense research, he
says. And being able to find different variants in the
same pathway is not as straightforward as it sounds.
Still, he says, “I think this business area is a good
thing.” The research community doesn’t create pro-
duction scale products that are ready for the clinic.
“There’s a lot of chaos in normal research,” he says,
“And extracting from that chaos hardened tested
workflows that people can use is very valuable.” 

Torkamani hopes so. “We went into genetic re-
search with the hope that it will impact peoples’
lives,” he says. “Now it’s really possible to make
that happen.”   nn

THE BET:
Syapse  

That off-the-shelf
software that makes use of
open-source databases and
analytical tools will be the
best way to help users make
sense of their own data.

2012

$3 million

3

Hospitals

Semantic infrastructure for omics 
generation and clinical reporting—
agnostic as to knowledge base 
or analytical tools

Provides infrastructure for several 
diagnostic companies such as InVitae 
and Foundation Medicine, and for 
the Stanford Center for Genomics 
and Personalized Medicine
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G raphs, or networks, have been widely adopted in compu-
tational biology, with examples including protein-protein
interaction networks, gene regulatory networks, and

residue interaction networks in proteins, to name a few. Graphs
provide a single and methodologically well-

understood way to describe high-through-
put biological data as well as data from
individual experiments. 

Graphs are most useful when they
are analyzed to draw inferences
about the data. Such analyses fall
roughly into two camps: unsuper-
vised techniques for network
motif finding (graphs that occur
more frequently than expected)

and clustering (grouping of
data); and supervised tech-
niques, which usually in-
volve prediction tasks such

as classification (prediction of dis-
crete outputs) and regression (pre-

diction of continuous outputs).
These supervised techniques can be ap-

plied to predict properties of a graph
(graph classification) or
of the vertices in a single
graph (vertex classifica-
tion). Below we describe
how vertex classification
techniques can be used

to gain new insights into the residues that make up a protein.  
When using graphs to analyze protein structures, the first step is to

convert each protein structure of interest into a residue interaction net-
work, where vertices represent amino acid residues and the links be-
tween pairs of vertices indicate that the two residues are in
contact—often if the distance between them is within 3 to 6Å. 

In the graph classification scenario, each protein can be seen as a
different graph and the task may be to predict a structural or functional
classification of such a protein, or graph—e.g., its fold class (e.g., barrel,
globin) or its cellular role (e.g., catalytic activity, transcription factor
activity). On the other hand, in the vertex classification scenario, all
proteins are collectively considered as a single large disconnected
graph, and the objective may be to predict some properties of interest
regarding each residue. For example, the identification of functional
residues (e.g., DNA-binding residues, post-translationally modified
sites, etc.) falls under the vertex classification scenario, an example of

which is shown here.
There are three principal approaches to vertex classification.

First, for properties that tend to be localized, probabilistic graphical
models (e.g., Markov Random Fields) can be used to propagate class
labels across a graph, for example, from a group of DNA-binding
residues to their neighboring vertices. Second, one can map each
vertex together with its local neighborhood into a vector in the Eu-
clidean space and then use standard machine-learning techniques
for predictor development. Here, vertex properties such as degree,
clustering coefficient, and others might be used to encode each ver-
tex into a fixed-dimensional vector. Third and finally, if one has in-
sight into how to effectively measure similarity between vertex
neighborhoods, one might define a kernel (similarity) function over
pairs of vertices based on their graph neighborhoods, for example,
one based on simultaneous random walks starting at the two vertices
of interest. Kernel functions can then be used by learning algorithms
capable of working with similarities between objects rather than sets
of object descriptors. In contrast to probabilistic graphical models,
the latter two approaches assign class labels based on the similarity
of vertex neighborhoods regardless of their location in the graph;
however, they may be less effective in modeling dependencies be-
tween vertices. The final choice of a method thus depends on the
problem at hand and domain knowledge. 

In addition to identifying functional residues in protein struc-
tures, vertex classification is helpful for predicting protein function
or disease associations from protein-protein
interaction networks. Going beyond
computational biology, these
methods can

also help identify malicious web sites on the Internet or predict a
person’s voting preferences in a social network. As the volume and
nature of data change with technology, development of vertex clas-
sification methods that can handle real-life (big and noisy) data,
incorporate the wealth of auxiliary domain information in princi-
pled ways, and/or increase the efficiency of learning and inference
will have wide implications not only for computational biology, but
also for a number of scientific and industrial applications. nn

BY JOSE LUGO-MARTINEZ AND PREDRAG RADIVOJAC, PhD

u n d e r  t h e  h o o d
Under TheHood

DETAILS

Jose Lugo-Martinez is a PhD candidate in computer science
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science and informatics at Indiana University, Bloomington.  

The local graph neighborhood for the Y394 residue (double circled). The
graph was generated using a distance threshold of 6Å. Each residue is rep-
resented by a single letter amino acid code but the positional information
is removed. The task of a classifier is to predict class labels (here, presence
or absence of phosphorylation) for each vertex (local graph neighborhood)
in the residue interaction network.

A structure of lymphocyte-specific pro-
tein tyrosine kinase (PDB id: 3lck) with a
highlighted residue (Y394) that is known
to be an autophosphorylation site. 

Vertex Classification in Graphs
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BY KATHARINE MILLER

A n animated human figure seeking the optimal path from
point A to point B typically relies on computationally ex-
pensive hard constraints that force the trajectories to be phys-

ically realistic. But contact-invariant optimization (CIO), as applied
by Igor Mordatch, a graduate student in computer science at the Uni-
versity of Washington, can achieve physical realism more efficiently
by changing the contact forces from binary (touching/not touching,

which numerical optimizers
can’t handle in a smooth
way) to a softer constraint
that is more like a guideline.
“It’s like you have a jet-pack
on your hands or feet,” Mor-

datch says. As the optimization proceeds, it discovers for itself that
the contact/no contact solution is optimal, while still preserving the
physical realism of a smooth transition. “The gradual transition be-
tween contact and non-contact makes sure the numerical behavior
is nice,” he says. “That’s kind of the primary trick.” 

Mordatch has used the approach to create animated figures that
can stand from a prone position, do handstands, climb over walls,
and pass objects. More recently, he has been adding physics-based
muscle models in an effort to make the work useful for biomechanics
researchers. He envisions a two-step process in which the simple
models achieve the general motion that is then refined with a full
physics-based model. “We haven’t really tried that yet,” he says. “It’s
exciting stuff for the future.”  nn

s e e i n g  s c i e n c e
SeeingScience

Trajectory Optimization And Physical Realism

For a trajectory-driven animation using CIO, the animator specifies a figure’s initial position and target
location (shown here as an “X”) as well as the final stance pose (feet under the hips, feet shoulder-width
apart, hands in a downward direction). In between, the optimization discovers when and where to place
the hands and feet.  Initially, the hands sort of slide across the ground as if flying with jetpacks. But after
a while the hand contacts converge into single points that become the final solution. Screenshots cour-
tesy of Igor Mordatch. Full movies viewable at http://homes.cs.washington.edu/~mordatch/.




