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g u e s t  e d i t o r i a l

interactions, phenotypes, linkage data,
and/or RNAi studies to generate results
that are relevant to diseases including
obesity, cancer, Leigh syndrome, and
cardiovascular disease (5-10). I mention
these examples to illustrate that explo-
ration into the integration of multiple
modalities is well underway, and can
yield high-impact results even for trans-
lational medical research. 

However, the challenge is that meth-
ods for studying biology in an integra-

tive manner are not yet easily accessible
to most clinician scientists interested in
discovering disease mechanisms or dis-
ease biomarkers. Integrating results
across measurement modalities (e.g.
RNA and proteins, genotype and RNA,
etc.) requires a level of computational
sophistication and biological knowledge
that is difficult to operationalize today.
This lack of tools has its greatest impact
on translational research. Though I
acknowledge that clinical scientists
have a number of other hurdles to over-
come in biomedical institutions (e.g.,
getting research resources and protected
time), I believe that deploying web-
based integrative biology tools to clini-
cian scientists could enable them to
start hypothesis generation and discov-
ery of candidate markers for the condi-
tions they treat. 

For example, an interventional cardi-
ologist empowered in this way might be
in the best position to ask a novel bio-
medical question looking for candidate
serum markers for coronary artery stent
restenosis across diverse biomedical

data. Democratizing the process of inte-
grative biology to the clinician scientist,
and providing web-based tools operating
in the cloud for them to conduct inte-
grative biology experiments using their
own data as well as public data, could
eliminate one of the remaining bottle-
necks in the translational lifecycle.

I encourage computational scientists
to consider developing and deploying
tools for the quantitative clinician sci-
entist. As another definition of Om is

“the essence of the universe,” there are
still many –omes remaining for transla-
tional scientists to explore, integrate,
and harness for the improvement of
human health.

FOOTNOTES
1. R. Paylor, Nat Methods 6, 253 (Apr, 2009).

2. H. Ge, A. J. Walhout, M. Vidal, Trends Genet
19, 551 (Oct, 2003).

3. M. Vidal,  Cell 104, 333 (Feb 9, 2001).

4. A. J. Walhout et al., Curr Biol 12, 1952 (Nov
19, 2002).

5. E. E. Schadt, S. A. Monks, S. H. Friend,
Biochem Soc Trans 31, 437 (Apr, 2003).

6. E. E. Schadt et al., Nature 422, 297 (Mar 20,
2003).

7. V. K. Mootha et al., Proc Natl Acad Sci USA
100, 605 (Jan 21, 2003).

8. M. Stoll et al., Science 294, 1723 (Nov 23,
2001).

9. D. R. Rhodes et al., Proc Natl Acad Sci USA
101, 9309 (Jun 22, 2004).

10. S. B. English, A. J. Butte, Bioinformatics 23,
2910 (Oct 5, 2007). !!

The word Om (or Aum) has many
meanings in ancient Hindu phi-
losophy, one of which is “that

which contains all other sounds.” The
meaning has relevance to the now
commonly used suffix “-ome”, used to
describe the nearly-comprehensive cat-
aloging of discrete or countable items
from a single vantage point (e.g.
genome, proteome, envirome, and oth-
ers). Incredible discoveries in life sci-
ence and medicine have certainly come

about from the broadening of thinking
of translational scientists, from single
molecules to nearly-comprehensive sets
of molecules, such as the discovery of
molecular subtypes of cancers through
gene expression microarrays. But there
has also been some disappointment, as
some aspects of disease remain resistant
to understanding through the measure-
ments we intuitively use, like the
genetic architecture of complex dis-
eases still hidden from genome-wide
association studies. It is for this reason
that integration across measurements
made from several vantage points may
grant us the missing clues towards deci-
phering still unsolved mysteries in life
science and medicine. 

Much has already been written about
the potential of integrating the results of
cross-modality experiments (1-4). Vidal
and others have noted that integration
of multiple functional maps can lead to
novel informatics algorithms and find-
ings (2, 3). And a number of research
groups have integrated some combina-
tion of gene expression data, protein
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Democratizing the process of integrative biology to the clinician scientist, 
and providing web-based tools operating in the cloud for them to conduct 
integrative biology experiments using their own data as well as public data, 

could eliminate one of the remaining bottlenecks in the translational lifecycle.

Democratizing 
Integrative Biology
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It’s often said that all models are wrong, but some are
useful. And one model that certainly falls in the
“useful” category is the human lower-limb model

that Scott Delp published in 1990. It captures the mus-
culoskeletal geometry and muscle arrangements from the
hips down to the feet and has been used in numerous
simulation studies over the years, providing insights in
fields such as sports and medicine. As the saying goes,
though, the model is not perfectly accurate. Based on
two very small, decades-old studies, the model is limited
in how faithfully it can reproduce human movements.
Now, with the availability of new experimental data,
researchers have updated this lower-limb model,
enabling it to address new research problems. 

“This is an exciting new tool,” says Edith Arnold, a
mechanical engineering graduate student at Stanford
University and the creator of the new model. “It
should both correct some of the problems people were
having with the old models and allow people to answer
new questions.” 

To gather data for the new model, Samuel Ward, PT,
PhD, assistant professor in radiology, and his colleagues
at the University of California, San Diego took apart 26
human muscles from each of 21 different cadavers,
examining them fiber by fiber to determine both their
organization and physiological properties. Using a laser
technology that was only just emerging when Delp cre-
ated the original model, the group measured the length
of the sarcomeres, the individual subunits that make up
the muscle. This critical piece of information allowed
them to normalize their muscle fiber measurements and
determine the force-length relationship that character-
izes how a muscle performs.

The original model is like a car where no one’s opened
the hood, says Ward. We know the car performs in a cer-
tain way but its parts and how they function together have
not been well-studied. “We lifted the hood on the model,

s i m b i o s  n e w s

DETAILS
The updated lower limb model can be accessed 
via the neuromuscular models project at
http://simtk.org/home/nmblmodels.  This Web site is
a simtk.org umbrella project, providing links to many
other musculoskeletal models that are available for
downloading from the simtk.org website. See also,
Arnold, E.M., Ward, S.R., Lieber, R. L., and Delp, S.L.,
A model of the lower limb for analysis of human
movement, Annals of Biomedical Engineering,
10.1007/s10439-009-9852-5 (2009).

BY JOY P. KU, PhD, DIRECTOR OF DISSEMINATION FOR SIMBIOS

looked around, and got a whole bunch of new data to real-
ly understand the fundamental properties of the model.” 

Not only is the data more comprehensive, it is also
derived from a much larger number of cadavers than was
the original model: 21 versus 2 or 3. The larger sample
size provides a better idea of what constitutes normal

muscle architecture and behavior. 
Having a model based on this number of cadavers is

great, says Jonas Rubenson, PhD, assistant professor in
the biomechanics group at the University of Western
Australia. “It’s a huge leap forward in these models, and
now we can be a lot more confident that the muscle
parameters are actually representative.”

Rubenson is using the model to test some of the
assumptions in his experimental study of the force-length
properties in the calf muscles. However, Arnold points out
that there are a lot of other reasons why people may be
interested in the updated model, including a more realistic
representation of the knee and changes to bone geometries
based on new imaging data. 

Creating these models is
difficult and time-consuming,
says Arnold. “But I like creat-
ing these tools that are going
to be useful for many people.
I’m excited to use this model
in my own research and to see
what others will do with it.”  !!

Simbios (http://simbios.stanford.edu) 
is the National Center for Physics-
Based Simulation of Biological
Structures at Stanford.

Reaching Under the Hood of a 
20-year-old Musculoskeletal Model

SimbiosNews
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NewsBytes
Simulating 

Crowded Cytoplasm
In biology textbooks, the carefully

rendered cross-section of an E. coli cell
often resembles a well-organized and
spacious apartment, with everything in
its place and ample room for move-
ment. But a recent computational
recreation of the scene looks more like
a Friday night dance floor, with mole-
cules bumped up against one another in
every direction.  In addition to provid-
ing a dramatic, qualitative description
of the crowded cytoplasm, this first

atomically detailed computational
model of E. coli innards is also a tool for
quantitative predictions of molecular
conduct within the cell. The model is

described in the March 2010 issue of
PLoS Computational Biology.

“This is an attempt to build a virtu-
al lab, in which we can study various
biological and biophysical processes as
they might occur inside the cell,” says
Adrian Elcock, PhD, coauthor and
associate professor of biochemistry at
the University of Iowa. 

The sea of floating proteins inside
every cell is the background against
which many cellular reactions take place.
Scientists realized years ago that the cyto-
plasm is generally not an invisible player
in those reactions. One of the best-stud-

ied examples is macro-
molecular crowding
(also called excluded
volume effect). Having
large neighbors on
every side changes a
protein’s effective con-
centration and influ-
ences its movement
and ability to react.
A biological reaction
observed in dilute
solution can be much
faster or slower than
the same reaction
inside a crowded cell.

To create the model,
Elcock and then gradu-
ate student Sean
McGuffee, PhD, start-
ed by gathering known
structural data for 50 of
the most common E.
coli proteins. They then
combined the detailed
representations inside a
computer model at
known cellular con-
centrations, creating a
strikingly dense model
of 1008 proteins. The
researchers then set
that image in motion,
running independent
Brownian dynamics
simulations governed

by varying energetic descriptions of inter-
molecular interactions. The simplest
description included only the excluded
volume effect: no molecule could take

the space of another molecule. The most
complex scenario they ran included
excluded volume, electrostatic interac-
tions, and favorable short-range
hydrophobic interactions. The more
complex simulations performed surpris-
ingly well when asked to predict molecu-
lar behaviors, such as diffusion and stabil-
ity, in the E. coli cytoplasm.

The model was able to match exper-
imental observations of how quickly
green fluorescent protein diffuses in the
E. coli cytoplasm. And it was able to
predict the greater stability of the
unfolded state of the protein CRABP,
cellular retinoic acid binding protein,
over the folded state inside E. coli.
Although the presence of close neigh-
bors (crowding) generally stabilizes a
large folded protein, the specific elec-
trostatic and hydrophobic interactions
of unfolded CRABP with other cyto-
plasmic proteins counteract the crowd-
ing effect. 

“What this doesn’t mean,” Elcock
emphasizes, “is that crowding effects
are unimportant. It means that crowd-
ing is only part of the story.”

A computational box of 1008 pro-
teins is still a far stretch from the com-
plex E. coli cytoplasm, says Allen
Minton, PhD, a pioneer in the study of
crowding effects and researcher of
physical biochemistry at the National
Institutes of Health. “But there are a lot
of questions that only this type of com-
putation can answer,” he says. “From a
computational point of view, it is a real
tour-de-force.”
—By Louisa Dalton 

Animating 
Molecular Biology

These days, molecular biologists
often gather data over a period of
time—observing shifts as they occur
inside groups of cells undergoing natural
changes. The researchers then face the
daunting task of making sense of it all.
Now, computational biologists have
devised a software program to easily
visualize and analyze these mountains of
time-series data in animated movie
form. While these flicks might never

Combining all available known details about the atomic structures and
concentrations of 50 of the most common proteins within E. coli’s cyto-
plasm, Elcock and McGuffee created a model of what it might be like
inside the crowded cell. They then simulated 20 microseconds of
jostling with and without various types of molecular interactions,
including crowding (excluded volume effect) and electrostatic and
hydrophobic interactions. They then compared the results to experi-
mental observations. Reprinted from McGuffee SR, Elcock AH, 2010
Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model
of the Bacterial Cytoplasm. PLoS Comput Biol 6(3): e1000694.
doi:10.1371/journal.pcbi.1000694.
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the grid, representing molecular shifts
over the time course of the experimen-
tal series. Although GATE was devel-
oped for stem cell biologists, its poten-
tial applications are broad, Ma’ayan
says. Recently, he was contacted by a
group at the University of British
Columbia that wants to use the soft-
ware to analyze changes in marine
flora and fauna in the Pacific Ocean.
In this case, the movies will look at
changes both over time and distance,
as the researchers sample further from
the coast. 

