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g u e s t  e d i t o r i a l

Many collaborators1 with whom modelers2 work
have little or no training in modeling3 and so
it is natural that they may be cautious, intimi-

dated or disinterested—attitudes that give rise to skepti-
cism4. Although, ideally, collaborators could learn more
about modeling, it is understandable that they don’t:
They are busy keeping up with their own dynamically
changing specialty fields, don’t have the time, or are sim-

ply not interested. Identifying and overcoming such
skepticism is important if biomedical computing is to be
of greater value to society, and so I would like to suggest
here that we, the modelers, take the lead in addressing
and reducing this skepticism. 

I hope we can agree that there really is no well-estab-
lished “modeling community.” Typically, modelers are
renegade individualists who are fuzzy members of the

GuestEditorial
BY JIM DELEO, PhD, NIH COMPUTER SCIENTIST

fuzzy subsets of different modeling disciplines such as
computer science, statistics, bioinformatics, analytics and
others. It would be helpful if these renegades would tran-
scend their silos, overcome their self-oriented competi-
tive urges and establish more cooperative relationships
with one another and with their collaborators. This ob-
jective has motivated the NIH Biomedical Computing
Interest Group (BCIG) since its inception 10 years ago.

BCIG’s mission is to encourage, support and promote
good and appropriate computing methodology and tech-
nology in all aspects of biomedical research, develop-
ment, and patient care; and it is open to everyone having
interest in this mission. I propose that we form other ge-
ographically disparate BCIG groups and network them
electronically. Are you interested? I would be happy to
help facilitate this. 

Conference participation, tutorial production
and distribution, crowdsourcing and multi-insti-
tutional team building are examples of what we
can do to improve relationships and extend com-
putational methodology choices and accessibility.
For example, BCIG is helping to formulate a
panel for a workshop on “Proper Methods for
Evaluating Performance of Computational Intel-
ligence Methods and How to Encourage Use of
these Evaluation Methods.” This workshop has
been proposed for the 2012 World Congress on
Computational Intelligence. As another exam-
ple, BCIG is about to put in place a mechanism
for modelers who subscribe to BCIG to brain-
storm on broad biomedical computing topics—a

DETAILS

Jim DeLeo has been a computer scientist for over 40 years
during which he has designed, developed and implemented
new and innovative computational solutions to solve medical,
space exploration and defense problems. Presently at the
NIH, he works collaboratively with most of the NIH institutes
and centers, other government agencies, universities and
industry. His current work is inspired by the NIH Roadmap
translational medicine theme and is directed toward building
computational, intelligent systems that have practical impact
in improving patient care. 

Identifying and Overcoming
Skepticism about 

Biomedical Computing
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g u e s t  e d i t o r i a l

kind of local crowdsourcing operation. The first topic will
be “Machine Learning and Statistics: the Interface.”

We modelers also need to integrate and standardize our
style of thinking as well as our terminology and nomen-
clature. Many other fields do this as they begin to mature.
Statisticians, computer scientists and bioinformaticians
think differently from one another. Even within modeler
subgroups, individuals think differently about their ap-
proaches to modeling. We need
to focus on concept consilience
and common ontologies!

Modelers should try to con-
vince collaborators that mod-
eling is meaningful even when
the models may be imperfect.
The key is to demonstrate suc-
cess in significant collabora-
tive biomedical projects—in
particular (given current prior-
ities) in translational medicine
projects, i.e., projects with re-
sults that have a direct and im-
portant positive impact on
health care. Although many
collaborators may not be skep-
tical per se, some fail to see the
value of using modeling in
their fields. This can be framed
as a challenge for modelers.
They can explore these fields
and find better ways to intro-
duce modeling. I can point to
several examples where com-
putational modeling demon-
strated the potential to have
significant impact on medicine
and biology, particularly with respect to translational
medicine. For example, I have developed methodologies
that predict glucose tolerance test results, breast cancer,
and adverse drug reactions with accuracies suitable for
clinical use. 

Unfortunately, there have been cases in which mod-
eling has produced overhyped, misleading, or flawed
outcomes. Years ago a modeler claimed that his artificial
neural network (ANN) computer program could pre-
dict whether a patient presenting at an emergency room
with certain symptoms and findings should be admitted
to the ICU. He claimed that his ANN could do a better
job than human experts faced with the same task, but
his performance statistics were based only on the data
used in the ANN training. He had no hold-out data for
testing and validation. This is the kind of ill-designed
hyped work that gives bad press to modeling. Like all
good science, modeling needs good statistical oversight,

which includes proper testing and validation. But mod-
elers are often not doing this. We must correct this.
When proper testing and validation are missing, it pro-
vides strong support for certain groups (e.g., certain fun-
damentalist, turf-protecting statisticians) who feel that
these new-fangled tools from computer science are
threatening their professional identity. Computer sci-
entists and other modelers must learn to properly vali-

date their models according to
standards set by good classical
statistical methodology. I
know of other horror stories of
modeling misuse. One exam-
ple is where a physician used
evolutionary computing to fit
data in an application where a
simple linear regression model
would have been sufficient.

I have suggested here that
we, the modelers, take the lead
in addressing skepticism associ-
ated with biomedical comput-
ing and that we do what we can
to reduce it. I have suggested
several specific things we can do
in this regard, namely (1) create
other BCIG groups like the
NIH BCIG and network them,
(2) engage in conference par-
ticipation, tutorial production
and distribution, crowdsourc-
ing and multi-institutional
team building, (3) integrate
and standardize our style of
thinking, our terminology and
our nomenclature, (4) demon-

strate success in projects, particularly in translational
medicine projects, and (5) avoid overhyping, and mis-
leading and flawed outcomes.  nn

FOOTNOTES:
1.  Physicians, biologists and others who work in biomed-

ical research and health care delivery 

2. Fuzzy heterogeneous collection of individuals who
work with all types of computational tools used
under the general rubric “biomedical computing” 

3. Developing algorithms and computer programs to
solve specific problems 

4. Any questioning attitude towards knowledge, facts, or
opinions stated as facts, or any doubt regarding claims
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Even when we simply stand still on two feet, our
brains communicate with our muscles—firing
them appropriately to keep us upright against

gravity. So when scientists simulate simple or complex
biomechanical movements, they need to account for that
feedback between brain and body. A new, freely available,
software interface now makes that possible. It connects
MATLAB/Simulink, a mathematical computing and con-
trol software package, with OpenSim, a freely available
musculoskeletal software package. 

“MATLAB is essentially the brain and nervous system,
but OpenSim is the person, their bones and muscles, the
floor, and gravity pulling them down,” says Jeff Reinbolt,
PhD, assistant professor of biomedical engineering at the
University of Tennessee. He and Misagh Mansouri, a me-

BY KATHARINE MILLER

chanical engineering graduate student in Reinbolt’s re-
search group, created the interface under a seed grant from
Simbios. They published a 2012 paper on the work in the
Journal of Biomechanics.

OpenSim’s strengths lie in its musculoskeletal models,
Reinbolt says, “It has the bone geometry, muscle forces,
how the joints move, and all the dynamics provided by the
underlying algorithms, including Simbody.” But until now,
OpenSim users have had to load a file of controls that tell
the model how to excite specified muscles over a certain

s i m b i o s  n e w s
SimbiosNews

Feedback for the Brain and Body:  
A New Freely Available Interface 
Between MATLAB and OpenSim 

Reinbolt and Mansouri built an interface that lets MATLAB control an
OpenSim simulation. As shown here, the reaction forces, initial states, and
model (yellow files at the bottom) come from OpenSim while the controls
come from MATLAB. Courtesy of Jeff Reinbolt and Misagh Mansouri.
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period of time. To change controls, the user would create
a new file. In addition, OpenSim could only function as
an open loop, without feedback; users requiring feedback
to close the loop would need to write their own software
as a plugin to OpenSim. Without feedback, “you can
change the model and do ‘what if ’ scenarios, but the
model has no brain to automatically compensate for it,”
Reinbolt says. 

Meanwhile, MATLAB/Simulink provides great con-
trol options in the form of templates and blocks of code
that are easily changed on the fly, but it lacks the muscu-
loskeletal modeling capability of OpenSim. 

Reinbolt and Mansouri’s Simbios seed grant let them
bring the two together. “The interface really allows MAT-
LAB to access OpenSim for the muscles and bones it
doesn’t have; and allows OpenSim to use MATLAB to
control the movement, which OpenSim doesn’t really
have built in,” Reinbolt says. “It allows each to get the
info needed to create a simulated movement.” And it lets
you change things on the fly.

To build the interface, Reinbolt and Mansouri took ad-
vantage of the way MATLAB calls functions to connect

it with OpenSim through a Simulink block. The interface
allows MATLAB to call for the OpenSim model’s state
derivatives—the time rate of change in joint positions
and velocities of the model, as well as lengths and activa-
tions of muscles. MATLAB numerically integrates these
derivatives to determine new states for the OpenSim
model which allows OpenSim to tell MATLAB how
gravity, muscles, and other forces are affecting the model,
and then MATLAB uses that information to provide
feedback:  Are my joint positions at the right place?  How
should I adjust the controls to correct the movement?

Right now, to use the interface, researchers must join
the Simtk.org project. “It's freely available but we want
people to use it and give back in return,” Reinbolt says.
About 25 people from the US, Canada, UK, Belgium,
Poland, Spain, Italy, and Taiwan have already shown in-
terest. 

Reinbolt’s research group is already using the inter-
face to simulate posture. They’ve added a stretch reflex
controller to allow balancing on two feet. Eventually,
they would like to create a controller that will repro-
duce someone walking with
stroke gait so they can then
test rehabilitation procedures
to predict how the patient
might walk better. “The point,”
Reinbolt says, “is to keep some-
one from falling over,” which
requires the feedback the inter-
face provides.  nn

s i m b i o s  n e w s

DETAILS

The MATLAB/Simulink interface with OpenSim is
available to researchers who join the project at
http://simtk.org/home/opensim_matlab. The work
was published in the Journal of Biomechanics
45:1517-21 (2012).

Simbios (http://simbios.stanford.edu) 
is the National Center for Physics-
Based Simulation of Biological Struc-
tures at Stanford.

New Magazine Web Site

We are excited to announce the new website
for Biomedical Computation Review! The site
(http://biomedicalcomputationreview.org) now

allows you to easily link from our stories to related web
pages such as journal articles and researchers’ websites;
comment on and “like” stories; and find related stories.  