Oliver Hofmann, PhD, a computa-
tional biology research scientist at the
Harvard School of Public Health, says
the technology will be very useful for
the field of molecular biology. “It’s a
very neat way of visualizing time
series,” he says. “But it’s not just a pret-
ty picture you can look at. You can
explore it interactively too.” It is still
difficult to coordinate more than two
types of data timecourses in GATE,
Hofmann says, and Ma’ayan agrees.
He says their to-do list includes plans
to better overlay multiple movies.  
—By Rachel Tompa, PhD

Capturing Mitosis 
Genes in Action

During the one-hour drama that is
human cell division, many genes enter
and exit the stage. Until now,
researchers did not know the identities
of many of these actors, nor understand
their various roles. Now, using a combi-
nation of high-throughput screening
methods, time-resolved movies and a
supervised machine-learning algorithm,
researchers have identified 572 genes
that are involved in mitosis in human
cells. The raw data and images are avail-
able to the research community at
www.mitocheck.org. 

“Researchers can go to the database,
do a clustering analysis, and extract the
genes that are most interesting from
their research question point of view,”
says Jan Ellenberg, PhD, head of the
Cell Biology and Biophysics Unit at the
European Molecular Biology Laboratory
and senior author on the paper pub-

appear at a theater near you, scientists
studying such disparate areas as stem cell
development and the microbial commu-
nities of the Pacific Ocean will be play-
ing them on their computer screens to
explore how all the genes and proteins

of a cell type or organism change over
the timespan of experiments. 

“This is a tool that is really useful for
interrogating datasets collected as a time
series at multiple layers of regulation,”
says Avi Ma’ayan, PhD, assistant profes-
sor of pharmacology and systems thera-
peutics at the Mount Sinai School of
Medicine who spearheads the project.
“It allows you to form hypotheses for
future experimentation very quickly.”

The software, called GATE (Grid
Analysis of Time-Series Expression),
was originally designed to analyze clus-
tered gene and protein expression data
taken at various time points during stem
cell development, Ma’ayan says. This

work, led by Ihor Lemischka, PhD,
Mount Sinai professor of gene and cell
medicine, was published in Nature in
November 2009. “It was a relatively
simple approach but it hadn’t been
done before,” Ma’ayan says. But

Ma’ayan’s group realized that GATE
movies would be even more useful if
they could incorporate existing biologi-
cal data, such as libraries of protein-pro-
tein interactions or annotations of
genes’ functions. The updated software
was further described in Bioinformatics
in January 2010.

The movies GATE generates show a
2-D honeycomb of small hexagons,
each representing a single gene or pro-
tein and colored red (for increased
expression) or green (for decreased).
The hexagons are clustered near other
genes or proteins with similar behavior
patterns in the experiments. When the
movie plays, waves of color shift across

This screenshot from the GATE software program shows RNA expression levels from experi-
ments on stem cells that were genetically manipulated to differentiate. Each hexagon repre-
sents a single gene; red hexagons are genes with increased RNA levels and green are those
with decreased levels. Commonalities among gene annotations are highlighted in blue, and
white lines represent known interactions between proteins. GATE movies animate a series of
these images to show changes over time.  Courtesy of Avi Ma’ayan.

NewsBytes
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lished in Nature on
April 1, 2010. 

T h e  r e s e a r c h
addressed an age-old
problem in the study
of cell division,
Ellenberg says. “We
didn’t know all the
genes or the proteins
involved,” he says.
“So we decided that
we had to do this gene
discovery ourselves.”

First, Ellenberg and
his colleagues in the
Mitocheck consor-
tium developed the
technology to do sys-
tematic high through-
put screens of multiple
samples of all 22,000 human genes and
then visually match each knockout to a
phenotype. They relied on RNA inter-
ference to knock out each of the
approximately 22,000 individual genes.
They then printed more than 384 of
these samples at a time on microarray
chips. Because mitosis occurs transient-
ly (approximately once every 24
hours), the researchers developed
microscopes to capture movies of each
sample from four such microarrays in
parallel over the course of 48 hours.   

Analysis of so much visual data—
nearly 200,000 movies—required
supervised machine learning. First, a
human expert annotated examples of
different morphologies observed within
the movies. A computer then extracted
a numerical signature with 200 differ-
ent parameters that it correlated with
those characteristics. After iterative
training with movies of just 3000 dif-
ferent individual cells, the computer
analyzed additional movies and identi-
fied phenotypes with 90 percent accu-
racy. The researchers also developed
new distance measures for clustering
algorithms to categorize the differences
in cell division behavior. 

The scale of these experiments and
the use of time-lapse imaging over two
days are “unparalleled and nothing short
of phenomenal,” says Anne Carpenter,
PhD, director of the Imaging Platform

at the Broad Institute, who was not
involved in the research. “[The insights
into mitosis are] just the tip of the ice-
berg of the knowledge that will be
extracted from this single experiment,”
Carpenter says. 

The researchers’ next project, called
Mitosys, will explore the molecular
activity of the 572 mitosis-related genes.
—By Sarah A. Webb, PhD

Cells’ Collaborative
Middle Management 

Like corporate and governmental
organizations, cells rely on middle man-
agers to keep things running smoothly.
These “middle managers” function as a
critical bridge that controls the flow of
information traffic. According to recent
research, however, the middle managers
often partner with one another, ensur-
ing that the failure of one manager does-
n’t bring down the entire organization.
Moreover, this partnering becomes more
extensive in more complex organisms.  

“Understanding the system isn’t
about the function of the individual
parts. [It’s about] understanding the
importance of these information flow
bottlenecks and how natural systems
get around them,” says Mark Gerstein,
PhD, professor of bioinformatics at
Yale University. He and his colleagues
have been studying networks of genes

and transcription factors to describe
the information flow within cells. 

The work serves as part of a larger
effort within Gerstein’s group to develop
real-world analogies to explain how bio-
logical systems use and process informa-
tion. Previously, the group had shown
that hierarchies in biological regulatory
systems resemble directed social struc-
tures such as governments and corpora-
tions. That study, published in PNAS in
2006, found that “middle managers
rule,” Gerstein says. Transcription fac-
tors in the middle layers of the networks
have the most regulatory interactions
with other genes. “The genes in the
middle are much more essential. If you
knock them out, the organism is much
more likely to die.” 

In a paper published online in PNAS
in March 2010, Gerstein and his col-
leagues took that work a step farther,
seeking to understand how cells avoid
failure at the sites of middle manager
bottlenecks in five species ranging from
E. coli to humans. First, they identified
which genes are regulated by other
genes in each organism. They then
stacked the levels of regulators in hierar-
chies and placed them between two
extreme types of social hierarchies, auto-
cratic and democratic, and showed cel-
lular regulatory hierarchies have "inter-
mediate" structures. They found that, in
all five organisms, coregulation happens
most at the middle level and least at the
bottom. And more complex organisms
exhibit more collaborative, “democrat-
ic” regulatory structures with more
interconnections. For example, yeast
has about one regulator for every 25 tar-
gets whereas in humans the ratio is
much smaller, about one to 10.

“The parallels between government
structure and regulatory network struc-
ture are provocative,” says Trey Ideker,
PhD, associate professor of medicine and
bioengineering at the University of
California, San Diego, who was not
involved with the study. One question,
says M. Madan Babu, PhD, an investiga-
tor in the MRC-Laboratory of Molecular
Biology at the University of Cambridge,
is the function of these hierarchies with-
in a cell. “Are they really important? Or

This microscopy image captures the mitotic spindle (green)
and the chromosomes (red) of a dividing cell. EMBL
researchers videotaped mitosis for 22,000 different gene
knockouts. Videos and data for all 22,000 genes are available
at www.mitocheck.org. Courtesy of Thomas Walter & Jutta
Bulkescher / EMBL.
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are they something that is emergent
because of the complexity of the system
and has no consequence whatsoever?”  

Regulatory networks are definitely
important for organism function,
Gerstein notes. So the question of
whether the networks emerged in
response to complex roles or the sys-

tem’s complexity allows organisms to
carry on these complex interaction is a
“chicken and egg type of issue.”
—By Sarah A. Webb, PhD

Hot Bodies a Lure 
for Unseen Specks

We can’t see them, but tiny parti-
cles—dust, pollen, microbes, and the
like—swirl around us in complicated,
turbulent pathways. New numerical
simulations suggest that, at least in
tiny indoor spaces, our body heat may
pull them even closer, where they

have a better chance of eventually
landing in our lungs.

“The conventional wisdom is that
the thermal plume from your body pro-
tects you from particles falling from
above,” says John B. McLaughlin,
PhD, professor of chemical and bio-
molecular engineering at Clarkson
University and coauthor of the study.
“We found that, in our small room at
least, that is not true.” Such findings
can help engineers design better venti-
lation systems, McLaughlin says.
“Studies have shown that schoolchild-
ren learn more and office workers are
more productive in environments
where the concentration of particles in
the air is very low.”

Airflow dynamics are notoriously
tough to model computationally, large-
ly because of the huge range of physi-
cal scales in equations for turbulent
fluids. McLaughlin and his colleagues
used a direct numerical simulation
approach that offers accuracy but
requires intensive computational
resources.  Their computational mod-
els of airflow and particle paths were
built in a 4.8-square-meter virtual
room at two-centimeter resolution
using three-millisecond time steps over
about three minutes of total simulated
time. In each simulation, a mannequin
sits motionless in the middle of the
room. A stream of air suffused with
particles—each with the density of
sand and about the size of a grain of
pollen—shoots up through a floor vent
in front of the chair. Particles fan out
throughout the room, with a ceiling
vent as the only exit.

In simulations where the man-
nequin was bestowed with realistic
body heat, researchers could see the
hot air surging off the body and inter-
acting with particulates. This thermal
plume pulled rising particles directly
into the mannequin’s breathing zone.
At the same time, the plume blocked
the path of particles traveling near the
ceiling, forcing them to fall down into
the mannequin’s personal space, dou-
bling the trapping effect of the plume.
The work was presented in March 2010
at the American Physical Society

meeting in Portland, Oregon.
“The computational and the experi-

mental go hand in hand when studying
complex turbulent flows such as those
around human beings,” says Mark N.
Glauser, PhD, professor of mechanical
and aerospace engineering at Syracuse
University, whose empirical results
helped guide McLaughlin’s modeling.
Fundamentally, experiments can help
validate computational models and
give physical insights that spur new
simulations. “Then the simulation
tools can be used to probe a broader
range of parameter space ‘virtually,’ as
well as look in more detail at flow
physics,” Glauser says. For example, the
models from McLaughlin’s team can
track individual particles in a turbulent
flow—a feat that’s nearly impossible in
real-life experiments.
—By Regina Nuzzo, PhD 

Brain Folding
In the four months before birth, a

fetus’s brain grows from a smooth tube
of neurons into a highly crinkled, con-
volved mass of tissue. Because the cere-
bral cortex has a surface area nearly
three times as big as that of its skull cav-
ity, scientists have proposed that this
real-estate-space squeeze is what drives
the brain’s folding process. Now results

The positions of 2-micrometer particles
inside a 20-degree-Celsius room with a man-
nequin heated to 25 degrees Celsius, three
minutes after particles were released
through a floor event. In this simulation, 31
out of 1000 particles fell directly onto the
mannequin’s warm body; none managed to
leave the room through the ceiling vent. Yet
when the mannequin was the same temper-
ature as the room, no particles fell onto the
body, and 160 out of 1000 particles escaped.
Results were similar for simulations with 10-
micrometer-diameter particles.