In addition, we will bring you occasional online-only
content about the latest in biomedical computation. For
example, in March we posted a 2012 Update on the Na-
tional Centers for Biomedical Computing—directing
readers to the March 2012 issue of the Journal of the
American Medical Informatics Association (JAMIA), where
the NCBC principal investigators and their teams high-
lighted their accomplishments.  

Enjoy!

The BCR Editorial Team
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Understanding blood flow and coagula-
tion is crucial to treating blood disor-

ders such as hemophilia and thrombosis,
and to dealing with diseases such as AIDS,
malaria, and diabetes that have hemato-
logic consequences.

It’s also bloody difficult. Although it
behaves like a homogeneous fluid in
large vessels such as arteries, human
blood is really a suspension of solids
(blood cells, platelets) that can alter
their characteristics in response to chem-
ical and physical provocation. In smaller
vessels such as capillaries and arterioles,
those particles cause blood to act like a
non-Newtonian fluid, similar to ketchup,
whose viscosity is subject to change. Co-
agulation, meanwhile, involves a compli-
cated dance between cell membranes and
biological molecules.

Fortunately, advances in computational
modeling are helping to clarify the behav-
ior of blood under both healthy and un-
healthy conditions. Two researchers in
particular are modeling blood’s component
parts, albeit at slightly different scales.
One is trying to describe the molecular
mechanisms that drive coagulation, while
the other is trying to predict changes in

blood viscosity by modeling individual red
blood cells and their interactions. Like mi-
croscopes that offer different levels of mag-
nification, their simulations illuminate the
inner workings of blood at multiple levels.

Extreme Close-Up:  
Molecular Dynamics of 
Coagulation’s Early Stages

Emad Tajkhorshid, PhD, professor of
biochemistry, biophysics, and pharmacol-

ZOOMING IN ON BLOOD COAGULATION AND VISCOSITY:

Computation Takes On Blood Behavior

In unbiased full-atom simulations using a novel membrane representation, Tajkhorshid’s team
captured a peripheral membrane protein (purple) spontaneously binding and inserting into the
platelet membrane. The model replaces the lipid tails in the membrane’s hydrophobic core with
an organic solvent, while preserving a full representation of lipid headgroups. This treatment en-
hances the lateral diffusion of lipid molecules by one to two orders of magnitude (compared to
conventional full-tail membrane models) without compromising atomic details, and improves the
efficiency of simulation studies of diverse membrane-associated phenomena. The work is de-
scribed in Ohkubo YZ, et al., Accelerating membrane insertion of peripheral proteins with a novel
membrane mimetic model. Biophysical Journal, 102: 2130-2139 (2012). Image courtesy of Y. Zenmei
Ohkubo, Taras V. Pogorelov, Mark J. Arcario, and Emad Tajkhorshid.
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ogy at the University of Illinois, has been
using molecular dynamics (MD) modeling
to simulate the earliest stages in the coagu-
lation cascade. The process begins when

blood-clotting proteins bind to the mem-
branes of activated platelets. They do so
with the help of lipid molecules that ordi-
narily lie buried within the membranes
themselves, rising to the surface only when
needed—a regulatory mechanism that pre-
vents your blood from clotting in your
veins as you read this.

Divining the mechanics of that binding
process, and the specific sites on the mem-
brane where binding occurs, could lead to
the development of better anticoagulant
drugs with fewer side effects. But the process
is difficult to characterize experimentally be-
cause the platelets’ membrane surface is a
semi-fluid platform; the relevant lipids and
proteins are in constant motion, and it is dif-
ficult to determine which parts of the mole-
cules bind to one another, and where.

MD modeling, which allows scientists to
simulate interactions at the molecular level,
would seem to present the perfect solution.
Yet the extraordinarily high resolution af-
forded by molecular dynamics comes at a
correspondingly high cost. Tajkhorshid’s
models, for example, must calculate the
forces between almost every pair of atoms
in a system comprising hundreds of thou-
sands of them. And they must do so at time
intervals measured in quadrillionths of a
second. Generating even one nanosecond’s
worth of simulation time requires perform-
ing those calculations millions of times. 

“That’s really, really expensive,” says
Tajkhorshid, adding that the computational
burden is so high that the simulations are
currently limited to timescales of hundreds
of nanoseconds—“maybe a microsecond, if
you really push it.” The binding process it-
self plays out over tens of microseconds,
however, which presents an obvious prob-
lem—one that Tajkhorshid’s group has
solved by means of an ingenious computa-
tional trick.

By replacing a portion of the virtual
platelet membrane with a more fluid or-

ganic solvent, Tajkhorshid has sped up the
rate at which his simulated lipids move. 

“Suddenly everything is ten times faster,
at least,” Tajkhorshid says. “Things that

usually happen at the microsecond scale are
happening at the nanosecond scale.” This
artificial accelerant has enabled Tajkhor-
shid and his colleagues to simulate the in-
teraction between platelet membrane and
lipid molecules, and to work out how coag-
ulating proteins bind to the membrane sur-
face. Tajkhorshid is currently using his
lubed-up model to pursue an even more
ambitious goal: simulating how different co-
agulation proteins form complexes on the
membrane surface in order to become fully
activated, thereby driving the coagulation
cascade forward.

Medium Close-Up:  
Modeling Blood Viscosity

George Karniadakis, PhD, professor of
applied mathematics at Brown University,
also found himself bumping up against the
limits of molecular dynamics when attempt-
ing to model hematological phenomena. His
solution? Study blood at a coarser level of
granularity. This lets him
cover a larger territory in
the circulatory system at
a longer timescale, mod-
eling changes in blood
viscosity and simulating
the kinds of abnormal red
blood cell aggregation
that occurs in diseases
such as atherosclerosis,
AIDS, myeloma, and di-
abetes mellitus.

To create his multi-
scale models, Karniadakis
simulates everything from
the biomechanics of in-
dividual red blood cells
to their passage en masse
through the human body’s arterial tree.
The method he uses, known as dissipative
particle dynamics (DPD), was originally
developed by a pair of Dutch chemical en-
gineers for the purpose of modeling poly-

mers. Sometimes called a coarse-grained
molecular dynamics approach, DPD relies
on virtual particles that represent clusters,
or lumps, of atoms and molecules rather
than delving into too much microscopic
detail. “Instead of every droplet in a cloud
interacting with every droplet in another
cloud, we have two small clouds interact-
ing with each other,” Karniadakis says. As
that metaphor suggests, DPD offers a meso-
scopic or intermediate-scale tool for bridg-
ing the gap between the high-powered
zoom of true MD modeling and the stan-
dard fluid models that are used to simulate
blood flow writ large.

Last year, Karniadakis and his colleagues
constructed a multiscale model that simu-
lates the growth and rupture of a brain
aneurysm by using DPD to capture cell-to-
cell interactions within the aneurysm and
classical fluid mechanics to represent the
flow of blood in the brain. Now he has de-
veloped two different DPD-based models
for simulating individual red blood cells and
predicting their aggregate behavior.

The first model, which Karniadakis calls
“cheap blood,” uses only 10 DPD particles
to represent each cell. (By contrast, Karni-
adakis says, some 30,000 points would be
required to faithfully replicate the protein
structure of the surface of a single red blood
cell.) Yet this bare-bones model still permits
accurate simulations of blood flow down to
the level of capillaries. “It’s not exactly the
geometry you want, but it’s pretty close,”
Karniadakis says.

The second model uses several hundred
particles to accurately represent the cy-
toskeletal structure of a red blood cell.

Though considerably more expensive, it
can be used to predict the flow of blood
through even the smallest vessels. By tog-
gling between the two models, Karniadakis
can tailor the degree of resolution to the
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task at hand and avoid eating up more com-
putational resources than necessary.

Using methods developed in collabora-
tion with Subra Suresh, PhD, current di-
rector of the National Science Foundation,
Karniadakis calibrates his models with bio-
mechanical data gathered from experi-
ments on individual red blood cells, then
predicts the collective behavior of blood
under both healthy and diseased condi-
tions. By tweaking his models to reflect the

stiffening of red blood cells infected with
malaria, for example, or varying levels of a
protein called fibrinogen that plays a key
role in coagulation, Karniadakis has suc-
cessfully predicted changes in blood viscos-
ity—and accurately modeled, for the first
time, the microscopic physical processes
that cause those changes, such as the for-
mation and destruction of “rouleaux,” or
stacks of red blood cells. The abnormal ag-
gregation of red blood cells is a symptom of

many diseases, and better modeling of how
and why that aggregation occurs could lead
to more precise diagnoses.

In addition to unpacking the physics of
blood flow and coagulation, Karniadakis is
also using his DPD models to figure out how
diseased red blood cells interact with arterial
walls and white blood cells—information
that could lead to more effective treatments
for both malaria and sickle cell anemia.

Now that would be bloody brilliant.  nn

Simulated red blood cells, modeled using DPD and bearing the distinctive shape conferred by
sickle cell anemia, adhere to an arterial wall, causing a traffic jam of platelets (blue) and blocking
blood flow. Courtesy of: Huan Lei (Brown University) and  Joseph Insley (Argonne National Lab).
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What biomedical research does the fed-
eral government fund? How is it al-

located across important diseases? Has that
changed over time? Answering these ques-
tions at any level of detail is tougher than
you might expect. 

The National Institutes of Health, for
example, award 80,000 grants each year.
But when they want to evaluate funding for
a particular area of research, “It’s difficult to
know: Have you covered what you think
you’ve covered?” says Edmund Talley,
PhD, Program Director, National Institute
of Neurological Disorders and Stroke
(NINDS), NIH.

Of course, federal funding agencies do
analyze and report to Congress on their re-

search portfolio. At the NIH, for example,
the Research, Condition, and Disease Cat-
egorization (RCDC) Process categorizes all
NIH grants according to 233 categories that
it is required to report to Congress and the
public. This categorization is transparently
available at the NIH RePORTER website,
an online searchable database of NIH
grants. But, Talley says, congressional re-
porting categories don’t necessarily cover
the entire realm of research. And currently,
NIH is the only agency using this system,
so it can’t be used to assess research across
funding organizations. 

Now researchers have developed two
very different yet complementary computa-
tional approaches to dig deeply into the fed-
eral research portfolio. The first, developed
at Stanford, relies on ontologies—struc-
tured, hierarchical categorizations of re-
search—to answer specific questions about
the federal research portfolio across all fund-
ing agencies. The second approach, NIH
Map Viewer developed by Talley and a di-
verse team of computer scientists, uses text
mining to cluster topic words from NIH

grant abstracts and then visualize the results. 
Both tools can help program officers—

as well as grant applicants—evaluate the
nature of the NIH research portfolio in
ways that were previously very difficult, if
not impossible. 

Ontologies Get Real
Nigam Shah, PhD, assistant professor of

medicine at Stanford University School of
Medicine, would like to see federal funding
agencies categorize their grants using a com-
mon ontology, at least for disease research.
To make the case for that idea, Yi Liu, a
graduate student in Shah’s lab at Stanford,
set out to demonstrate that existing on-
tologies could be used—in an automated

way—to discover interesting information
and trends in research activity across all
federal agencies. 

He used a decade of grants data (1997
to 2007) from the Research Crossroads
database, which covers 33 different funding
institutions, including the NIH, National
Science Foundation, Health Resource and
Service Administration, Centers for Dis-
ease Control, Food and Drug Administra-
tion and others. That database can now be
searched on Bioportal, the website of on-
tologies created by the National Center for
Biomedical Ontology. Liu also created a
workflow to annotate both the grants data
and a decade’s worth of PubMed journal
articles associated with US institutions
using ontology terms from the human dis-
ease ontology (DO). 

Up to this point in Liu’s research, Shah
says, “anyone can do this at the BioPortal.”
Indeed, a simple search of the Research
Crosswords database provides any user with
counts of grants in any disease category. But
Liu went several steps further, looking at
three measures of funding. 

First he looked at sponsorship—the level
of funding for a particular disease topic rel-
ative to the impact factor–weighted count
of publications in that topic area. So, for ex-
ample, Liu found that drug abuse and
Alzheimer’s disease are highly sponsored
but are less commonly represented in high
impact journals compared with cancer or
heart disease. Liu’s analysis can’t explain
this discrepancy—which could have many
causes, including how expensive the re-
search is; whether the topic is a new re-
search area; and whether it’s been hard to
produce results with a significant impact on
the disease—but his work makes it easier to
spot the differences.

Liu also studied allocation—the level of

support for a disease area as a function of
mortality rates, which he used as an imper-
fect surrogate measure of disease burden
(other measures are possible). “Allocation
looks at sponsorship in the context of the
size of the problem,” Shah says. “Are we
spending enough? Overspending? Under-
spending?” For example, the work showed
higher funding for cancer than for heart dis-
ease, which has higher mortality rates. 

And finally, Liu looked at trends across
time. He determined whether, for a given
disease, funding has reached a plateau,

Opposite Page: These panels show allocation
of federal funding relative to annual impact
factor–weighted publications on a per-disease
basis. The sizes of the bubbles correspond to
the relative disease burdens as characterized by
worldwide mortality statistics for 2004 (A) or in
the US in 2007 (B). Reproduced from Yi Liu, et
al., Using ontology-based annotation to profile
disease research, Journal of the American Med-
ical Informatics Association doi:10.1136/amia-
jnl-2011-000631 (2011) with permission from
BMJ Publishing Group Ltd.

TOOLS TO UNDERSTAND THE FEDERAL RESEARCH PORTFOLIO:

From Ontologies to Topic Mapping
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dropped off, or increased over the years—
useful information for agencies hoping to
make smart funding decisions. 

In the end, Liu says, “I was pretty happy
about being able to see the big picture from
a pretty granular database.” 

It’s a proof of concept—a demonstration
that the various agencies that fund biomed-
ical research should switch from ad hoc cat-
egories to an existing, shared ontology. “We
don’t really care which one,” Shah says.
“But why not use an ontology based on the

Unified Medical Language System (UMLS)
that the National Library of Medicine is
building and funding?” 

Still, using ontologies has its limits, Shah
concedes. “If your research interest is one for
which there is not a good ontology, then
this approach is simply not going to work,”
he says. For example, areas such as liberal
arts, political science, or even basic research
are difficult to classify hierarchically. 

Topic Mapping
As an alternative to ontologies, Talley

and his team created the NIH Map Viewer,
a tool that uses text mining, topic model-

ing, and visualization as a way of digging
deeply into the NIH portfolio. Such topic
maps have two clear advantages over on-
tologies: They pick up phrasings and words
that are not in a pre-classified hierarchy;
and they cluster words together based on
their shared usage. “In topic mapping, you
have a bag of words and you want to learn
how it’s organized—to extract structure
from it,” Shah says. 

NIH Map Viewer was built on earlier
work by the team. “We had already pro-

duced nice data using abstracts from the So-
ciety for Neuroscience annual meeting, but
we didn’t know if the method could scale
to the entire NIH, or if it would provide a
coherent view at both the local and the
global level,” Talley says. 

The text-mining method they used is
called “latent Dirichlet allocation” or LDA.
It had been invented a few years before, but
hadn’t been tested on many real-world
problems, Talley says. “There were a lot of
open questions about how to evaluate what
makes a good topic.” LDA is a kind of com-
ponent analysis, and that was a problem:
The components don’t have to be meaning-

ful in order to be predictive. Talley needed
good topics, not just a good model. “We
had to come up with a way to assess topics
in an automated way,” Talley says. 

In the year since the work was published
in Nature Methods in June 2011, the team
has continued to tune the parameters of
the algorithm so that it now does quite a
good job of extracting topics from text.
“That’s an accomplishment for us,” he says.
“The new topics will be available in the
next few months.”

The visualization piece of the project
starts from a layout map based on similari-
ties between the grant abstracts. Docu-
ments are clustered based on their internal
texts rather than by external labels given to
them by NIH, Talley says. The baseline
map resembles a web with interconnected
strands that represent grants with their feet
firmly planted in several fields. 

On top of this static baseline map, users
can query for topics as well as other categories
of interest, as described in the following side-
bar. The NIH Map Viewer is now available
at https://app.nihmaps.org, as well as from a
“Links” tab within NIH RePORTER, the
NIH portfolio search tool.

“This has been an experiment where
we’ve said ‘Let’s get it out there and see
where the value is,’” Talley says. “Ulti-
mately, I think this or something like this
will be valuable for policy officials. It’s a
new way of looking at grants.” 

Eventually, Talley hopes to see a system
that can provide both the accurate recall of
text mining and the clarity of ontologies.
This is an area of intense interest, he says.
“These are complementary techniques that
really need to be merged.” nn
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In the NIH Map Viewer (at https://app.nihmaps.

org/nih/browser), when users enter a search term

in the topic window, a dropdown menu appears

listing several possible topics containing that term.

For example, “software” produces two possible

bags of words, one of which begins with “software

database bioinformatics web tool resource annota-

tion visualization….” After selecting this topic and

setting a threshold for recovering only the best

topic matches (in this case the default 20 percent

was used)—a search generates a list of 594 grants,

all marked on the map with pushpins (as shown on

the following page). Users can change the pushpin

coloring to represent institute, funding level, or a

number of other categories. At the same time,

these categories are displayed as a bar chart in a

AN NIH MAP VIEWER TEST CASE:
A topic search for “software”



Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures 11

separate window. An additional window lists simi-

lar topics and users can drill down into a particular

topic using the “topic info” button, which opens a

separate page. There, users are given a wealth of

information—including co-occurring topics, similar

topics, and a list of grants—to help them evaluate

whether the topic lives up to their expectations. For

example, the topic info page for the map shown

here helps the user ponder, for example, “Is this

topic really about software development?” 

By comparison, a keyword search for “software”

in NIH RePORTER produces a list of 3823 grants.

“You’re pulling everything and there’s no way to re-

ally focus it,” Talley notes. 

Users can also come to NIHMaps.org directly

from a RePORTER search using the “Links” tab. Each

grant from the search is displayed as a pushpin.

Zooming in and scrolling over each pushpin identi-

fies each grant by name. If a search produces only a

handful of grants, the RePORTER’s list might be ad-

equate, Talley notes. “But when you start talking

about hundreds, a list becomes intractable, and you

need a way to organize the information,” he says.

“Our statistical analysis of this layout algorithm sug-

gests that it’s tuned to perform especially well when

you start getting a hundred or more documents,

which is where clustering becomes really useful.” 

Talley and his colleagues are also continuing to

improve the NIH Map Viewer. For example, it’s now

possible to save and share a search as a link; and

in the bar chart, users can turn different categories

on or off. Talley’s team is also generating a map

based on similarities between grants and publica-

tions that cite NIH grants. The combined map of

grants and publications has higher resolution, Tal-

ley says. “The overall quantitative performance im-

proves, and we get more clusters in places where

we know we want more clusters.” He hopes to re-

lease the new map in a few months.
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changing the minds of biomedical researchers. 
It also turns out that skepticism is heterogeneous.

The degree of skepticism varies greatly across differ-
ent fields of biology and medicine; and skeptics
themselves come in many different flavors. Different
kinds of skepticism have diverse origins and may
present unique obstacles for modelers. This article
disentangles the different types of skeptics and sug-
gests what modelers can learn from each. 

The Old Guard
Some biologists are not so much skeptical of mod-

eling as dismissive, says Peter Sorger, PhD, professor
of systems biology at Harvard Medical
School. These are mostly older biol-
ogists, who achieved success with-
out modeling, and are stuck in
their way of doing things.

When you’ve been doing something one way for a
long time, change is hard, says Timothy Mitchison,
PhD, also a professor of systems biology at Harvard
Medical School. “That’s just human nature.” 

Though few biologists or physicians will
admit to skepticism (we couldn’t get any card-
carrying skeptics to go on record for this story),
modelers claim that skepticism is near-univer-
sal—popping up in grant evaluations, paper
reviews, and interactions with experimen-
talists. “I have encountered a tremendous
amount of skepticism for modeling,” says
Grace Peng, PhD, a program director at
the National Institute of Biomedical Im-
aging and Bioengineering. 

Senior-level people at the NIH may
not openly oppose modeling, but they
don’t seem to appreciate its true power
to change biomedical research, Peng
says. Peng chairs IMAG (the Intera-
gency Modeling and Analysis Group),
which brings together scientists from
10 governmental agencies who man-
age programs in biomedical, biolog-
ical, and behavioral modeling. In
2009, members convened for a
two-day conference—the IMAG
Futures meeting—that explored
reasons for and solutions to skep-
ticism. Threads from that meet-
ing, as well as from interviews
with modelers and biologists,
form the basis for this story. 