Diagrams of hierarchical networks: In an
autocratic network, such as the military,
there is a clear chain of command. In a dem-
ocratic network, many members interact and
regulate each other. And in an intermediate
network, such as exists within a law firm and
many cells, the hierarchy shares features of
both types. As biological organisms become
increasingly complex, their organization
becomes more democratic. 

NewsBytes
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from a computational three-dimension-
al geometric model agree that the skull
does help guide the wrinkling—but
they also suggest that a growing brain
folds up regardless of its container.

“Mechanical constraints imposed
by the skull are important regulators,”
says Tianming Liu, PhD, assistant pro-
fessor of computer science at
University of Georgia and lead author
on the study, which was published in
May 2010 in the Journal of Theoretical
Biology. “But our simulations indicate
that skull constraint is not necessarily
the dominant mechanism.” 

The computational model under-

neath the simulations had two main
features: geometric constraints of the
skull, and partial differential equations
that model biological processes driving
the growth of neurons. To start off the
simulation, researchers used MRI data
from the brains of two human fetuses;
then solutions to the differential equa-
tions guided the changing surface

geometry of the cortex. 
The team simulated how the cortex

grows under various conditions: with-
out a skull, with a skull of fixed size,
and with a skull that grows at the same
time as the brain does. As expected,
brains grown in a skull were more con-
voluted than those allowed to develop
unfettered. But even without a skull to
confine it, a cortex will still fold in on
itself, results showed. This happens as
a natural response in a fast-growing
cortex, as the tissue attempts to reduce
the increasing mechanical tension
among axons, dendrites, and neu-
roglia, Liu says.

Tweaking other parameters in the
model revealed how cellular growth
affects these folding patterns. When
neurons themselves grow rapidly —
during synapse development and neu-
ron dendritic projection, for example—
the cortical folding increases dramati-
cally too. And when certain areas of
the cortex grow more quickly than oth-

ers, this imbalance subtly shapes what
kinds of folds become most prominent.

Computational models can help
explain normal brain development as
well as what happens when things go
wrong, says Bernard S. Chang, MD,
assistant professor of neurology at
Harvard Medical School.  For example,
in some forms of microcephaly, the
brain surface is almost completely
smooth with no folds; in others, the
folding is normal. “A model that pre-
dicts how folding is affected by the
skull’s physical constraints might help
us to understand why some patients
have one form and not another,” he

says. Since animal models don’t cap-
ture the complexity of the human
brain, and doing repeated MRIs of
developing fetuses for research isn’t fea-
sible, Chang says, “we need to rely on
these theoretical models as tools to
help us understand what we’re observ-
ing clinically.”
—By Regina Nuzzo, PhD !!

Growth of the cortex under different assumptions. From left to right,
the images show simulated development of the cortex over time. The
cortex grows (a) within a skull of fixed size, (b) without a skull, or (c)
within a skull that also grows at the same time (which corresponds to

a fetus' developing skull). Major cortical folds developed much earli-
er and faster during simulations with skull constraints. But the cortex
increases its surface area and convolutes itself to reduce the fast-
growing internal tension, with or without skull constraint.
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The human organism, standing
one to two meters tall and living
about 70 years, relies for health
and survival on biological activity
occurring at much smaller scales
of space and time. At the bot-
tom end—the nanometer and
femtosecond scales—biologically
active molecules work together
to keep cells alive and reproduc-
ing. And at size and time-scales
in between, cells join forces to
function as tissues and organs.  >

Heart courtesy of Nic Smith. Lungs courtesy of
Ching-Long Lin and Merryn Tawhai; Bones courtesy
of Marco Viceconti. Human figure is © Andreas
Meyer | Dreamstime.com.

PhysiomeTHE

A Mission 
Imperative

By Katharine Miller
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This is the reality of human biol-
ogy: events span a 109 range in

lengthscale (molecular to organismal)
and a 1014 range in timescale (molecular
movement to years). To understand this
biology—and provide appropriate med-
ical care—scientists need to understand
the interactions across these scales. 

“Systems that have clinical relevance
and involve how to treat or prevent dis-
ease are always multi-scale and multi-
feedback,” says Peter Kohl, MD, PhD,
reader in cardiac physiology at the
University of Oxford and a coordinator
of the Virtual Physiological Human
Network of Excellence (VPH NOE)
funded by the European Commission. 

Hence the physiome: an internation-
al effort to quantitatively describe
human physiology across this vast range
of scales. “Basically, with the range of
scales involved, you have a mission

impossible in front of you,” Kohl says.
“On the other hand, whether you get
your head around it with or without
quantitative models, it remains the same
range. It’s therefore a mission imperative
rather than a mission impossible.” 

Fortunately, the goal is not to simu-
late an entire physiological human on a
computer in full detail (which would
require more computational power
than is available on the planet), but
rather to develop models that “simplify
the system to provide insight and iden-
tify causal relations,” Kohl says.  

Some physiome models are already
providing remarkable insight, says Jim
Bassingthwaighte, PhD, professor of
bioengineering at the University of
Washington, who defined and named
physiome in the early 1990s. Physiome
efforts have sprung up in many different
countries, with projects involving just
about every organ in the body.  Models
of the heart are the most advanced, and

are currently being used in clinical stud-
ies to optimize treatments for a variety
of heart problems. Physiome models of
the lung and neuromuscular system are
also making breakthroughs. Peter
Hunter, PhD, director of the Auckland
Bioengineering Institute (ABI) at the
University of Auckland in New
Zealand., believes that, over the next
few years, multi-scale approaches will
achieve clinical outcomes that wouldn’t
have been otherwise possible. 

One reason the physiome can make
a difference is that medical treatments
are often built on a phenomenology of
“I do this thing and get this result,” says
Nic Smith, PhD, professor of computa-
tional physiology at Oxford University
and scientific coordinator of euHeart,
the VPH heart physiome project. “In
many ways, the physiome effort is trying
to change that: To underpin the result
with mechanisms that we can identify
and think we understand.” 

A WORLDWIDE
EFFORT 

The notion of the phys-
iome, Kohl says, is “more a
philosophy than a project,
and there are many people
around the world who have
adopted that philosophy.” The
European Commission funds
the “Virtual Physiological
Human” (VPH) effort; the
National Institutes of Health
in the United States have the
Interagency Modeling and

When complex (top two rows) and simple
(bottom two rows) rabbit ventricular models
were each induced into arrhythmia, the pat-
terns of electrical activity differed noticeably.
The complex model included finer anatomi-
cal features such as vessels and endocardial
structures. These extended the period during
which arrhythmic activity was observed
(compare last two panels of each sequence),
illustrating the importance of using realistic
heart models for patient-specific diagnosis
and treatment prediction. Simulations per-
formed with the Cardiac Arrhythmia
Research Package. Figure courtesy of Dr
Martin Bishop, University of Oxford. For fur-
ther detail see Bishop M., et al.,
Development of an anatomically detailed
MRI-derived rabbit ventricular model and
assessment of its impact on simulations of
electrophysiological function, Am J Physiol
Heart Circ Physiol 298:699-718, 2010.



Analysis Group and the Multiscale
Modeling Consortium with specific
funding initiatives directed at phys-
iome research. The International
Union of Physiological Scientists
houses “The Physiome Project” and in

particular the CellML project
(www.cellml.org), fed largely by Peter
Hunter’s Institute in New Zealand. And
countries such as the United Kingdom,
Japan and China also have their own
physiome projects (not described further
here, but meritorious in their own right). 

Though they share a similar philoso-
phy, the various efforts have quite differ-
ent focuses. For example, Peter Hunter’s
project in New Zealand seeks to build
models of every organ system and every
level within each organ system.  In the
future, the plan is to have modules that
can be shared and connected to study
whatever someone wants to study. 

Meanwhile, Europe’s VPH project,
formerly called the Europhysiome, puts
a strong emphasis on engaging industry
and clinical centers, says Smith,

because that’s what interested the
European Commission. “It’s quite trans-
lational and outcome focused, which
has really moved the physiome from
what is a very appealing scientific vision
to being something that might really

matter to people,” he says.  “I think that
has been a very positive thing.” 

In the US, the focus has been more
on basic science, says Grace Che-Yaw
Peng, PhD, program director at the
National Institute of Biomedical
Imaging and Bioengineering at the
National Institutes of Health. “US
investigators are digging deeper within
each scale or between scales but not
necessarily reaching that far out to clin-
ic or industry,” she says. 

These complementary approaches
may help ensure the best research out-
comes, Peng says. “Should researchers in
Japan, China, US, and Europe agree on
the heart model that gets incorporated
into clinical process?” That’s not neces-
sarily the goal, she says. “Everyone has a
different question.”  

Though a more coordinated approach
might be more efficient, there is a prece-
dent for grassroots efforts producing a
valuable result: the human genome proj-
ect. “It wasn’t coordinated at the outset,
and there was no prescribed effort to

control overlap,” Kohl says, “yet it’s been
one of the most successful integration
activities worldwide, sharing informa-
tion and data. The physiome effort can
learn a lot from that approach.” 

THE HEART PHYSIOME
The heart physiome project began

20 years ago as a collaborative endeavour
between Auckland and Oxford. “In the
physiome vision,” Smith says, “the heart
is arguably the most advanced example
of taking information from lots of sources
and putting it into a consistent frame-
work that you can probe in ways that you
can’t think about all at once.” 

Although the heart is in some ways
simple—it’s a pump—it is nevertheless
complex as it depends on electrical
activation, mechanical contraction,
and fluid dynamics. This is perhaps
why multi-scale research related to the
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“[The Virtual Physiological Human project] is quite translational
and outcome focused, which has really moved the physiome

from what is a very appealing scientific vision to being 
something that might really matter to people,” says Nic Smith.

Here, a multi-scale biophysical electro-
mechanics model of the rat left ventricle pro-
gresses through a single heartbeat cycle
from the end of diastole (A) through multiple
key steps including (B) end iso-volumetric
contraction, (C) end ejection, (D) end relax-
ation, (E) end recoil and (F) end diastases. The
orientation and size of the cones embedded
within the mesh indicate the direction and
magnitude of principal strain, respectively.
Blue and red cones represent states of com-
pression and tension, respectively. Gold
streamlines indicate the fiber orientation.
The 3 colored spheres assist in visualizing the
rotation of the ellipsoid. Researchers used
this model to investigate how feedback
loops regulate heart contraction. Reprinted
from:  Niederer SA, Smith NP, 2009, The Role
of the Frank–Starling Law in the
Transduction of Cellular Work to Whole
Organ Pump Function: A Computational
Modeling Analysis. PLoS Comput Biol 5(4):
e1000371. doi:10.1371/journal.pcbi.1000371. 



identify ways to optimize the therapy to
improve results, then the models could
have clinical predictive utility.” 