Modelers may assume that
the problem of skepticism rests
solely with experimentalists.
But, in fact, modelers play an
enabling role—in the way they
treat non-modelers, present their
results, and even build their mod-

els. Thus, overcoming skepticism
is as much about changing the

culture of modeling as it is about

W

The solution 
to this kind of
skepticism is
simply to “fill the
place with young people,”
Sorger says.
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Unfortunately, there’s little modelers can do to
combat this kind of skepticism. “It only goes away
when people die or retire; no one ever changes their
mind. It’s like why people vote Democrat or Repub-
lican; these things go deep,” Mitchison says.

The good news is that the newer generation
of biologists is much more open-

minded, Sorger says. At classic biol-
ogy conferences, he says, “I’m

barely old enough to get a ple-
nary talk, because everyone

is in their seventies”; but
at the DREAM model-
ing competitions, “I’m
just this creaky old guy,
because the mean age
is about 30.” So, the
solution to this kind
of skepticism is simply
to “fill the place with
young people,” he says.

We also need to
incorporate modeling
into the curriculum of
future biomedical sci-
entists, Peng says. “I

think if modeling is intro-
duced earlier in the pipeline,

even starting at the K through 12
stage, modeling will be accepted as

standard practice,” she says. 

The Math 
Phobes 

Some biologists are
open to modeling in
principle, but avoid it
because they are too
intimidated by the

math. Modelers don’t help the situation because
they tend to be dismissive of people who aren’t
quantitatively trained. Modelers have been known
to call biologists “dumb,” “idiots,” and “the students
who weren’t smart enough to go into math or
physics.” With this attitude, it’s not hard to under-
stand why biologists would feel intimidated and
shut out. 

Some modelers need a dose of humility. They also
need to put more time and effort into explaining
their models as simply as possible to potential users,

Peng says. “The experimentalists say, ‘It would be
nice if I could just sit down with the modeler in front
of a computer and go through the model,’” she says. 

Mitchison (who counts himself among the math-
phobic) recalls a math PhD student who did a stint
in his lab and was able to make the math compre-
hensible: “Having someone who can just think that
way with their eyes closed, and can explain it to
you… once you have that experience of really work-
ing with someone, it makes a huge difference.”

Modelers also have to be more willing to make
user-friendly tools that don’t require a degree in
mathematics, Peng says. “The models need to be as
easy to use as TurboTax,” she says. 

“If you think about the large number of biolo-
gists out there, the notion that everything is going
to be done by making people aware of how to do
all the underlying mathematics … I think is non-
sense, at least in the next generation of individuals
and the existing biological investigator pool,” Ron
Germain, MD, PhD, told IMAG Futures atten-
dees; Germain is chief of the Laboratory of Systems
Biology at the Center for Human Immunology and
Inflammation at the NIH. Modelers worry that bi-
ologists will abuse models if they don’t understand
their inner workings, but Germain points out that
people can accurately resize photos in Photoshop
without understanding the complex math behind
this operation.

Programmers in Germain’s lab have developed
software (called Simmune) that allows immunolo-

gists to build complex models with all the
mathematics handled behind-the-scenes.

“People with no computer training can
do this with no assistance,” Germain

says. “And the response I’ve gotten
talking to biologists—instead of the
glazed over eyes, ‘oh you’re talking
about modeling’—there’s a great
deal of enthusiasm.” If modeling is
too difficult for biologists to imple-

ment, they won’t adopt it even if they
think it’s useful, Germain says. 
Yoram Vodovotz, PhD, professor of

surgery and of immunology at the University
of Pittsburgh, encouraged IMAG Futures atten-

dees to explore agent-based models—which are more
intuitive than equation-based models—as a way to
draw biologists into modeling. “There’s an entire
class of simulation platforms that already exist and
that is already usable to people in high school with-
out differential equations.”

The “Modelers Are 
From Mars” Skeptics

Some biologists are skeptical because they feel
that modelers are out of touch with the biology.
Germain told attendees at IMAG Futures that he
has biology colleagues who are initially excited to
read a paper in the Journal of Theoretical Biology (or
similar journals). But “the first thing they read is

“The models 
need to be as 
easy to use as  
TurboTax,” Peng says. 



Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures 15

‘for reasons of computational complexity we de-
cided to make the following assumptions…’ And
they basically throw out the three or four most im-
portant things to the biologist before they go on. At
which point the biologist will stop reading.” 

Sorger agrees. “There was this notion, maybe 5 to
10 years ago, that basically one was going to take a
series of tools that had been developed in another
discipline—either computer science, chemical engi-
neering, or control theory—and those things would

whole-hog be applied to biol-
ogy and that would solve

the problem,” Sorger
says. This was not

only an arrogant
point of view; it
was simply wrong,
he says. It also
“created a whole
series of straw men

for the people who
are skeptical of mod-

eling to hang onto.”

The solution to this kind of skepticism is for mod-
elers to become immersed in the biology. “I’m very
much of the opinion you can come from either di-
rection [biology or modeling] and become an effec-
tive computational biologist, but that ultimately you
have to be a biologist,” Sorger says. “I don’t think
biomedicine is going to be taken over by physicists
and computer scientists working half-time.” 

Modelers need to develop a deep understanding
of the biological data, agrees William J. Heet-
derks, MD, PhD, director of extramural science
programs at the National Institute of Biomedical
Imaging and Bioengineering. “If you just take data
that was published in the literature and plug it
into your model and don’t understand the domain
that it was acquired in, you can be badly misled,”
Heetderks says. 

For modelers to be successful and advance the
field, “they must either understand the biology
themselves or be joined at the hip with a biologist,”
he says. 

The “I’m Not 
Ready” Skeptics

Some biologists think modeling is fine for oth-
ers, but it’s premature for their biological niche.
They may think that their biological problem is
too complicated to pin down with a model or that
they don’t have enough data yet to build an accu-
rate model.

This type of skepticism stems from misconcep-
tions about the role of modeling, Peng says. “Peo-
ple still think that models are just a tool to maybe
fit the data at the end of the experiment,” she says.
But models are actually a platform for designing ex-
periments. Models can help biologists organize and
archive the data they do have; systematically figure
out what new data are needed; and design more ef-
ficient and more informative experiments, Peng
says. To turn experimentalists around, modelers
should interface with them during the planning
stages of grants, she says. 

For example, Vodovotz told IMAG Futures at-
tendees how models could be used to design better
clinical trials. His group ran simulated trials of
anti-TNF drugs for treating sepsis and predicted
that the compounds would help certain types of
people and harm others (with no net benefit). Had
pharmaceutical companies used these simulations,
they could have targeted the correct group for
treatment and avoided treating those who might
be harmed. 

Models also don’t have to be perfect to be use-
ful. Modelers can drive home this point by high-
lighting the shortcomings of the alternatives to
modeling, David M. Eddy, MD, PhD, told IMAG
Futures attendees; Eddy is
founder and medical di-
rector of Archimedes, a
healthcare modeling
company located in
San Francisco.

“The only alter-
native in the clini-

cal field is to use clinical judgment or what we’d call
the art of medicine. And when you think about all
the factors that are involved in clinical decision mak-
ing, it’s out of the question,” Eddy says. “That’s where
models come in—because they’re better than the al-
ternative. They’re not perfect; they’re not as good as
clinical trials. But we would argue that they’re better
than the alternative.” 

Models
don’t have
to be perfect to
be useful, says Eddy.

For modelers to be
successful and advance 
the field, “they must either
understand the biology
themselves or be joined at
the hip with a biologist,”
Heetderks says.



Phillips and Siemens are integrating similar simula-
tions into their imaging tools for aneurysms, Vice-
conti says. Modeling also has a practical utility for
many companies because the FDA is now allowing
in silico simulations as part of the approval process for
certain devices. 

The Converted
Many biologists who once were skeptical now

count themselves as enthusiastic converts to model-
ing, including Bolser and Mitchison. Their stories
offer lessons for modelers.

Bolser studies the neurological circuits that con-
trol airway behaviors such as coughing and swallow-
ing; few investigators in this field use computational
modeling. Before his conversion, he thought that
models were just about fitting data after an experi-
ment, he says. 

But he began working more closely with modelers
as part of submitting a grant application. At one
point, he and his modeling collaborator ran some
simulations and generated a baffling result. Bolser re-
alized that no one had ever done that particular ex-
periment in vivo, so he did it. At first, he didn’t
believe the result and suspected a technical error. 

But then came the ‘aha’ moment. He realized
that the simulation had predicted the outcome ex-
actly. “And it just blew me away. I was just stunned
by that. I mean modelers know this, they live by
this; but for me it was a long road to go before I un-
derstood internally what a model could do. What

you’re really aiming at with a computational
model is prediction,” Bolser says. “For me,

once I got it, I was totally sold on it.”
He’s also shifted from thinking

that the airway problem was too
complex to model to realizing
that the behavior is so complex
that “there is no way we could
understand it without computa-
tional modeling.” 

You can’t sell experimentalists
on modeling simply by talking

about it and showing it at seminars
and conferences, Bolser advises. They

need hands-on experience, such as a
tutorial or workshop, or directly sitting

down with a modeler and working on
their biological system. 
Mitchison says he is also a convert, but it

was a more gradual transition. He was a skeptic
of both the “I’m not ready” and “math phobe”

varieties described above. But he’s slowly come
around, helped by people like the mathematician
in his lab who was able to explain the math to him
clearly. He’s seen a similar gradual transition in his
field. For example, the American Society of Cell
Biology annual meetings have gone from no one
even thinking about modeling 20 years ago to
having several lively, well-attended modeling
sessions today. “And cell biology is a pretty tra-

The “Show Me 
the Beef” Skeptics

Some biologists see modeling as esoteric because
they can’t point to a concrete example of how bio-
medical modeling has impacted human health. 

Combating this kind of skepticism requires better
salesmanship, Peng says. “People who develop mod-
els are so into the details of their models that they
forget the bigger picture of why their model is so use-
ful and what the model is helping them to do that
they couldn’t do otherwise,” Peng says.

It’s often difficult to read a computational paper
and figure out what the breakthrough was, Mitchi-
son says. Biologists come from a discovery-oriented
tradition; if you’ve been looking for the receptor to

a particular hormone, and now you found
it, the impact is easy to see, he says. But
“often successful modelers are not peo-
ple who come from this tradition of
telling a story. They come from differ-
ent traditions, and they may not see the
value of that,” he says.

Modelers need to
do a better job of

communicating
what they learned

from a piece of work
and what it lets them
do that they couldn’t
do before, he says. 

Modelers can also help
convince skeptics by pointing
to specific success stories. “What we as program
people are always looking for is a killer app or a
success story that we can tell our higher-ups:
‘Look, they couldn’t have made this discov-
ery without this model,’” Peng says.

One of the goals of the IMAG Futures
meeting was to compile some of these
success stories. Marco Viceconti, PhD,
professor of biomechanics at the
University of Sheffield, in the
United Kingdom, presented sev-
eral examples of how modeling
is already being used in patient
care. For example, aneurIST
(http://www.aneurist.org/) is a
program that predicts the rup-
ture of incidentally detected
cerebral aneurysms using pa-
tient-specific information.
And companies such as
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Combating this kind of
skepticism requires better

salesmanship, Peng says.



skeptics, but to fix the problems that drive their skep-
ticism. This will require more investment into the
methodology of modeling. “This general assumption
that the methodology is good enough I think is really
wrong,” Sorger says. 

We need better ways of validating models, Eddy
told IMAG Futures attendees. Validation means
different things to different people and some of
what is passed off as validation is garbage. “I can
certainly understand why potential users of models
are frustrated and confused. And they don’t know
what they can believe and can’t believe,” Eddy says.
Modelers need to devise a recognized standard so
that users know that they can trust a model when
it has the seal of validation for a particular applica-
tion, he says.  

Competitions and benchmark problems can
demonstrate the reproducibility of models (or reveal
errors in need of fixing). Standards in the reporting
of models and simulations (such as MIRIAM and
MIASE, Minimal Information Required In the An-
notation of Models and Minimum Information
About a Simulation Experiment, respectively) also
help improve the reproducibility and testability of
models, participants at IMAG Futures noted. 

To win over healthy skeptics, modelers also need
to be more humble in how they present models. In
molecular and cell biology, researchers typically
draw cartoon models with arrows and boxes; and it’s
understood that these are just working hypotheses,
not to be taken too seriously, Mitchi-
son says. Computational models
are also just provisional, but
they often aren’t presented
this way. “There’s a way
that computational stuff is
written up that sort of im-
plies a rigor and absolute
truth that experimentalists
who don’t use quantitative

methods have deliberately shied away from,” Mitchi-
son says. This kind of overconfidence can drive skep-
ticism, because experimentalists know that biology
always involves hidden assumptions. 

Modelers need to be more upfront about the lim-
itations and potential pitfalls of their models and to

ditional, conservative field of biology,” he says.
Modeling has even become state of the art for

some niche areas of cell biology. In 2008, a couple
of modeling papers on yeast

cell polarity were pub-
lished in high-profile

journals. Many peo-
ple disputed the pa-
pers (including a
new PhD student
in his department
who went on to do

work in the area),
Mitchison says. In

fact, it angered them:
“Here’s a high-profile

paper published in Nature on theory and it’s all
wrong and I’m annoyed by that, so I’m going to do
better.” This stimulated a number of groups to work
on the problem and publish better models. It’s been
a healthy progression and has resulted in many
hard-core biologists adopting theory collaborators
for the first time, Mitchison says. So getting theory
papers on hot biological topics in high-profile jour-
nals can spark interest in modeling, he says. 

The “Healthy” Skeptics
Some biomedical researchers are proponents of

modeling in theory, but are skeptical about specific
tools and approaches. This is a legitimate and healthy
form of skepticism, Sorger says. “The skeptics rightly
point out that even in the hands of people being fairly
careful, the promise has run way ahead of the actual
tools and knowledge needed to apply them correctly.
Therefore, there are probably quite a lot of errors out
there.” (See “Error: What Biomedical Computing
Can Learn from Its Mistakes,” in Biomedical Compu-
tation Review online.) 

The solution in this case is not to challenge the
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Bolser was converted
when he saw a simulation
predict an experimental
outcome exactly. 
“It just blew me away .…
modelers know this, they
live by this; but …. 
for me, once I got it, 
I was totally sold on it.”

Modelers need
to be more upfront
about the limitations and potential
pitfalls of their models and to make
these issues more understandable for
non-mathematicians, says Kobilka.
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make these issues more understandable for non-
mathematicians, says Brian K. Kobilka, MD, pro-
fessor of molecular and cellular physiology and
medicine at Stanford University. 

The “Insider” Skeptics
Some of biomedical modeling’s biggest skeptics

are actually modeling insiders. They may challenge
specific models and applications, or even whole par-
adigms of how modeling is done. 

When it comes to reviewing grants with a mod-
eling component, engineers are often the worst crit-
ics, Peng says. Engineers tend to have a critical
mindset; and they can actually do a disservice to
modeling by being too nitpicky in their reviews,
says Peng (who is herself an engineer). We
also face the “grumpy Russian mathe-
matician problem,” Sorger says. He
says pure mathematicians tend to
give his papers unfavorable reviews
because it’s “1950s, engineering
mathematics” rather than cutting-
edge modern math.  

Some modeling insiders go even
further, saying that almost all bio-
medical modeling is done incorrectly.
Awareness of these skeptics’ point of
view is important, because their critiques
may ultimately explain some of the intuitive
discomfort that biologists feel toward models. 

For example, James Bower, PhD, professor of
computational neurobiology at the University of
Texas Health Science Center in San Antonio, says,
“I would argue that, at present, the majority of math-
ematically based models in biology are not in fact
useful in advancing the field.” Most biomedical
modelers are building models simply to explain or
convince others of what they already believe; but
the purpose of modeling should be to discover new
features of a system. “If you don’t know anything
more about the system after you build the model

than you did before, it is of little use,” Bower
says. “We are just endlessly misled by

what are basically Ptolemaic or reli-
gious models that are designed to
enforce a particular doctrine.”

He advocates the use of anatom-
ically and structurally realistic
models that don’t have built-in as-
sumptions about function, such as

embodied by the GENESIS simula-
tion toolkit for neuronal modeling

(http://www.genesis-sim.org/GENESIS/).
He also promotes the notion of commu-

nity models where everyone uses and freely
shares the same base models. “There is a way

forward and it’s slowly starting to happen,”
Bower says. 

John C. Criscione, MD, PhD, associate pro-
fessor of biomedical engineering at Texas A&M,
is another advocate of sweeping change in bio-

medical modeling. In his field of multiscale tissue
modeling, he says he has shown that the current
framework of modeling yields an infinity of solu-
tions. Modelers are essentially trying to solve for
three variables with two equations, he says. “If a
freshman algebra student did this, I would flunk
them,” he says. “Everybody is going, ‘but it fits the
data.’ Well, yeah, the sun moving around the earth
fits the observational data too,” he says. He says we
need to get back to basics and figure out models that
solve the simplest problems—like a perfectly ho-
mogenous elastic cylinder.

“We absolutely need modeling. I’m not saying we
shouldn’t do multiscale modeling. I love it. It’s great
stuff,” Criscione says. “What we don’t need is to

spend money doing modeling where we’ll
never get a right solution.” 

Interestingly, both Bower and
Criscione are increasingly pes-

simistic about convincing their
colleagues. Both are therefore
independently focused on ex-
posing the next generation of
engineers to modeling technol-
ogy. Bower’s efforts are based

in Whyville.net, which he founded as the first sim-
ulation-based educational virtual world 13 years
ago, which now has more than 7.2 million sub-
scribers worldwide. 

The Demise of Skepticism?
Skepticism may be pervasive, but it’s also on the

decline. If researchers talked about modeling and
mathematics at biology meetings 30 or 40 years ago,
“we were going to be lynched almost,” Eddy told
IMAG Futures attendees. Acceptance of modeling
will continue to grow, because modeling in biomed-
icine is inevitable. In the future, everyone will use
models and appreciate the use of models, Peng says.
But what’s at stake is how quickly this transition
will occur, Peng says. “How fast we get there is what
I’m trying to address.”  nn

“We absolutely
need modeling …. 

I love it. It’s great stuff,”
Criscione says. “What we
don’t need is to spend
money doing modeling
where we’ll never get 
a right solution.” 
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The growing threats of multi-drug re-
sistant (MDR) and extensively drug
resistant (XDR) tuberculosis (TB)

are spurring worldwide interest in faster
and more innovative research approaches,
such as computation offers. And, as in
other areas of biomedicine, high-through-
put experiments are yielding a data deluge:
The bug’s bacterial genome was sequenced
a decade ago and more than 26 public data-
bases are now accumulating vast and varied
information about the disease—all of it
ripe for analysis. 

In addition, computation makes an ap-
pealing complement to experimentation.
In the lab, because the bacterium (My-
cobacterium tuberculosis or Mtb) grows
slowly (replicating only once a day), one
experiment might require months to com-
plete. By contrast, a virtual experiment
might take seconds—and doesn’t require
rigorous safety precautions. 

Computation also has the capacity to
address important questions in TB re-
search. Simply flipping through the TB
Research Roadmap (published by the
World Health Organization’s Stop TB
Partnership in 2011) reveals the many
ways computation can contribute to devel-
oping TB drugs, diagnostics and vaccines. 

In addition, notes the Roadmap, sys-
tems biologists are uniquely situated to
study one of Mtb’s big mysteries: how it
can survive inside the human lung for
years—seemingly and inexplicably pro-
tected by the very immune system that
should wipe it out. Only about 10 percent
of the 2 billion people infected worldwide
develop active disease from the get-go
(and will die if not treated); the rest de-
velop latent disease, which they control
but cannot clear. And about 10 percent of
latent infections will transition to active
disease later in a person’s life. By studying
Mtb as a whole—rather than by looking
at its individual parts—systems biologists
can tease out how the bug manages these
stunts. 

But is TB research really benefiting
from computation’s promise? 

Here we’ve highlighted 10 ways com-
putation is currently making a difference
to this problem of global significance. It’s
a non-exhaustive sampler, designed to
whet your appetite. But the exercise of
finding key points of intersection between
an important infectious disease and com-
putation is instructive in its own way: It
provides a window into a disease often de-
scribed as a black box and suggests novel
ways to gain insight about this mysterious
pathogen.