EuHeart, the VPH program for
advancing the heart physiome, is also
developing physiome models for optimiz-
ing cardiac resynchronization therapy in
particular patients, Smith says. “The
clinical decisions are in many cases still
relatively high level. For example,
‘should we put the pacemaker at the
back or the front,’” Smith notes. “This

means there are often big clinical win-
dows. We don’t have to get it exactly
right straight away. What we do need is
to demonstrate an improvement over
best practice. I think this is now possible
in an increasing number of contexts." 

McCulloch and euHeart researchers
are now working together to share clin-
ical data. “One of the huge problems
with clinical studies is patient variabil-
ity,” McCulloch says. “Any one model

heart has moved farther and faster than
it has for other organs. “Lots of differ-
ent people can all offer a piece of the
puzzle,” Smith says, and none can
understand it alone. 

Heart physiome models integrate an
impressive number of scales and data
types. For example, to understand how
a mutation in the myosin regulatory
light chain filters up through the scales
to alter the dynamics of the heart beat,
producing heart failure in humans and
in a genetically engineered mice
model, Andrew McCulloch, PhD, pro-
fessor of bioengineering at the
University of California, San Diego
and his colleagues created a multi-scale
computer model of the mouse heart.
The ingredients included models of
molecular motors, whole cell twitch
forces, tissue stresses and 3-D muscle
fiber stresses, ventriclular geometry,
and hemodynamic loading conditions.
The output showed that changes in
phosphorylation of the regulatory light
chain (due to a mutation) reduce the
twist of the mouse ventricle during sys-
tole, which can be an early indicator of
heart failure. The changes were then
validated in mice in vivo. 

The heart provides a great testbed
for application of the physiome
approach to direct outcomes, whether
clinical or commercial.  For example, if
the heart stops contracting synchro-
nously and loses efficiency, patients may
benefit from a treatment called cardiac
resynchronization therapy: an implant-
ed pacemaker is used to help both ven-
tricles of the heart contract simultane-
ously. But only about two-thirds of
patients given resynchronization thera-
py respond. So McCulloch’s team is
developing heart models to optimize
this therapy for individual patients. The
models rely on patient-specific data
that is clinically availible: catheter sys-
tems map the heart’s electroanatomical
activity and hemodynamics; echocar-
diography measures heart function; and
CT scans measure heart structures. The
resulting model reconstructs the heart’s
baseline function and predicts the like-
ly outcome of specific cardiac resyn-
cronization therapy plans. These pre-
dictions are then compared to the
patient’s outcomes at three months. “At
this point, we are just following diagno-
sis and treatment to see if the model can
predict what actually occurs,”
McCulloch says. “If we could better
identify responders, or could better
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When a large deformation mechanical model of the
heart is coupled to a Navier-Stokes model of blood
flow within its chambers, researchers can track
streamlines through the ventricular volume and
observe deformation of the finite element geometry.
Courtesy of Nic Smith, Matthew McCormick and
David Nordsletten at Oxford University in the UK.

“One of the 
huge problems with 

clinical studies is 
patient variability,” 

McCulloch says. 
“Any one model is not
going to be that useful.  
We need to understand

sources of variation: 
What’s different such 
that some patients

respond and 
some don’t?” 
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THE LUNG PHYSIOME 
The lungs sit within the chest cav-

ity where they expand and recoil as the
diaphragm contracts and relaxes.
Embedded within the sponge-like tis-
sue of the lungs is a branching tree of
conducting airways that expand and
recoil with each breath. Air flows in
through the larger to smaller branches
to reach the gas exchange surface, and
back out again. Gas exchange—which
occurs in the alveoli—also requires a
matching supply of blood to and from
the gas exchange surfaces. 

Multi-scale models of the lung’s com-
plexity are starting to yield some interest-
ing findings but are still a step or two
away from clinical application. One
group of collaborating researchers in New
Zealand and Iowa are coupling subject-
specific imaging with geometric lung
modeling and computational fluid
dynamics.  The result is a multi-scale lung
model that incorporates the entire airway
from the oropharynx to the alveoli.

“We’re really taking a very systematic
and structured approach, similar to
what’s been done with the heart, in cre-
ating anatomically realistic models,” says
Merryn Tawhai, PhD, associate profes-
sor in the Auckland Bioengineering
Institute at the University of Auckland,
New Zealand. “We’re building up
patient-specific databases and then
working down toward modeling cellular
functions and putting that into our
whole organ model.”  

One of Tawhai's collaborators is
Eric Hoffman, PhD, professor of radi-
ology, medicine and biomedical engi-
neering at the University of Iowa. He
acquires detailed images of the lung
using state-of-the-art spiral computed
tomography imaging. The imaging is
then converted into a 3-D mesh model
of the airway down to the 28th genera-
tion of branching using a combination
of imaging and mathematical algo-
rithms. This provides a far more realis-
tic image of the airway tree than previ-
ous lung models, which typically
extend to only the 6th-9th generation
at most. The uppermost airways in the
model are shaped specifically to match
the individual subject’s imaging. To fill
in the remaining lung tissue down to
the airways just before the alveoli, the
team uses a volume-filling approach
developed by Tawhai’s lab and previ-
ously validated. Next comes the com-
putational fluid dynamics, to look at
airflow, and regional ventilation. And

is not going to be that useful.  We need
to understand sources of variation:
What’s different such that some
patients respond and some don’t?” 

Another euHeart project models
patient-specific coronary blood flow to

help doctors determine whether the
best treatment for a blockage is a stent,
medical therapy, or angioplasty. “We
want to be sure we’ve chosen the right
therapy for the right patients,” Smith
says. Through euHeart, Smith has
funding to simulate a number of differ-
ent patient cases.  “Our goal is to get to
the point where we have compelling
evidence to do clinical trials,” he says. 

Other members of euHeart are deter-
mining how to best stop atrial fibrilla-
tion.  If medication is not successful, the
typical treatment is ablation—essential-
ly burning scars in the heart muscle to
block the wave of electrical conduction

so that it doesn’t end up in a cardiac spi-
ral. Currently, more than 25 percent of
treated patients have to come back for
additional treatments after about three

months, says Olivier Ecabert, PhD, of
Philips Research Laboratories in
Aachen, Germany, who is also joint
coordinator of euHeart with Smith. The
problem is: where to burn?  “Ideally,”
Ecabert says, “doctors would have a

patient-specific model
and simulate several
ablation line options
to see how the patient
will recover.”  The
physician could then
select the ablation line
that seems most prom-
ising or, pushing it fur-
ther, the computer
could optimize the sur-
gical plan.   

Other euHeart
projects include pre-
dicting when valves
are wearing out and

should be replaced; and figuring out
how to make left-ventricular assist
devices (LVADs) work best for the
patients who have them. 

Philips Research Laboratories,
euHeart's project coordinator and one
of its industrial partners, joined euHeart
because the models might result in
some kind of “proof of principle” for
software or hardware that Philips could
then develop. For example, Philips
already developed a geometric heart
model that can be adapted to automati-
cally analyze data from 3-D images of
the heart. “Now we would like to learn
what is necessary to integrate physio-
logical information into the model and
then incorporate that into imaging
equipment software,” Ecabert says. 

The fact that industry is interested
suggests that physiome modeling, at least
of the heart, is coming of age. “We are
convinced that this type of physiological

model will be more and more applied in
the future by clinicians. It’s on the rising
side of the curve and Philips would like
to join the trend early,” Ecabert says.    
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At mid-contraction during an ischemic event, this
model of coronary perfusion within the cardiac ventri-
cles shows large gradients in the concentration of oxy-
genated blood delivered to the heart around the
ischemic region but relatively constant perfusion else-
where. Courtesy of Nic Smith.

“We are convinced that this type of 
physiological model will be more and more
applied in the future by clinicians. It’s on the 

rising side of the curve and Philips would 
like to join the trend early,” Ecabert says. 



this is where some exciting
results are starting to filter in.  

Ching-Long Lin, PhD,
professor of mechanical and
industrial engineering at the
University of Iowa, devel-
oped a parallel computa-
tional fluid dynamics
model to predict airflow
in Hoffman and Tawhai’s
model lung. The team
demonstrated that the
model can capture
detailed flow structures
in regions of interest,
and can match experi-
mental studies of
regional ventilation for
the whole lung in a
subject-specific way. 

The complete model
should prove useful for
studying the progression of diseases such
as asthma and for predicting particle
deposition in individual patients, which
is important for dosing of inhaled med-
ication, Lin says. One problem, however,
is computational cost. To capture lami-

nar-transitional-turbulent flow in the
multi-scale airway model required about
one week on the TeraGrid Lonestar and
Ranger clusters at the Texas Advanced
Computing Center for one human sub-
ject. “In terms of clinical applications we
have to reduce that,” Lin says. “Doctors
probably don’t want that much detail
anyway. But the multi-scale computa-
tional framework of the human lungs
can provide the detailed information
needed to understand the interplays
between pulmonary structure and func-
tion at their most fundamental level.” 

Tawhai’s group is also studying
airway hyper-responsiveness in collabo-
ration with several other groups.
Together with James Sneyd, PhD, pro-
fessor of mathematics at the University
of Auckland, they’ve developed a model

of contraction within the airway smooth
muscle cell that is then embedded in a
model of the cross section of the air-
way and the surrounding parenchy-
mal tissue. This is in turn embed-
ded within the whole anatomically
structured airway tree model,
which is embedded in the lung
tissue. “It produces a lung that
breathes and develops different
forces depending where you are
within the lung and so each air-
way experiences its own partic-
ular force balance,” Tawhai says.

Experiments by collab-
orators at the University
of  Massachusett s ,
McGill University, and
the University of
Vermont informed and
validated the model.
“So we’re starting to
get a handle on the

emergence of patterns of
broncho-constriction within the lung
and how those vary in different parts of
the lung,” she says.  “Some parts are
more susceptible to airway closure than

others.  This is ongoing work.” 
In a different project,

Tawhai’s lab is trying to under-
stand the safest level of heat
and humidity for air delivery
to mechanically ventilated
patients (when an endotra-
cheal tube bypasses the nose
and mouth). To get at that
question, they had to start at
the cell level inside the lungs.

This multi-scale model displays the distribution
of ventilation in the lung. The model couples

the elasticity of the alveolar tissue to a
model of airflow through the entire con-

ducting airway tree. Red represents
highest flow; blue represents lowest
flow. The vertical distribution occurs
because deformation of the lung tis-
sue under its weight makes the tissue
in the base of the lung effectively
more compliant, so it expands readi-
ly when the lung breathes in.
Courtesy of Merryn Tawhai.

A multi-scale, anatomically based mesh of the airway tree. Courtesy of Ching-
Long Lin and Merryn Tawhai. Reprinted with permission from IEEE, from Lin, C et
al., Computational fluid dynamics, Engineering in Medicine and Biology
Magazine, IEEE, Issue 3 (25-33) May-June 2009.  