Computational 

approaches to 

tuberculosis 

are unavoidable.  
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1 Systems Biology 
of TB Metabolism 

To kill a bacterium, researchers try to de-
termine what genes it needs to survive. In
the wet lab, experimental biologists identify
essential genes by knocking them out one
at a time and then observing the result:
Does the bug thrive or die? Systems biolo-
gists do this same exercise in silico, building
metabolic models and using them to iden-
tify essential genes. 

In 2007, both Bernard Palsson’s systems
biology lab at the University of California,
San Diego, and Johnjoe McFadden’s molec-
ular genetics lab at the University of Surrey

published genome-scale network models of
Mtb metabolism. The McFadden team’s
model involved 726 genes, 849 reactions,

and 739 metabolites and was calibrated by
growing Mycobacterium bovis, a close rela-
tive of Mtb, in a steady state. The re-

searchers then used metabolic flux analysis
to simulate the flow of metabolites through
the network. 

McFadden says he thinks of fluxes as
traffic through an island road network
where the bacillus is the island—the

United Kingdom, say—
and substrates enter at
the ports and are trans-
ported through cities
(various chemical reac-
tions). “If the rate of
traffic going through the
networks is steady,” he
says, “you can go to a
port at Plymouth where
some product is being
produced, measure the
rate of production and
infer the fluxes inside
the network using linear
algebra.” 

The researchers then
looked at what happens
to the fluxes when vari-
ous genes are knocked
out. “Once you have
the model, it becomes a
virtual cell,” McFadden
says. “So you can do
experiments instanta-
neously that would take
months and months in
the lab.” If a gene is essen-
tial, the fluxes through
the network change, cre-
ating blockades that
make it impossible for
the bacterium to survive.
McFadden’s lab’s analysis
of wh ich Mtb genes were
essential found a 75 to
80 percent matchup be-
tween model predictions
and lab results. 

McFadden concedes
that the metabolic mod-
els remain incomplete,
and that it’s still the
early days for TB sys-
tems biology. But, look-

Metabolic network of the central metabolism of Mycobacterium bovis BCG. Reprinted from Beste DJ, et al., ¹³C
metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isoc-
itrate lyase and carbon dioxide fixation. PLoS Pathog (2011) 7(7):e1002091. 
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ing under the hood of TB has the potential
to give researchers a more accurate and
predictive view of how TB works. 

“TB is a black box,” says James Gala-
gan, PhD, associate director of microbial
genome analysis at the Broad Institute of
MIT and Harvard. “But we’re starting to
open it up. We’re collecting the data to
map the innards of TB and using that to
create predictive models.” 

2 Combining Metabolic
Models with Gene 

Regulatory Models 
to Get At Latency

Researchers would like to understand
how TB survives its veiled existence in the
lung. “If we can better understand latency,
it might change our minds about how to
treat latency,” Galagan says.

To understand latency, researchers must
combine gene regulatory models with meta-
bolic network models. “There are probably

1,000 papers on how to model regulatory
networks and probably 1,000 on metabolic
networks” says Nathan Price, PhD, of the
Institute for Systems Biology in Seattle.
“But there are very few that do them to-
gether in an integrated way.”

In a paper published in PLoS Computa-
tional Biology in June 2011, McFadden’s team
explored changes in metabolites when Mtb
is grown inside a host cell (a macrophage).
Their method, called differential producibil-
ity analysis (DPA), uses a metabolic net-
work to extract metabolic signals from
transcriptome data, allowing a glimpse at
which pathways Mtb is using inside the host
cell, what substrates it is eating, and what
products it is generating. 

One of the most interesting results: Ac-
cording to the network model, growing the
bacillus in a macrophage caused it to go
quiet. It stopped making DNA, RNA and
amino acids and focused on one job: re-
building its cell wall. “It seems that the TB
bacillus has realized it’s inside a host im-
mune cell whose job is to kill it,” McFad-
den says. “So the Mtb hunkers down, shuts

Galagan E-Flux. E-flux uses gene expression to set maximum flux constraints on individual metabolic
reactions. This can be illustrated as pipes of different widths around each reaction as illustrated here
in a simple model of four metabolites (A–D), four internal reactions, an uptake reaction for A, and a
reaction converting D to biomass. On the left are simulated gene expression data for four genes
whose enzymes catalyze the four internal reactions (green = lower expression; red = higher expres-
sion). Where G1 is poorly expressed (top panel), a thin pipe is illustrated around reaction 1. In the
bottom panel, G1 and G2 are highly expressed, corresponding to a wider pipe for these reactions.
Under conditions in which uptake of A is not limiting, we would predict more flux through R1 and
R2 in the bottom panel relative to the top panel and R3 and R4, as shown by the bars on the right.
Reprinted from Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, et al. (2009) Interpreting Expression
Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production.
PLoS Comput Biol 5(8): e1000489. doi:10.1371/journal.pcbi.1000489. 
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down central processes and creates a more
effective barrier for itself.” Although this is
not a novel insight—researchers already
knew that Mtb shifts to cell wall building
during latency—seeing it in a model was
both impressive and instructive. Some of
the details of the model might help re-
searchers develop drugs to kill Mtb more
easily, McFadden says. 

Previously, when researchers have
looked at transcriptomes, McFadden says,
they’ve picked a favorite gene and looked
at what that gene does. “It’s like throwing
a thousand stones in a pond and producing
a thousand ripples but looking at just one
of those ripples in an attempt to understand
what’s going on,” he says. “What we do
with DPA is look at all the ripples and put
them together to get a picture of what’s
going on throughout the entire system.”

Price and graduate student Sriram
Chandrasekaran at the University of Illi-
nois took a different approach to creating
a unified model of Mtb gene regulation
and metabolism. Their model, called
PROM (probabilistic regulation of metab-
olism), was published in Proceedings of the
National Academy of Sciences (PNAS) in
2010 and integrates work from Palsson’s
lab on metabolic networks.

PROM calculates the probability that
expression of a particular transcription fac-
tor will result in the expression of a partic-
ular metabolic enzyme. These probabilities
act as constraints on the metabolic model,
like a dimmer switch. For example, re-
searchers can ask how a knockout of a par-
ticular transcription factor will affect the
abundance of metabolic enzymes and, in
turn, the flux through a particular reac-
tion. “We’re trying to link changes in tran-
scriptional regulation to what’s going to
happen in terms of a metabolic pheno-
type,” Price says. And, like the metabolic
model on its own, PROM was able to iden-
tify essential genes. “PROM picked up re-
ally well which transcription factors are
essential to optimal growth in tuberculo-
sis,” Price says. 

Another approach, called E-flux, brings
gene expression together with metabolic
models in yet another way. Developed by
Galagan and his colleagues at the Broad
Institute, E-flux uses gene expression data
to constrain the metabolic model—essen-
tially setting the width of the pipes leading
to and from particular reactions in the
metabolic network. Because the gene ex-
pression data comes from Mtb grown under
a variety of conditions—including under
exposure to 75 different substances and
conditions such as hypoxia (which is akin

to what the bug experiences in latency)—
the results could help researchers under-
stand how existing drugs work and identify
other drugs that might also be effective.  

In a 2009 publication in PLoS Compu-
tational Biology, Galagan’s team applied E-
flux to existing metabolic models of the
Mtb mycolic acid pathway. Mycolic acids
are good drug targets because they are crit-
ical components of the Mtb cell wall, do
not exist in humans, and are the target of
several existing antibiotics used to treat
TB. E-flux predicted seven of eight known
inhibitors of the mycolic acid pathway and
identified several novel compounds not
previously known to inhibit mycolic acid
biosynthesis. The model also mimicked
the ineffectiveness of first-line TB drugs
against dormant tuberculosis. 

But Galagan and his team have more
ambitious goals for E-Flux: They want to
improve the method so that it can make
more refined interpretations of what Mtb
is doing in latency—or at other key points
in the disease process, Galagan says. His
plans include building a metabolic model
that isn’t constrained to a steady state, by
using mass spectrometry to measure
metabolites directly.

In recent work with E-flux, his team
observed—as McFadden did—that when
TB goes dormant, most of the genes are
ramped down. “But if you turn off the
lights, things could go haywire,” Galagan
notes. “TB has to handle the process in a
way that doesn’t kill itself.” His team ob-
served that as Mtb scales down its activi-
ties, the bacterium makes a series of
adaptations to the toxins that build up.
“Those could be a weak link,” he says.
“Perhaps we could muck with that—target
those processes that are important for Mtb
not dying as it goes to sleep,” Galagan says.

Ultimately, McFadden says, researchers
need to link Mtb metabolic and regulatory
models together with models that look at
how Mtb and host cells interact. “That’s re-
ally the challenge for the future,” he says. 

3 Multiscale Models of
Mtb-Host Interactions 

The granuloma, a spherical conglomer-
ation of immune cells, bacteria, and tissue
that walls off Mtb bacteria inside the
human lung, offers another piece of the TB
latency puzzle. How does the immune sys-
tem force TB into an inactive state? Why
do some people contain and wall off TB in-
fections better than others? And why do
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granulomas sometimes break down to reac-
tivate TB infection? 

Denise Kirschner, PhD, professor of
microbiology and immunology at the Uni-
versity of Michigan Medical School, has
been modeling the granuloma for about 11
years. Her team uses a multitude of host-
pathogen response data gathered from
granulomas in monkeys to build models at
multiple scales: Ordinary differential equa-
tion models at the molecular scale link to
an agent-based model at the cellular scale
that reads out at the tissue scale. 

Kirschner’s models are stochastic,
meaning they contain probabilities that
certain events will or will not occur: One
hundred simulations will generate one
hundred different answers, simulating the

sorts of variability one
would find in human
hosts. Kirschner refines

the agent-based models until they produce
outcomes that are relatively stable—akin
to TB in its latent state. “Even with slight
perturbations, the models still go to the
same place in the end,” she says. It then
becomes possible to run in silico experi-
ments that perturb the models. “We can
look at the finest scale and say how it’s im-
pacting at the largest scale and vice
versa,” Kirschner says. And they can vir-
tually “knock out” various parts of the
host immune system instantaneously to
see the effect on the granuloma. Ulti-
mately, Kirschner would like to under-
stand what brings Mtb out of the stable
state—transitioning the disease from la-
tency to reactivated disease. But for now,
her model predictions are helping to focus
the next series of animal experiments.

Since 2004 when she published her first
model of the granuloma, Kirschner’s team

These six snapshots from a time-lapse simulation of a granuloma forming
after infection with Mycobacterium tuberculosis show a 2 mm by 2 mm
slice of lung tissue. The simulation covers 200 days of infection dynamics
(days 0, 50, 75, 100, 150, 200). Once the infected macrophage cell takes up
bacteria and initiates infection, it begins to recruit additional immune cells
that arrive via vascular sources distributed on the parenchyma. This simu-
lation represents a controlled infection where the granuloma is able to
physically contain and immunologically restrain the bacteria. Courtesy of
Denise Kirschner.
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has refined and improved the models.
They can now be run in 3-D and incorpo-
rate compartments outside the lungs, in-
cluding the lymph nodes and blood. She’s
also taking the model to a new scale: pop-
ulations. Working with a team in Italy, she
says, they now have an agent-based model
of TB epidemiology. The people in the
population-scale model each have an im-
mune-scale model of a granuloma running
inside them, Kirschner says. These models
predict how events at the smallest scales
can influence epidemic outcomes, and
thus can be used to test vaccine and treat-
ment strategies.

Others studying the systems biology of
TB latency and reactivation in the host
are still at the early stages of their projects.
For example, Henry Boom, MD, vice
chair for research and director of the tu-
berculosis research unit at Case Western
University Medical School, is looking at
whether patients at different stages of pro-
gression from latent TB to active TB can

be distinguished by looking at protein-pro-
tein interaction sub-networks inside cer-
tain host immune cells. Watch for results
in the future.

4 Protein-Protein 
Interactions and 

TB Drug Resistance

Emergence of drug-resistant TB strains is
the biggest health challenge facing TB re-
searchers. “Each time you administer a drug
you are selecting for the organisms that are
drug resistant,” notes Karthik Raman, PhD,
assistant professor of biotechnology at the
Indian Institute of Technology Madras in
Chennai, India. 

While he was a graduate student in the
lab of Dr. Nagasuma Chandra at the Indian
Institute of Science, Raman and his col-
leagues used a systems biology approach to
unravel the different mechanisms by which

TB drugs trigger resistance. His team cre-
ated an Mtb protein-protein interaction
network (from the STRING database of
protein-protein interactions). They then
merged that network with Mtb gene expres-
sion data gathered under exposure to seven
different TB drugs, allowing an analysis of
the possible routes leading to resistance.

One of their key aims was to identify
what Raman calls “co-targets”—proteins
that could be inhibited along with a primary
drug target to reduce the likelihood that the
Mtb bacillus will become drug resistant.
“Some proteins were more important than
others in terms of their strategic location in
the network,” Raman says. “Our hypothesis
is that one could try to disable these proteins
and not just the target proteins and it could
probably reduce resistance.” 

Further work in this area is needed,
Raman says. “It’s probably an issue we’ll
never conquer.” Yet developing novel
strategies, such as the co-target concept,
could help. 

This portion of the TB protein-protein interaction network involved in
drug resistance shows a tight cluster of cytochrome proteins (green
nodes) and Rv0892 (blue node), a potential co-target that links the cy-
tochrome clusters to proteins in the mycolic acid pathway. The nodes (in-
dividual proteins) are sized in proportion to the number of MAP drugs

that induce their upregulation. The thickness of an edge is proportional
to the number of times a shortest path is traversed through that edge.
Reprinted with permission from Karthik Raman and Nagasuma Chandra,
Mycobacterium tuberculosis interactome analysis unravels potential
pathways to drug resistance, BMC Microbiology 8:234 (2008).
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5 Computational 
Epidemiology and 

the Emergence of Drug 
Resistant TB

Computational models are also proving
useful in exploring the population-level
causes of drug resistant TB. Surprisingly, a
recent statistical model shows that TB mul-
tiple drug resistance can evolve sponta-
neously—it is not necessarily caused by
mono-therapy or by patients failing to com-
plete a course of antibiotic treatment. This
is a fundamental shift in our understanding
of how combination drug resistance can
emerge, says Ted Cohen, MD, MPH, DPH,
assistant professor in epidemiology at Har-
vard University. “And it may help explain
how highly drug resistant forms of TB have
independently emerged in many settings.” 

Cohen is also working out the order in
which drug resistance mutations occur and
their probabilities of occurring. Similar work
has proven helpful in understanding and
treating HIV. But exploring the order of mu-
tations over time typically requires longitu-
dinal genotypic data—which is often not
available for Mtb. So Cohen and his col-
leagues decided to determine whether this
information could be inferred from pheno-
typic data (e.g., in vitro tests of drug resist-
ance) gathered at one point in time. Using
branching trees, a special kind of Bayesian
network that makes it possible to infer past
and future events, they were able to infer
some possible patterns in which TB drug re-
sistance phenotypes arise, Cohen says. “It’s
a promising approach and should be even
more useful as genetic and genomic data be-
comes available and we can look not only
at drug resistance phenotypes but also at the
actual resistance-conferring mutations.” 

Cohen is also doing work in South
Africa to try to understand the phenome-
non of complex TB infections—multi-
strain infections that arise either from
multiple infections by unrelated strains or
from within-host evolution. He and his col-
leagues developed a modeling framework to
investigate mechanisms of strain competi-
tion within hosts and to assess the long-
term effects of such competition on the
ecology of strains in a population. His ini-
tial modeling efforts suggest that the pres-
ence of mixed strains in a single host can
increase the likelihood that drug-resistant
strains will persist and potentially evolve.

“For me, modeling is a cycle,” Cohen
says. “We’ve used models to identify the
gaps in our understanding of TB that most
limit our ability to project trends or design

effective interventions. Then we try to con-
duct studies that reduce this uncertainty so
we can refine the models and improve our
understanding of how best to intervene.” 

6 Using Computation to
Find TB Drug Targets

The National Institute of Allergy and
Infectious Diseases (NIAID), part of the
National Institutes of Health, supports a
portfolio of computational approaches for
modeling TB drug targets and determining
how promising drugs bind to these targets,
says Karen Lacourciere, PhD, program of-
ficer for tuberculosis and other mycobacte-
rial diseases at NIAID. 

Computation can simplify the entire
drug discovery process. For example, Raman
developed a pipeline (TargetTB) for pin-
pointing which essential Mtb genes (and
their protein products) are also good drug
targets. The pipeline starts by identifying es-
sential genes as predicted by both existing
metabolic models (including McFadden’s
and Palsson’s) and by experiments. Next,
the pipeline filters out proteins with struc-
tural similarities to human proteins because
targeting such proteins can produce nega-
tive side effects. This computationally in-
tensive step involves exhaustive pairwise
comparisons of several thousand pockets on
more than 750 Mtb proteins with more than
70,000 sites on more than 15,000 human
proteins. The pipeline filters the resulting
short list using additional criteria and also
prioritizes the proteins’ importance based on
their level of expression during TB latency.
The work, published in BMC Systems Biol-
ogy in 2008, also examines several known
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and predicted drug targets based on their fil-
ters, and postulates why many known tar-
gets may produce adverse drug reactions.

About 400 potential drug targets have
emerged from Raman’s pipeline. “It’s a
beautiful place to start, those 400,” Raman
says. And pharmaceutical companies have
shown some preliminary interest in pursu-
ing these targets. “Ten to twelve years back
it was considered a third-world disease, but
with the appearance of drug resistant forms,
pharmaceutical companies are showing
more interest,” he says. 

McFadden’s metabolic model is also being
used to better understand known drug tar-
gets, says Desmond Lun, PhD, associate pro-
fessor of computer science at Rutgers
University. For example, Harvey Rubin at
the University of Pennsylvania asked Lun to
work out the mechanism of action of NDH-
2. Rubin hypothesized that NDH-2 could be
a lethal knockout in Mtb because removing
the gene from a related bacterium leaves a
non-viable organism. Using a metabolic
model that consolidates two others, Lun
identified a possible mechanism by which
knocking out NDH-2 would be lethal in
Mtb. “It takes a long time to develop drugs,”
Lun says, “so you want to know in significant
detail what the mechanism is and the possi-
ble effect on the host and related organisms.” 

7 Using Computation to
Find TB Drugs 

Some chemists are screening for TB
drugs using computational approaches, says
Sean Ekins, PhD, vice president of science
at Collaborative Drug Discovery and senior
consultant for Collaborations in Chem-
istry. “People started by thinking we’d do
structure-based screening but the mole-
cules that looked good against the target
didn’t really have the right physical prop-
erties to get into the cell,” he says. “TB is a
pretty tough cookie in terms of the types of
molecules it will let in.” 

Then a few years ago, researchers started
whole cell screening—testing lots of com-
pounds to see what would kill Mtb. This
produced lists of thousands of lethal com-
pounds but gave researchers no hints as to
which ones merited further research, Ekins
says. So Ekins decided to try a data-mining
approach on an NIH database of more than
200,000 compounds with known activity
against Mtb. The approach uses Bayesian
machine learning to cherry-pick the com-
pounds that have a high likelihood of
whole cell activity and a low likelihood of

human toxicity, he says. “These models are
a step in the right direction: We’re leverag-
ing all this data, using it to build models,
and using the models to make future exper-
imental decisions for our collaborators.” 

Indeed, Ekins has used the model to pick
groups of compounds for various researchers
to test. “That’s sort of the acid test, really:
backing up your predictions experimen-
tally,” he says. “I don’t think we’ve got the
magic bullet, but we’re giving it a good try.” 

Using a different approach, Lei Xie,
PhD, associate professor of computer science
at Hunter College, the City University of
New York, and Philip Bourne, PhD, profes-
sor of pharmacology at the University of
California, San Diego, sought TB drugs
among the pool of currently FDA-approved
drugs by creating a genome-scale drug-target
network they call the TB drugome. The net-
work compares binding sites on Mtb proteins
against the known binding targets of FDA-
approved drugs (there are only 250). “If two
proteins have a similar ligand-binding site,

then our assumption is that they can poten-
tially bind a similar drug,” says Xie. Next,
they did protein-ligand docking to predict
the binding affinity of the drugs to the Mtb
proteins. The network revealed that about a
third of the drugs examined have the poten-
tial to be repositioned to treat tuberculosis
and that many currently unexploited Mtb re-
ceptors may be chemically druggable and
could serve as novel anti-tubercular targets.
The researchers are currently seeking collab-
orators to validate these findings. 