“[T]he multi-scale computational framework 
of the human lungs can provide the detailed

information needed to understand the 
interplays between pulmonary structure and
function at their most fundamental level,” 

says Ching-Long Lin. 
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On top of the ciliated epithelial cells
that line the airway, there’s a layer of
liquid that must be maintained to a very
specific depth in order to achieve mucus
clearance. Nicolas Warren, PhD, a
graduate student in Tawhai’s  group in
the ABI and co-supervised with
Edmund Crampin, DPhil, from the
ABI , developed and validated a model
of such cells joined together with liquid
moving through multiple cells. Tawhai’s
team then put the cell model into the
whole organ model, distributing cells
along airways and through the airway
tree, and then directing the lung to
breathe with different temperatures and
humidity. They found that the epithe-
lial cells alone couldn’t transport
enough moisture to maintain the depth
of the surface liquid during normal
breathing. “So there has to be some
other significant source of moisture,”
Tawhai says. “And it’s something we
couldn’t have seen without putting it
into the real anatomical framework.”
Possibly submucosal glands or transport
of fluid from the lung periphery provide
the additional fluid needed, Tawhai
says, but it’s really not known. Still, now
there’s a model on which experimental-
ists can test various hypotheses.
Tawhai’s team is currently working on

adapting the epithelial cell model to
make it more specific to disorders such
as cystic fibrosis. 

The epithelial cell model is also the
starting point for a new NIH grant led by
Lin. It will integrate in vitro cell data and
in vivo image data together with Lin's in-
house computational fluid-structure-
interaction technologies and the cell
model to understand the interplay
between organ, tissue, and cells. A pre-
dictive computational lung model across
these scales will allow researchers to
assess individuals’ response to therapy
over time.  Ultimately, Lin says, “We will
be able to use this information to better
tailor a treatment plan for the individual
at the most basic level.”

THE MUSCULOSKELETAL 
PHYSIOME 

Physiome efforts for neuromuscular
modeling are ramping up. A relatively
new and major effort is Europe’s VPH
Osteoporosis project (VPHOP), a collab-
oration among 19 European academic
and industrial partners, led by Marco
Viceconti, PhD, technical director of the
Medical Technology Laboratory at the
Istituto Ortopedico Rizzoli di Bologna in
Italy. The project seeks to predict the risk

of fracture in people with osteoporosis.
As people age, their bones weaken and
lose calcium, causing a condition known
as osteoporosis. Meanwhile, they lose
neuromuscular control, which can lead
to falls. These changes happen at the
cellular level in the bones and muscles
and manifest as changes in morphology
at the tissue level.  “So in order to pre-
dict risk of fracture over time, you have
to account for whole body, organ and tis-
sue scales,” Viceconti says.  “That’s what
we’re doing in VPHOP.”  

By September of this year, two years
into the VPHOP project, Viceconti
expects to run a very large probabilistic
model that accounts directly or indi-
rectly for all factors that act or con-
tribute to the risk of fracture in one
patient at any possible scale. The simu-
lation should answer the question: “Of
the dozens of possible parameters that
can define the multi-scale phenome-
non, which ones really are important
and make a difference?” he says. “That
answer will drive the most critical part
of the project—not the modeling itself,
but the ability to measure in patients
the information we need with the
accuracy we need.” 

The VPHOP is partnering closely
with industry to develop the technolo-

gies for measuring this key
patient information in a cost-

Multi-scale quantitative models need to be validated and
reproducible if they are to be useful for clinical workflows,
says Hunter. The Physiome infrastructure developed by
Hunter, Dr Poul Nielsen and their colleagues (and provided at
www.cellml.org) makes that process more robust and trans-
parent, he says. Researchers can confidently download an
annotated model from www.cellml.org knowing that it’s
reproducible. The model can then be incorporated into larger
scale workflows for use in a clinical setting. 

“Having the means to incorporate the outputs of different
groups through standards and interoperability is quite a
worthwhile goal,” Hunter says. “And an essential one if we’re
to get the modeling of biology into clinical processes.”  

Models held by the models.cellml.org model repository
use CellML, a markup language for biophysical models of
cells. A repository at the European Bioinformatics Institute
(EBI) contains models marked up with SBML, a language for
systems biology models.  Hunter’s group is also creating a
new standard called FieldML for integrating spatial infor-
mation. In recent years, Hunter says, the CellML and SBML
communities have become more integrated. “SBML and
CellML are now working together jointly to curate models

and develop standards around metadata.”  
From funding agencies’ point of view, “We don’t want peo-

ple to have to reinvent models,” Peng says. But at this point,
“The different formats are all co-existing.  No one wants to
stand up and say one is better than another.” 

It’s also true that some multi-scale models require infor-
mation that goes beyond what CellML or SBML can provide,
McCulloch says. “It’s not possible to describe everything in
our cardiovascular model using that system.” So McCulloch
is building a database that includes metadata about his
models that will be consistent with CellML and other model
description formats but goes beyond them to include addi-
tional information.  

Nic Smith agrees that standards are useful for sharing
between different academic centers, but he says, an impor-
tant step to embedding multi-scale models in clinical work-
flows is a demonstration that they add extra information
that can be made available to physicians in a familiar for-
mat. “We are working on developing interfaces and putting
them in a context where physicians are used to seeing
them—in connection with imaging and clinical data
accessed directly from the hospital’s computer system."

Standardizing the Physiome
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effective way. For example,
they’ve developed ACTIBELT,
a device embedded in a belt
buckle that can record the
kinematics of the body for five
days. Also, jointly with Philips,
VPHOP is developing a system,
based on Philips Medical
Systems XpertCT imaging
technology, that can generate
3-D images of bone at the tissue
scale—primarily for patients at
high risk for a fracture. And
with BioSpaceMed, they are
building a very low-dose whole
body X-ray machine called
EOS-QT that can generate a 3-
D model of the patient skeleton
using sophisticated morphing
technology and possibly even
estimate densitometry at each
point and provide a preliminary
estimate of the risk of fracture.
“We are trying to push limits of
the current imaging technology
by using all possible tricks,”
Viceconti says. 

The VPHOP project has
recently started a cooperation
project with Simbios, a
National Center for Biomedical
Computing at Stanford (and publish-
ers of this magazine). Much of
Simbios’ neuromuscular modeling
work has a multi-scale aspect, which
opens the door to musculoskeletal

physiome modeling. VPHOP and
Simbios hope to connect their online
communities and integrate their tools.
Eventually, Viceconti says, “we’d like

to join forces to attack a grand prob-
lem where the multi-scale approach
can make a difference.” 

For example, both Viceconti and
Scott Delp, PhD, professor of bioengi-

neering and mechanical engineering at
Stanford University and co-PI of
Simbios, are interested in exploring
probabilistic approaches. “Probabilistic

approaches provide a rigorous method
to account for variability between sub-
jects,” says Delp.

Viceconti says the deterministic
nature of existing models—one input
produces one output—really limits their
ability to bring the models into clinical
practice. "As far as input is good, the
output is good. But this is not real life,”
he says. “If you include a probabilistic
approach, you can factor in your igno-
rance. So you can let a parameter vary
widely to see if it matters, and if it does-
n’t then you can leave it out.”  

CONCLUSION
Progress on modeling the physiome

reaches well beyond the heart, lung
and musculoskeletal examples covered
here. Researchers are taking a phys-
iome approach to the kidneys, digestive
tract, lymphatic system, and even to
some extent the nervous system and
the brain, Hunter says. 

Before now, Bassingthwaighte says,
people have been thinking too narrow-
ly. “But many bright molecular biolo-
gists are now trying to be more integra-
tional,” he says. “The physiome pro-
vides context for that, and for inspiring
people to think more broadly.”  !!

A clinical application of a multi-scale model is used several times a year at Viceconti's Institute to help mon-
itor children who’ve received bone transplants as a treatment for a rare type of bone cancer called Ewing's
sarcoma. These children need aggressive rehabilitation, but doctors don’t want to risk fracturing the recon-
structed bone. So Rizzoli bioengineers do a full scan and gait-analysis with markers, collecting all possible
data over a whole day.  They then generate a whole body and organ level model for the bone and simulate
rehabilitation exercise to predict loads acting on the bone and determine fracture risk. “With this informa-
tion, we can assist in determining the rehabilitation program for each patient,” Viceconti says. “This is the
only real-world application we have in clinical practice today.” Courtesy of Marco Viceconti.

“Of the dozens of possible parameters
that can define the multi-scale 

phenomenon, which ones really are
important and make a difference?” 

Marco Viceconti says. “That answer will
drive the most critical part of the project—
not the modeling itself, but the ability to
measure in patients the information we

need with the accuracy we need.” 
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which has established centers to map
the human epigenome and funded tech-
nology development and disease-related
projects in epigenetics. In one of the
early successes of this initiative, the first
complete map of a human epigenome
(detailing DNA methylation for two
human cell lines) was published in
Nature last November. Even TIME
magazine hailed the breakthrough as the
number two scientific discovery of 2009.
In February of this year, scientists also
announced the International Human
Epigenome Consortium, a joint effort
between the NIH and the European
Commission to map 1000 reference
epigenomes within a decade. 

Studying the epigenome is orders of
magnitude more difficult than studying
the genome: organisms have a single
genome, but hundreds of epigenomes
that vary by cell type and developmen-

tal stage; the genome comprises just four
nucleotides, but the epigenome has
many diverse features—including DNA
methylation and numerous changes to
the proteins that pack DNA into chro-
matin. The technologies for epigenome-
wide studies are just coming online; and
they present formidable challenges for
computational biologists and bioinfor-
maticians, who must figure out how to
process and integrate the enormous
amounts of data, as well as correlate
them with exposures and diseases. 

“The computational epigenetics field
is not very developed,” says Christoph
Bock, PhD, a research scholar at the
Broad Institute and Harvard Stem Cell
Institute. “But this is going to change
over the next few years.” 

Though the field of epigenetics is
still in its infancy, the potential payoffs
are enormous. Epigenetics has been
implicated in cancer, aging, diabetes,
mental illness, autism, and Alzheimer’s
disease. The epigenome is more readily
changeable than the genome, which
could potentially revolutionize how we
prevent, diagnose, and treat disease.
Already, several epigenetic drugs are
being used to treat cancer.

“The good news is, in terms of future
clinical potential, the epigenome is

In the early 19th century, Jean-
Baptiste Lamarck explained evolu-
tion as the inheritance of acquired
traits; he believed that changes due

to behaviors and exposures in one gen-
eration could be passed to subsequent
generations. The theory has long since
been dismissed. Our actions rarely
affect the genetic code of our germline,
so our children cannot inherit the con-
sequences, modern genetics assures us. 

Surprisingly, however, there may be
some truth to Lamarckian inheritance
after all. It turns out that our behaviors
and exposures can modify our
epigenome—causing heritable changes
in gene expression without altering the
nucleotide sequence. These changes
(such as DNA methylation) can be
passed down to our offspring, with pro-
found consequences. The phenomenon
is well documented in mice, and recent

human studies suggest that our food
choices and smoking habits may actual-
ly affect our kids’ and grandkids’ risks
for diabetes, obesity, and early death.   

This is just one of the many poten-
tial paradigm shifts arising out of the
burgeoning field of epigenetics.
Though epigenetics has long been rec-
ognized as important—we’ve known
for decades that it is involved in devel-
opment, cell differentiation, imprint-
ing, and X-chromosome inactivation—
it was seen as a side-show to the main
attraction, genetics. That view is rapid-
ly changing, however, as there is grow-
ing recognition that epigenetics may be
just as important as genetics in human
health and disease. 

In 2008, the NIH launched a $190-
million Roadmap Epigenomics Program,

reversible. So, if there’s a state that you
can alter by chemical means—the
methylation profile, for example—you
can potentially reverse an epigenetic
effect,” says Joseph R. Ecker, PhD,
professor in Genomic Analysis
Laboratory at the Salk Institute. 

Developing the 
Epigenetic Toolkit

The best studied epigenetic feature is
DNA methylation: methyl groups
(–CH3) are added to cytosine bases,
generally in the context of neighboring
cytosines and guanines (CG dinu-
cleotides) such that both DNA strands
contain a methyl-C symetrically.
Methylation is preserved during mitosis
and meiosis, and it serves to silence
genes (by blocking transcription factors
or recruiting proteins that compact
chromatin). Other epigenetic features

include biochemical modifications of
the histone proteins that wrap DNA
into chromatin. For example, adding
acetyl or methyl groups to certain lysine
residues (e.g. H3K4) in the tails of the
histones makes DNA spool more loose-
ly, turning genes on; whereas adding
methyl groups to other lysine residues
(e.g. H3K9 or K27) makes DNA spool
more tightly, shutting genes off. These
changes are preserved during cell divi-
sion, though the mechanisms are not
well understood. Non-coding RNAs
(RNAs that are transcribed but not
made into proteins) also play a role in
the epigenome, helping to guide and set
up the other epigenetic marks or keep-
ing chromatin open by mere transcrip-
tional activity, says Michael Zhang,
PhD, professor of computational biolo-
gy and bioinformatics at Cold Spring
Harbor Laboratory (and in the process
of moving to University of Texas,
Dallas, to set up a new Center for
Systems Biology), who is part of the
Roadmap initiative to map reference
human epigenomes.  

The gold standard for detecting
methylation is to treat DNA with
bisulfite prior to sequencing. Bisulfite
converts cytosines to uracils unless they
are protected by methylation, so sur-

Opposite: DNA Methylation. This shows a
short DNA helix "accgcCGgcgcc" methylat-
ed on both strands on the center cytosine.
DNA methylation serves to turn genes off
by blocking transcription factors or recruit-
ing proteins that compact chromatin. (The
structure was taken from the Protein Data
Bank, accession number 329D; rendering
was performed with VMD and post-pro-
cessing was done in Photoshop.) Copyright
Christoph Bock 2010.

There is growing recognition that epigenetics may be just 
as important as genetics in human health and disease. 



viving Cs represent methyl-Cs. The
gold standard for histone marks is chro-
matin immunoprecipitation, or ChIP:
DNA is crosslinked to histone proteins
and then exposed to antibodies that

recognize specific modifications (e.g.,
acetylation of lysine 5), followed by
microarray analysis (ChIP-on-chip) or
direct sequencing (ChIP-Seq). Most
epigenome-wide studies to date have

been done on arrays, but researchers are
increasingly turning to next-generation
sequencing (epigenome-wide bisulfite
sequencing, ChIP-Seq, and RNA-Seq)
in lieu of arrays. Sequencing remains
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Epigenetic Players. Both the nucleosome (ribbons and rods structure in foreground) and
CpG islands (as illustrated in the background) play important roles in the epigenome.
Nucleosomes are the basic unit of DNA packaging; when DNA is tightly wound around the
core proteins of the nucleosome, this prevents gene expression. CpG islands are areas that
are highly enriched in CGs and are typically found in gene promoters; methylation of these
islands shuts off gene expression. (The nucleosome structure was taken from the Protein
Data Bank, accession number 1KX5, with rendering using VMD and POV-Ray and postpro-
cessing in Adobe Photoshop.) Copyright Christoph Bock 2010.



“But where you’re not fine is how
you’re going to analyze the data.” 

More and more, he says, that’s what
his sequencing center needs to provide
as a service—the ability to quickly
make sense of the data.  “Over the last
year, the focus was so much driven by
just surviving the wave of data that was

coming down on us that a lot of the
work was algorithmically relatively
basic. So there were no complex mod-
els involved, but everything had to be
ultra-high speed and highly optimized
code so we could process these huge
amounts of data.” 

But primary processing of the data is
just the first bioinformatics challenge.
Researchers must also tackle the high-
er-level issues: how to integrate the dif-
ferent epigenetic marks with each
other and with genome and gene
expression data; how to identify and
interpret cross-talk between different
epigenetic marks; how to make predic-
tions about biological function; and
how to compare samples, such as from
diseased cases and healthy controls.   

“Comparison of epigenomes is not
yet a defined problem. We are defining
it and implementing solutions as we
go,” says Aleksandar Milosavljevic,
PhD, associate professor of molecular
and human genetics and a PI of the

NIH Roadmap’s Data Analysis and
Coordination Center at Baylor College
of Medicine. 

Mapping the 
Human Epigenome

The Roadmap initiative established
four Reference Epigenome Mapping
Centers, which are covering different
aspects of the epigenome (different
assays, epigenetics marks, or cell types)
with the aim of filling in a matrix of
targets. “We are prioritizing the filling
of that matrix, so that meaningful
analysis can be done at various stages,”
Milosavljevic says. The first Human
Epigenome Atlas data freeze occurred
on April 1st.

The mapping centers send their
data to the coordinating center (at
Baylor), which has developed
pipelines for processing and merging
the data. “We define and facilitate
data flow, data analysis, integrative
analysis, and quality control and coor-
dination with all participants,”
Milosavljevic says. The standards and
computational tools that they’ve
developed will also serve as resources
for the larger epigenetic community. 

One of the first fruits of the
Roadmap initiative has been the com-
plete sequencing of a human epigenome
at base-level resolution, published in
the November 2009 issue of Nature.
This was a collaborative effort involv-
ing some members of the sequencing
consortia, led by Joseph Ecker of the
Salk Institute. They used bisulfite treat-
ment combined with next-generation
sequencing to map the methylation
profiles (the “methylome”) of a well-
known embryonic stem cell line and a
differentiated cell line. “Saying you’ve

mapped the human epigenome is cor-
rect, but it’s not all of the human
epigenome—it’s just two cell types,”
Ecker notes. “But it’s a start.”

Second-generation sequencing was
key, Ecker says. “That’s what allowed us

cost-prohibitive for large epidemiology
studies on human tissue, but even this
will change in the next few years.

“The field of epigenetics is moving
at an incredible pace, almost exclusive-
ly driven by technology development in
the sequencing field,” says Bock, who
tackles computational epigenetics at

the Broad Institute, one of the NIH
Roadmap’s epigenome sequencing cen-
ters. “The second generation sequencers
are absolutely key for everything we do;
and the new machines that are going to
become available this year will again
change everything we are doing.” 

“The epigenome-wide methods are
advancing so rapidly that if we wait a
year, we’ll be able to get two to four times
as many marks at half the cost,” agrees
David A. Bennett, MD, professor of
neurological sciences at Rush University
and director of the Rush Alzheimer’s
Disease Center, who is PI on a Roadmap
grant to study the epigenetics of cogni-
tive decline and dementia. 

One of the goals of the Roadmap
initiative is to help standardize
epigenome technology, particularly
approaches for processing and analyz-
ing the data. 

“At the first Roadmap meeting, it
was kind of an eye-opener for me to see
how early in the process everyone is—
even with cell lines, where they’re
doing this to known cells types, let
alone to a chunk of brain tissue with
different cells in it,” Bennett says. “It’s
not just the math and the hardware and
the software; there are some big con-
ceptual issues about how to approach
some of these datasets.” 

Bock agrees. “You can just buy the
latest Illumina sequencer and down-
load protocols for ChIP-Seq, and
experimentally you’re fine,” Bock says.
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“You can just buy the latest Illumina
sequencer and download protocols
for ChIP-Seq, and experimentally
you’re fine,” Christoph Bock says.
“But where you’re not fine is how
you’re going to analyze the data.”

“Comparison of epigenomes is not yet 
a defined problem. We are defining it

and implementing solutions as we go,” 
says Aleksandar Milosavljevic.
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tent. So we looked broadly and without
bias, and we saw things that were com-
pletely unexpected,” Ecker says. 

Surprisingly, 25 percent of the
methylation in the embryonic stem cells
was in a non-CG context (i.e, C next to
A or C next to T). It is “a complete mys-
tery” how non-CG methylation is main-

tained during DNA replication, Ecker
says.  When the DNA unwinds, the
complementary portion of the DNA
strand contains no Cs (and, therefore,
no methyl-Cs) so there’s nothing for the
methylation machinery to copy on that
strand. They also identified another

to do 30-times coverage of the genome
for two different genomes in a fairly
short time.” 

Every step posed major computa-
tional challenges, Ecker says. The
sequencers produced terabytes-worth of
data and just figuring out how to move
these data off the machines was initial-

ly an issue. They also had to develop
new approaches to interpreting the
data. For example, they developed an
algorithm called “Hammer,” which
finds methylation sites with a low false
discovery rate. “This is the informatics
guys’ joke because we’re measuring

methyl-C—also called MC—so  it’s
MC Hammer,” Ecker quips. 

Previous attempts to look at methy-
lation across the human genome have
been array-based. But arrays only look
for methylation in certain places. For
example, many arrays only query “CpG
islands”, CG-rich areas of the genome

that are typically found in gene pro-
moters. In contrast, whole methylome
sequencing reveals methyaltion in all
its contexts.  

“We didn’t have any expectations of
what the epigenome was going to look
like in terms of its methylation con-

Tackling the Human Epigenome. The NIH Epigenome Roadmap initia-
tive established four mapping centers that are attempting to create a
Human Epigenome Atlas by filling in a matrix of targets (different cell
lines, assays, and epigenetic features). The first data freeze occurred

April 1st, 2010.  The samples assayed by the mapping centers are indi-
cated in the rows and the assays in the columns. A live version with
viewable and downloadable assay results is available at
www.epigenomeatlas.org. Courtesy of Aleksandar Milosavljevic.

“We didn’t have any expectations of what the epigenome 
was going to look like in terms of its methylation content. 

So we looked broadly and without bias, and we saw 
things that were completely unexpected,” Ecker says.
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novel type of methylation: differentiat-
ed cells, but not stem cells, contain long
stretches of half-methylated DNA
(which they called “partially methylated
domains”). The significance of these
domains is unknown, but other groups
have now identified them in cancer
cells, Ecker says.

“I think we learned from this that
we should probably have less bias about
what we’re going to find, otherwise we
won’t find it,” Ecker says.

Connecting Nurture 
with Nature  

Part of the excitement surrounding
the epigenome is that it is far more
responsive to the environment than the
genome. In fact, epigenetics blurs the
lines of the nature versus nurture debate,
as it turns out that our environments
can extensively impact our inherent
biology. Monozygotic twins start life
with highly similar epigenomes, but
their epigenomes diverge as they age,
particularly if they’ve had different envi-
ronmental exposures. 

“Epigenetics gives you a way to
bridge the gene versus environment
question. It is genetic in a way, because
you can measure it just like DNA, but
it is also influenced by the environ-
ment,” Bock says. “So you can’t really
give people a machine to carry with
them that over a lifetime measures all
environmental exposures. But the
epigenome might provide such a
machine, because it responds to all
kinds of external influences.”
Epigenetic changes have been related
to aging, smoking, diet, alcohol,
asbestos, arsenic, inflammation, heavy
metals, ultraviolet radiation, infection,
toxins, stress, and psychological abuse.