8 Computation to Find 
Diagnostic Biomarkers 

Since the 1940s, the primary diagnostic
test for active TB has been the same: Take
a sample of sputum (i.e., coughed up mucus)
and look at it under a microscope. But the
test is insensitive, producing many false-
negative results. In addition it takes two

The TB Drugome, a protein-drug interaction network, shows Mtb proteins (blue circles) connected
to drugs (red circles), a single connection indicates binding site similarity between any of the struc-
tures of the connected Mtb protein, and any of the binding sites of the connected drug. This Drugome
is highly connected, indicating that many binding site similarities were observed between Mtb pro-
teins and drug targets, even though those proteins had different overall structures. Reprinted from
Kinnings SL, et al., The Mycobacterium tuberculosis Drugome and Its Polypharmacological Implica-
tions, PLoS Comput Biol 6(11): e1000976 (2010).
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weeks to get results to tests for drug resist-
ance, risking further spread of TB’s most vir-
ulent forms. 

Although newer, more rapid TB diagnos-
tic tests are now hitting the market, many of
them require specialized labs and skills not
available in areas most stricken by the dis-
ease. In addition, the rapid diagnosis of drug
resistance remains elusive with one
exception: A new test now being
deployed in parts of Africa uses the
GeneXpert system, a molecular
assay that can identify strains of TB
that are resistant to treatment with
rifampin, a commonly used TB an-
tibiotic. This test became possible
because, for rifampin, we know
the affected gene and the majority
of mutations that result in resist-
ance, says James Posey, PhD, a
research microbiologist in the
Center for Disease Control’s Divi-
sion of Tuberculosis Elimination.
But for many of the other first- and second-
line TB drugs, this information is unknown.
Computational approaches are helping fill
this gap; for example, Posey’s lab is using
whole genome sequencing to identify the
genes and mutations that cause resistance
to additional TB drugs.

Another group of researchers is search-
ing for metabolic changes that could be used
to rapidly flag drug-resistant mutants. Lun is
working with Greg Bisson, MD, assistant
professor of medicine at the University of
Pennsylvania Medical School, on the novel
hypothesis that, just as Mtb’s ancestors—
non-pathogenic soil bacteria—respond to
assault by making new metabolites, perhaps
TB does the same when confronted with
drug treatment. Lun is perturbing a consol-
idated metabolic model using protein abun-
dance data as a way to study that possibility.
“This is something we can do to help de-
velop a cheap and easy diagnostic test to
work out whether someone has a drug resist-
ant strain,” Lun says. “This can make a
major difference in public health outcomes.”

9 Planning for 
the Clinic 

Even after effective drugs and diagnostics
for TB have been developed, deploying
them in the clinic can be tricky. For exam-

ple, when putting a new diagnostic test into
action, doctors need to know who should be
tested and whether the new tools should re-
place or complement existing ones. And the
answers to those questions might depend on
the setting—both the incidence of TB and
the availability of resources. To explore
these questions, Cohen and his colleagues

combined an epidemiological model of TB
spread with a health system model. The
work shows that, in concept, one can begin
to evaluate the operational impact of a di-
agnostic tool using information not only
about how the bug spreads but also about
the logistical characteristics of the health-
care system. “That’s something many people
have simplified out of the problem,” he says.
“There is a role for modeling to inform local,
immediate, real world–type decisions while
taking into account detailed knowledge of
local conditions.” He’s now working with
others to build on this initial work to look
at the potential effects of specific diagnostic
tools such as the Gene Xpert system. 

There are now at least nine drugs and 12
vaccines in the clinical research pipeline. If
they prove medically effective, similar sorts
of deployment models will be essential to
their ultimate impact. 

10 Setting the Clinical
Research Agenda

About 10 years ago, the Bill and Melinda
Gates Foundation began investing heavily in
a tuberculosis research portfolio that in-
cluded the development of drugs, vaccines
and diagnostic tests. Having set that agenda,
they then wondered: If we achieve our goals,
what will TB morbidity and mortality look

like in 2050? So they hired a team headed
by Elizabeth Halloran, MD, DSc, professor
of biostatistics at the University of Wash-
ington and the Hutchinson Research Cen-
ter, to create a model showing the long-term
effect of a successful program. 

The work, published in PNAS in 2009,
produced several interesting insights that

could affect funding decisions. For
example, introducing a new vac-
cine for infants would have very
little effect by 2050 because peo-
ple get TB when they are older.
But a program of mass vaccina-
tions is much more effective. “So
one has to rethink vaccination
strategies and clinical trials,” she
says. The model also showed that
finding and curing latent infec-
tions—which we currently don’t
know how to do—would have a
very large effect. Halloran notes:
“That might affect how you allo-

cate research resources.” For example, this
might suggest the wisdom of funding sys-
tems biology studies of TB latency, which
brings us full circle.

TBThe Opportunities
Are Many

Although these intersections between
computation and TB might suggest the
field is pretty well picked over, that is not
at all the case. The systems models need
refinement and must be layered together
with other models to gain a multiscale
picture of the bug. Host-pathogen inter-
action research is really in its infancy. Re-
searchers don’t know the extent of MDR
and XDR TB, let alone how to deal with
it. And though there are multiple new di-
agnostics, drugs and vaccines in the
pipeline, no one really knows how to im-
plement them so that they will have the
greatest impact. 

Thus, each of these intersections be-
tween TB and computation suggests more
that can be done. Perhaps because of its
complexity, modelers haven’t flocked to TB
research, Cohen says, but he believes that
will change: “If you want to ask questions
that have global impact to improve the lot
of humanity,” Cohen says, “I think TB is a
great thing to choose to work on.”  nn
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A dvances in computational power and algorithms
have led to longer and more accurate molecular
dynamics simulations of protein folding. But

these approaches, because they are computationally in-
tensive, cannot yet be used to model conformational
changes of large, already-folded proteins at biologically
relevant time scales. Yet these kinds of movements are
often biologically interesting: For example, understanding
and predicting the conformational change a protein un-
dergoes upon the binding of a small molecule—such as a
drug—can lead to better rational drug design. 

Normal mode analysis fills the gap: It can quickly re-
veal the overall change in the conformation of large pro-
teins, without the need to calculate the specific molecular
mechanism, such as the motion of specific bonds.

Normal mode analysis, also known as harmonic analy-
sis, existed before the advent of computational biology
and is applicable to many fields. It identifies the natural,
resonant movements of a physical object, such as a build-
ing, bridge or molecule. In acoustics, a guitar string’s har-
monics (or overtones) are its normal modes, and the
modes’ corresponding frequencies are their pitches; in ge-
ology, normal mode analysis of low frequency normal seis-
mic waves generated by large earthquakes leads to greater
understanding of the deep substructures of the earth. 

For proteins, normal mode analysis represents each
amino acid as a bead. All pairs of beads less than a speci-
fied distance away from each other in 3-D space are con-
nected by springs. The force constants of the springs are
determined by fitting to experimental data. Once the
spring constants and the masses of the atoms have been
tabulated, the movement of the beads and springs can be
described by a matrix version of Newton’s second law of
motion. Analytically solving this equation gives the pro-

tein’s natural motions, called nor-
mal modes, and their associated frequencies. 

A combination of the normal modes describes the
motion of the protein. The biologically relevant modes
are the low-frequency modes because they describe the
large-scale, overall motion of the protein. Normal mode
analysis does not specify which of the low-frequency

modes describe most of the conformational change.
However, with a small amount of experimental data,
such as the change in pairwise distances between a few
pairs of residues (derived from fluorescence resonance en-
ergy transfer or FRET) or in overall shape (derived from
cryo-electron microscopy), the relevant modes can be de-
termined. Then the conformational change of the pro-
tein can be predicted.

In addition to predicting conformational changes of
proteins, normal modes can be used to help solve x-ray
crystallography structures or to improve protein-ligand
docking calculations. Additionally, if there are two
known conformations of a protein, the normal modes that
contribute most to the conformational change can be cal-
culated. Then we can use the modes to understand the
pathway and to describe the conformational change in
only a few degrees of freedom. 

The application of normal mode analysis to proteins
has given researchers an important tool for solving prob-
lems in computational biology. nn
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DETAILS

Jenelle Bray is a Simbios Distinguished Postdoctoral
Fellow in Russ Altman’s and Michael Levitt’s labs. She
works on the development and application of torsion
angle normal mode analysis. 

For more information about normal mode analysis, 
go to http://www.igs.cnrs-mrs.fr/elnemo

or check out a recent paper by Jenelle Bray and her
colleagues: Optimized torsion-angle normal modes
reproduce conformational changes more accurately
than cartesian modes. Bray JK, Weiss DR, Levitt M.
Biophys J. 2011; 101 (12): 2966-9

A protein shown on the left as a simple ribbon and at right in a beads and
springs representation for normal mode analysis. Courtesy of Jenelle Bray.

Normal Mode Analysis: 
Calculation of the 

Natural Motions of Proteins
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BY KATHARINE MILLER

A fter a satellite tobacco necrosis virus particle in-
fects a cell, it sheds the calcium ions that hold the
capsid proteins together. Next, the proteins start

to repel each other, the capsid swells and water begins to
enter.  It’s a process that hasn’t been observed directly, but
can now be seen in the longest and biggest virus simula-
tion to date—a one-microsecond long, full-atom, molec-

ular dynamics simulation by David van der Spoel, PhD,
professor of biology in the department of cell and molec-
ular biology at Uppsala University, Uppsala, Sweden and
his graduate student, Daniel Larsson.

“We are seeing the beginning of the infection process
as the capsid starts to open up,” van der Spoel says. Next,
his lab plans to add the genome to the simulation—a

challenge because there is no structure
for the genome.  

“Even though it’s not a virus
that attacks humans, most viruses
have a similar protein shell that
protects the genome,” van der
Spoel notes. “If you can tinker
with the shell, then you can use

it as an additional route to com-
bat viruses.”   nn
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Like many virus particles, the satellite tobacco necrosis
virus (the smallest known virus) has multiple lines of

icosahedral symmetry—two-fold (A,D), three-fold
(B,E) and five-fold (C,F). Larsson and van der
Spoel’s simulation reveals areas where water
can permeate the capsid (red) with (A,B,C) and
without (D,E,F) bound calcium ions. The nearly
symmetrical water-permeable zones suggest
where the capsid is least stable and most likely

to open up to release the genome. Reprinted
from Larsson DSD, et al., Virus Capsid Dissolution

Studied by Microsecond Molecular Dynamics Simu-
lations. PLoS Comput Biol 8(5) (2012).

Dissolving a Viral Capsid