“I think the sexiness of epigenetics
is that there’s this potential connection
between exposures and the biological
consequences of them. You can even
measure the biological consequences of
social impacts,” says Margaret Daniele
Fallin, PhD, associate professor of epi-
demiology at the John Hopkins
University Bloomberg School of Public
Health, who is co-PI on a Roadmap
grant to study the epigenetics of autism.

The reference epigenomes will be
incredibly valuable, but they won’t tell
us much about how epigenomes vary in
healthy populations and in response to
the environment, says Karl Kelsey, MD,
professor of community health at Brown
University. Conducting such epidemio-

logical studies is a much harder task
because you have to study many people
and many different tissues, some of
which may not be easily accessible
(unlike for genetic studies, where DNA
can be acquired from any accessible
cells). 

“Every tissue in your body has a dif-
ferent epigenome. So if you’re looking
for variability, you’ve got to look at
every tissue, and suddenly the problem
becomes more complicated,” Kelsey
says. Most studies to date have used
array-based technologies, because it’s
still cost-prohibitive to sequence so
many samples.

For example, in a 2009 paper in
PLoS Genetics, Kelsey and his col-
leagues used Illumina GoldenGate
arrays—which probe methylation in
1500 targeted CpG sites from hundreds
of genes—to characterize 217 normal
human tissue samples from 10 anatom-
ical sites. One of the computational
challenges is that individual methyla-
tion events cannot be assumed to be
independent, so statistical methods
need to account for this correlation
across methylation sites. “I think this is
a poorly understood and poorly recog-
nized problem, for methylation data

certainly,” Kelsey says. They used a par-
ticular recursive partitioning algorithm
(developed by E. Andrés Houseman,
ScD, assistant professor of community
health at Brown University) that uses
mixture models to deal with this prob-
lem. “It’s a very interesting solution,”
Kelsey says. 

They showed that methylation
increases with age within CpG islands,
but decreases with age at other loci. In

previous work, they showed that smok-
ing methylates the promoter region of
the p16 tumor suppressor gene in lung
tissue. These same methylation changes
have also been linked to cancer. 

Diagnosing and 
Treating Cancer 

Epigenetics has been a hot topic
among cancer researchers for more
than a decade—much longer than for
other diseases. Epigenetic changes have
been identified in almost all cancers.
Indeed, according to Kelsey,
“Epigenetics is an equal partner to
genetic change in creating cancer.”
The epigenome can silence tumor sup-
pressor genes or wake up oncogenes or
imprinted genes. 

Epigenetics holds promise for early
detection, as many of the changes
appear to occur early in the progression
to cancer. “In many cases, before tumor
suppressor genes get deleted, their pro-
moters may first get shut off by DNA
methylation,” Zhang says. Cancer cells
often slip into the blood, so it may be
possible to pick up epigenetic signa-
tures from a simple blood test. “So, peo-
ple have done a lot with looking at
changes in blood, urine, and sputum,”

Kelsey says. “And I think that’s a real
possibility. To date, most of the assays
haven’t really borne a lot of fruit. But
we’re just really starting to apply them.” 

Beyond diagnosis, epigenetic mark-
ers may be able to predict the develop-
ment of cancer even before it appears.
For example, about 1 in 200 patients
with Barrett’s esophagus, a premalig-
nant condition, will go on to develop
esophageal cancer each year. Currently,

“I think the sexiness of 
epigenetics is that there’s this potential 
connection between exposures and the 

biological consequences of them. 
You can even measure the biological 

consequences of social impacts,” 
says Margaret Daniele Fallin.
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there is no way to predict who will get
cancer, so every patient must undergo
repeated endoscopies, which entail
high costs, inconvenience, and anxiety,
says Stephen J. Meltzer, MD, the
Hendrix/Myerberg Professor of
Medicine and Oncology at John
Hopkins University. 

His team has identified a panel of
eight epigenetic markers (hypermethy-
lated tumor suppressor genes) that can
correctly distinguish progressors from
nonprogressors about 75 percent of the
time. “When we developed this assay,
we didn’t have the genome-wide or the
epigenome-wide tools that are now
available. So some of the markers we
originally chose to study in-depth may
not be the best or the only ones we end
up with,” says Meltzer, who has a
Roadmap grant to search the epigenome
for novel markers. 

Epigenetic changes may
be reversible, which makes
them a prime target for treat-
ment and prevention.
Already, four epigenetic
drugs that re-activate
silenced genes (presumably
tumor suppressor genes)
have been approved for
treating blood cancers: two
that demethylate DNA and
two that maintain histone
acetylation (histone deacety-
lase inhibitors). These drugs
lack specificity, and in theory
could inadvertently turn on
oncogenes. But, so far, they
appear to do more good than
harm. Researchers are hope-
ful that new agents and com-
binations of agents will be
even more effective and
work on solid tumors. 

Epigenetic cancer research
to date has focused on the
most obvious targets—
methylation of tumor sup-
pressor genes or CpG islands.
But the most relevant epige-
netic events may be happening outside of
these contexts, as demonstrated by
research at Johns Hopkins University.
“Andy [Feinberg] had an intuition that
that wasn’t the place to be looking. I’m
not quite sure why, but it turned out to be
right. He wanted an array that didn’t bias
toward genes or islands. We spent a lot of
time developing that array,” says Rafael
Irizarry, PhD, professor of biostatistics at
the Bloomberg School of Public Health,

who collaborated on the array—called
CHARM (comprehensive high-through-
put arrays for relative methylation)—
with Andrew Feinberg, MD, professor of
molecular medicine, oncology, and
molecular biology & genetics at Johns
Hopkins University School of Medicine.
The array probes regions of high CG
content regardless of whether they are
CpG islands.

Figuring out how to analyze the data
from the arrays has been a challenge,
Irizarry says. Just as with gene expres-
sion arrays, there is a multiplicity prob-
lem—many signals will arise simply by
chance rather than as the result of true
differences between cases and controls;
and distinguishing these is tricky. “It’s
the same exact problem, except it’s
harder,” Irizarry says. Gene expression
arrays focus on predefined units, genes,

whereas methylation arrays focus on
open-ended regions; so there is uncer-
tainty in defining the regions of interest
as well as interpreting the intensity of
their signals. “Basically, what it comes
down to is there are really two dimen-
sions. It’s not just the level of expres-
sion; it’s the size of the region and the
height,” Irizarry says. They are still fine-
tuning their algorithms, he says.   

In a 2009 paper in Nature Genetics,

Irizarry and colleagues used CHARM to
compare normal tissue and colon cancer
samples. As expected, they found many
differences in the methylation profiles.
What was surprising is that these differ-
entially methylated regions were rarely
in CpG islands; rather, they were in
regions adjacent to the islands, which
they deemed “shores.” Interestingly,
while CpG islands generally become
methylated during cancer, the shores
(which may represent alternative tran-
scription start sites) were equally likely
to become demethylated as methylated.
Their findings imply that many cancer
studies to date have been looking in the
wrong places for key methylation
changes. Irizarry’s team is now making
the switch from arrays to next-genera-
tion sequencing. “That introduces a
whole new set of problems,” Irizarry says. 

Epigenetic changes beyond methyla-
tion also play a key role in cancer, but
these haven’t been well studied, says
Terumi Kohwi-Shigematsu, PhD, sen-
ior scientist in the Life Sciences Division
of the Department of Energy's Lawrence
Berkeley National Laboratory, who is PI
on a Roadmap grant to study the epige-
nomics of breast cancer. Her work
focuses on higher-level changes in
chromatin structure that affect gene

Cancer’s Epigenetic Signature. The methylation pattern of colon cancer is distinct from normal colon
tissue and other tissues in the body. Certain regions are hypermethylated (red) and others are
hypomethylated (blue). The tissues were analyzed using the CHARM assay, followed by unsupervised
hierarchical clustering—which perfectly differentiated cancer from non-cancer and colon tissue from
other tissue types. Reprinted by permission from Macmillan Publishers Ltd: Irizarry et al., The human
colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG
island shores. Nature Genetics 41:178-86 (2009). 
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expression. “Epigenetics is probably
governed at these higher architectural
levels,” she says.

In a 2008 paper in Nature, Kohwi-
Shigematsu’s team reported that the
protein SATB1, which helps fold chro-
matin, is overexpressed in aggressive
breast cancer cells and correlates with
metastasis and poor survival. SATB1
binds to certain regions of DNA and
recruits histone-modifying and chro-
matin-remodeling enzymes that in turn
alter the expression of about 1000
genes, many of which are known play-
ers in metastasis. “SATB1 provides the
mechanism for assembling all this 3D
genome architecture to locally deter-
mine epigenomic modifications and
thereby regulate a large number of
genes,” Kohwi-Shigematsu says.
Introducing the protein into non-

metastatic breast cancers in mice
induces invasive tumors while deplet-
ing it from metastatic cells in mice
reverses tumors. Thus the protein has
implications for both prognosis and
treatment. SATB1 binds to certain spe-
cialized regions of DNA throughout
the genome. Kohwi-Shigematsu’s team
will use ChIP-Seq to map these areas
and identify which ones are bound by
SATB1 in aggressive breast cancer.
Computational epigenetics researchers
are still working out the optimal algo-
rithms for analyzing ChIP-Seq data. 

Understanding the Brain 
Methylation plays a key role in

brain development; for example, sever-
al developmental disorders involve loss
of genomic imprinting and one (Rett
Syndrome) is caused by a mutation in

the enzyme that methylates DNA.
Epigenetics has also been implicated in
mental illness, and several psychiatric
drugs have known epigenetic effects.
For example, valproic acid, used to
treat epilepsy and bipolar disorder, is a
histone deacetylase inhibitor. 

“I think epigenetics is a lot more
exciting than the genome, especially
for the brain, which is so plastic,”
Bennett says. 

Several pivotal epigenetic studies
have focused on the brain. For example,
in a groundbreaking paper in Nature
Neuroscience in 2004, scientists from
McGill University showed that mater-
nal nurturing directly affects psycholog-
ical development through an epigenetic
mechanism. When infant rats were neg-
lected by their mothers (whether biolog-
ical or foster mothers), the glucocorti-

coid receptor gene in their brains
became methylated (in the promoter).
This change persisted into adulthood
and caused the rats to be highly stressed.
In contrast, baby rats that were exten-
sively groomed and cared for by their
mothers had reduced methylation of the
gene and became more relaxed adults.
Moreover, both effects were reversible in
the adults—nurtured rats given a shot of
methionine (a DNA-methylating
agent) to the brain became stressed and
neglected rats given a histone deacety-
lase inhibitor (which indirectly reduces
methylation) became calm. 

There’s mounting evidence that epi-
genetics is a key player in autism as well,
Fallin says. She received a Roadmap

“I think 
epigenetics 
is a lot more 
exciting than 
the genome, 
especially for 

the brain, which 
is so plastic,” 

David Bennett says. 

Layers of the Epigenome. The epigenome acts
at multiple levels. DNA methylation and bio-
chemical modifications of histone tails affect

the transcription of genes and non-cod-
ing RNAs, as well as the packaging

of DNA into chromatin. These
changes in turn affect gene
expression. Reprinted by per-
mission from Macmillan
Publishers Ltd: The American
Association for Cancer

Research Human Epigenome
Task Force & European Union,

Network of Excellence, Scientific
Advisory Board. Moving AHEAD with

an international human epigenome
project. Nature 2008 454: 711-15.
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Feig’s team has not yet identified the
epigenetic change responsible. “So this
is an example of epigenetics by all
assumptions, but we don’t have any
details yet to pin it down,” he says.
They are collaborating with researchers
at the Broad Institute on epigenome-
wide studies to search for the relevant
changes. Feig also received an NIH
Challenge Grant to study whether ado-
lescent mice exposed to negative expe-
riences, such as smoking and stress, also
undergo heritable epigenetic changes. 

Epigenetic inheritance is more dif-
ficult to study in people, but recent
studies suggest that it does occur. In a
series of studies from Europe,
researchers collected multi-genera-
tional data from an isolated communi-
ty in Northern Sweden that experi-
enced alternating periods of plenty
and famine throughout the 19th cen-
tury. They showed that the paternal

grandsons of men who were exposed to
periods of overabundant food before
puberty (a key stage for sperm devel-
opment) were at increased risk of dia-
betes and early death. The paternal
granddaughters of women who were
exposed to abundant food in utero or
during infancy (key stages for egg
development) had increased mortality.
The pattern of inheritance suggests
that the epigenetic effect may be
occurring on sex-linked genes, though
the epigenetic mechanism has yet to
be definitively proven. 

If Lamarckian inheritance turns out
to be a real phenomenon in people, this
will be both an empowering and daunt-
ing shift in how we think about evolu-
tion and the destiny of our descen-
dants. As scientists continue to probe
the largely unexplored territory of the
epigenome, this promises to be just one
of many surprises.  !!

grant to study epigenetics in the EARLI
(Early Autism Risk Longitudinal
Investigation) cohort. The study recruits
participants when they learn they’re
pregnant and follows them through the
birth of the baby and the first three years
of life. “So we get the whole window of
potential exposures, and then we get the
early development of the child,” Fallin
says. Her team will correlate exposures
with methylation changes in the moth-
ers’ and babies’ blood cells and then try
to link these to autism outcomes. 

Currently, they are using arrays to
study the methylation profiles, but “just
like everyone else, we are thinking
about how you get this directly from
sequencing,” says Fallin, who works
closely with Irizarry. 

At the other end of life, epigenetics
may play a role in Alzheimer’s disease
and dementia. “When I came across the
epigenetics literature, investigators were
just beginning to conduct preclinical
animal studies examining how the brain
might be using epigenetic marks as a way
of coding long-term memory,” Bennett
says. He received a Roadmap grant to
look at epigenetics within two long-
standing studies of older people: the
Rush Memory and Aging Project and
the Religious Order study. Participants
undergo annual cognitive testing, pro-
vide information about life experiences,
and, when they die, donate their brains
to the study (nearly 800 brains so far).
Bennett’s team will obtain methylation
profiles for brain tissue using next-gener-
ation sequencing. They have also
received an ARRA stimulus grant to col-
lect data on histone modifications.

“The idea is to link epigenetic
changes initially to cognitive pheno-
type and then to psychological and
experiential factors,” Bennett says.
“Subsequently, we’ll be able to bring in
the genome-wide data, because the
effects may vary by genetics, kind of in
the background.” 

“Putting all these data together is
not straightforward,” Bennett says. “In
the grant, we’re doing our best to
describe our approach. But I think it’s
really unclear until the data are there.
Certainly, it’s so new for data from
human brains.”

Vindicating Lamarck
Studies in mice show that epigenet-

ic changes can be passed down through
multiple generations. Agouti mice
carry a mutated gene that gives them a

yellow coat and a propensity for dia-
betes and obesity. But when pregnant
Agouti mice are fed extra methionine
and folic acid—nutrients involved in
DNA methylation—their children
turn out brown, lean, and healthy; they
still carry the defective gene, but it has
been silenced through methylation.
When these offspring reproduce, they
pass the silenced gene to their children
regardless of their diets; thus, the
grandmother’s diet determines the
grandchildren’s phenotypes. 

Heritable epigenetic changes can
occur at other times in the life cycle as
well, not just during fetal develop-
ment. In a 2009 paper in the Journal of
Neuroscience, when adolescent mice
with a genetic defect in memory were
exposed to an enriched environment
(with novel objects, social interaction,
and voluntary exercise), their memo-
ries improved. “Our original observa-

tion was that an enriched environ-
ment can overcome the biochemistry
of a genetic defect by opening up a
new signaling pathway,” says Larry
Feig, PhD, professor of biochemistry
and neuroscience at Tufts University
School of Medicine, who led the
research. Unexpectedly, when the
enriched mice reproduced (females
only), their children also had
improved memories even though they
were never exposed to the stimulating
environment. This was true even
when the children were raised by fos-
ter moms with poor memories. 

“It was a surprise. It wasn’t an area
of research that we were actively work-
ing on,” he says. “But when I went back
to the literature and looked more care-
fully, there were growing examples of
epigenetic transgenerational inheri-
tance. So it wasn’t as farfetched as my
initial thoughts.”

If Lamarckian inheritance turns out to be
a real phenomenon in people, this will
be both an empowering and daunting
shift in how we think about evolution
and the destiny of our descendants.
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Increasingly, parallel computing is becoming perva-
sive. The processors found in laptop and desktop
machines now have two to four cores. Cheap and

widely available graphical processing units (GPUs) con-
tain hundreds, and soon thousands, of cores. And with
the advent of cloud and grid computing infrastructure,
every scientist can access thousands of processors and
petaflops of computing. 

For scientists who want to do simulation or data
analysis, this is great news. Unfortunately, writing par-
allel programs is hard. The processor on your desktop
uses a different programming model (e.g. threads and
locks) than a GPU (that uses CUDA or OpenCL) or a
cluster (that uses MPI). Because hardware designers

want their computers to be efficient, they specialize
them for different types of workloads.  A GPU, for
example, is ten times more power efficient than a CPU
at floating point intensive, high-throughput calcula-
tions. This need for power efficiency will lead to even
more heterogenous machines in the future. Learning
the low-level details of how to program many different
types of machines efficiently takes a long time. And
computational biologists have other fish to fry—solving
biological research problems.  

I believe that to take advantage of emerging parallel
computers without learning how to program different
machines, computational biologists will need to write
software at a higher-level: They will need to use domain-
specific languages and libraries (DSLs). A DSL is an
environment that is tailored to a particular domain or
task. Most scientists already use DSLs such as matlab, R,
and latex routinely in their work. DSLs take the grunge
out of programming, letting the computational scientist
focus on the science, not on the computer hardware.

Unfortunately, DSLs have a reputation for being slow
(often because they are interpreted). This need not be
the case. Two widely used DSLs are OpenGL and SQL.

OpenGL is a graphics library that can be thought of

as a DSL for graphics. OpenGL drivers implement
graphics commands on highly parallel GPUs in an effi-
cient way.

SQL is the lingua franca of databases. Because queries
are expressed at a high-level, it is possible to implement
SQL on large datacenters. These two DSLs are both
portable and efficient.

Because DSLs operate at a higher-level of abstraction,
they can often be automatically parallelized. Take for
example molecular dynamics or n-body algorithms.
There are very efficient n-body algorithms that are tai-
lored to different types of parallel machines. A DSL for
molecular dynamics can build these algorithms into the
system, and thus a program written in the molecular

dynamics DSL will run portably on different types of par-
allel computers. By contrast, a general-purpose paralleliz-
ing compiler could never automatically discover these
algorithms, if the molecular dynamics application is writ-
ten in a lower-level programming language like C++.

As computational biology evolves and new software is
developed, we need to do two things to ensure that this
software will run on the parallel computers of the future.
First, we need to assemble teams of computational biol-
ogists and computer scientists to develop DSLs for the
major areas of computational biology. One example of
successful collaborations of this type is the OpenMM
Project developed by Simbios at Stanford.  DSLs could
be developed for many other areas including finite ele-
ment calculations, fluid flow, machine learning, and data
analysis, to name a few. Second, computer scientists
need to build tools that make it easier to build DSLs.
Currently, programs like Matlab are implemented from
the ground up. DSL writers essentially “roll-their-own”
systems. We need a general infrastructure so that DSLs
can be easily built and extended by small groups of peo-
ple. If we succeed, future computational biologists will
have access to extraordinary computing capabilities,
which in turn will enable many scientific discoveries.  !!

BY PAT HANRAHAN, PhD, PROFESSOR OF COMPUTER SCIENCE AT STANFORD UNIVERSITY

u n d e r  t h e  h o o d
Under TheHood

Using Domain Specific
Languages to Access Parallel
Computing in All Its Forms

I believe that to take advantage of emerging parallel computers 
without learning how to program different machines, 

computational biologists will need to write software at a higher-level: 
They will need to use domain-specific languages and libraries (DSLs).
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BY KATHARINE MILLER

Several years ago, Jackie Wong, MArch, mentored by Jenny E. Sabin, MArch, an
architectural designer and lecturer in the School of Design at the University of
Pennsylvania, developed a tool for understanding and visualizing ice dancers’ move-

ments. He mapped the relationships between the arms, legs and head of the skater to gener-
ate visual patterns that describe the structure of various choreographies. Using this architec-
tural work as inspiration, Erica Savig, MArch (UPenn 2008), now a graduate student in can-
cer biology at Stanford, and Mathieu C. Tamby, PhD, a post-doctoral fellow at UPenn,
devised a related algorithm to analyze and under-
stand how the tissue microenvironment within
pulmonary arteries alters the movement of vascu-
lar smooth muscle cells in the context of pul-
monary hypertension. The ongoing work is part of
a collaboration between architects and cell biolo-
gists at UPenn known as Sabin+Jones LabStudio,
which was founded and is co-directed by Sabin
and Peter Lloyd Jones, PhD, associate professor of
pathology and laboratory medicine at Penn, (and
now lecturer in Architecture).

“Jackie Wong had existing
dance steps and visualized them
into 3-D representations,” says
Savig, one of the first archi-
tectural students recruited
into the unique collabora-
tion, “We worked backwards,
visualizing cell movements to
search for unseen patterns and
the fine details of their
unknown choreographies.” !!

Tracing Cell Choreography to Determine How
Microenvironment Alters Cell Behavior. This
colorful 3-D graph traces the morpholo-
gies and movements of five different smooth
muscle cells through time (vertical axis). Two hours after being
seeded, the cells are small and nearly round (base of the graph), but they
soon spread their filopodia as they probe the substrate, respond to mechanical and bio-
chemical signals, and interact with one another. Savig compared the cells’ behaviors on two sub-
strates: fibrillar and non-fibrillar collagen—a substrate more characteristic of the vascular wall of pulmonary

hypertensive patients. To identify visual signatures that
might one day help personalize diagnosis of pul-

monary hypertension, she created visual abstrac-
tions of the tracings. Here looking at the data

from two cells compressed into 2-D (at left),
the disorder of cell movements on non-fibril-
lar collagen (rightmost image) is clearly visi-
ble. The algorithms behind these computa-

tionally generated representations allow
extraction of numerical measurements for these

differences. Courtesy of Sabin+Jones LabStudio,
The University of Pennsylvania.

s e e i n g  s c i e n c e
SeeingScience

Architectural Computation 
Visualizes Cell Choreography
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