
Mining Biomedical
Literature: 
Using computers to 
extract knowledge
nuggets

Successful 
Collaborations: 
Helping biomedicine 
and computation 
play well together

PLUS

Summer 2008



ContentsSummer 2008
c o n t e n t s

BIOMEDICAL COMPUTATION REVIEW Summer 2008 www.biomedicalcomputationreview.org

Successful Collaborations: Helping biomedicine
and computation play well together
BY KATHARINE MILLER

7

Mining Biomedical Literature: Using computers 
to extract knowledge nuggets
BY KRISTIN SAINANI, PhD

16

Summer 2008
Volume 4, Issue 3

ISSN 1557-3192

Executive Editor
David Paik, PhD

Managing Editor
Katharine Miller

Associate Editor
Joy Ku, PhD

Science Writers
Katharine Miller

Kristin Sainani, PhD
Meredith Alexander Kunz

Louisa Dalton
Chandra Shekhar, PhD
Roberta Friedman, PhD

Community Contributors
Joy Ku, PhD

John Melonakos
Isaac Kohane, MD PhD

Layout and Design
Affiliated Design

Printing
Advanced Printing

Editorial Advisory Board
Russ Altman, MD, PhD

Brian Athey, PhD
Dr. Andrea Califano
Valerie Daggett, PhD

Scott Delp, PhD
Eric Jakobsson, PhD

Ron Kikinis, MD
Isaac Kohane, MD, PhD

Paul Mitiguy, PhD
Mark Musen, MD, PhD

Tamar Schlick, PhD
Jeanette Schmidt, PhD

Arthur Toga, PhD
Shoshana Wodak, PhD
John C. Wooley, PhD

For general inquiries, 
subscriptions, or letters to the editor,

visit our website at 
www.biomedicalcomputationreview.org

Office
Biomedical Computation Review

Stanford University
318 Campus Drive

Clark Center Room S231
Stanford, CA 94305-5444

Biomedical Computation Review is pub-
lished quarterly by Simbios National Center for
Biomedical Computing and supported by the
National Institutes of Health through the NIH
Roadmap for Medical Research Grant U54
GM072970. Information on the National Centers
for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics. The
NIH program and science officers for Simbios are: 

Peter Lyster, PhD (NIGMS)
Jennie Larkin, PhD (NHLBI)
Jennifer Couch, PhD (NCI)
Semahat Demir, PhD (NSF)

Peter Highnam, PhD (NCRR)
Jerry Li, MD, PhD (NIGMS)

Richard Morris, PhD (NIAID)
Joseph Pancrazio, PhD (NINDS)

Grace Peng, PhD (NIBIB)
David Thomassen, PhD (DOE)

Ronald J. White, PhD (NASA/USRA)
Jane Ye, PhD (NLM)

Yuan Liu, PhD (NINDS)

FEATURES

DEPARTMENTS

1  GUEST EDITORIAL | WHEN DOES COMPUTATIONAL VALIDATION

TRUMP BIOLOGICAL VALIDATION?
BY ISAAC KOHANE, MD, PhD

2  NEWSBYTES
BY MEREDITH A. KUNZ, KRISTIN SAINANI, PhD, LOUISA DALTON, 
ROBERTA FRIEDMAN, PhD, CHANDRA SHEKHAR
• Why We Swing
• RNA Takes Shape
• Trojan Peptide
• Window into Microbial Behavior
• How the Zebrafish Gets its Stripes (or Spots)
• Modeling the Spine, Cord and All 

28 SIMBIOS NEWS | OPENMM:  BRINGING GPU ACCELERATION

CAPABILITIES TO MOLECULAR DYNAMICS

BY JOY KU, PhD

29 UNDER THE HOOD | PARALLEL COMPUTING ON A PERSONAL COMPUTER

BY JOHN MELONAKOS, PhD STUDENT, GEORGIA TECH

30 SEEING SCIENCE | AN AVATAR OF HUMAN HEALTH

BY KATHARINE MILLER

COVER ART

CREATED BY K. BOYACK, D. KLAVANS, AND W.B. PALEY WITH DATA FROM THOMPSON ISI. COMMISSIONED BY K. BORNER

AND REPRINTED BY PERMISSION FROM MACMILLAN PUBLISHERS LTD: NATURE, 444:985, 2006.



that no gene was significantly expressed across all the
murine and human models. Nonetheless we found that in
8 of 17 experiments one gene was differentially expressed—
which I thought remarkable given the diversity of hetero-
geneous mouse and human experiments involved. Yet
after my presentation, colleagues expressed skepticism
about the validity and interest of these results, given that
the analysis brought together so many disparate conditions
and organisms. The dominant scientific culture expects
novel results to arise only under a highly specific set of con-
ditions in individual investigator’s laboratories. However,
Dr. Mitch Lazar from the University of Pennsylvania
came to the podium immediately after my presentation
and generously remarked that I had scooped him! His own
research (a genome-wide chromatin immuno-precipitation
scan) had also revealed the significance of that same gene
in insulin resistance and adipogenesis, a result he con-
firmed in several in vitro studies. Dr. Lazar’s results will
soon be published in a first tier journal—and deservedly so.
Yet it would have been very challenging for our purely com-
putational analysis to receive similar treatment. 

There are without a doubt several purely computation-
al analyses from which any biological conclusions drawn
are suspect. Further experimentation or data are required
before any tentative conclusions can be drawn. Equally sus-
pect, however, but far more often published, are biological
results from an in vitro experiment in a non-human model
organism under conditions having little to do with those
experienced in the course of human pathology. Nonethe-
less there is a class of computational investigations that
leverage prior, often published data sets, sometimes singly
and sometimes together. Can we establish a scientific the-
ory or at least a reliable set of heuristics as to when such
investigations are sufficient? Are there conditions when an
overwhelming set of “lightly used” previously published
data can be re-explored to even greater effect and greater
generality and applicability than a narrow set of biological
experiments? Are there indeed a set of computational
investigations that require no additional biological valida-
tion? Those of us who work at the intersection of compu-
tation and biology are both the best placed to provide prin-
cipled answers to these questions and also should be the
most motivated to so. Let the games begin. ■■

When Does Computational Validation
Trump Biological Validation?
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GuestEditorial
g u e s t  e d i t o r i a l

BY ISAAC KOHANE, MD, PhD

M
any a successful investigator working at the inter-
face between molecular biology, genetics and com-
putation will recognize the imperative to obtain

biological validation for computational investigations.
Even if they have extensively mined multiple datasets of
prior research done by others, experience will have shown
that the lack of an additional, novel validation dataset will
make it challenging to overcome the reviewers’ concerns.
This is particularly the case for the top tier, “high impact”
journals. Of note, this expectation of additional, novel bio-
logical validation will be stated not only by reviewers from
a traditional molecular biology or genetics background, but
also by many of us in the bio-computational community. I
wish to argue here that in many instances, such require-
ments are the result of an inadequate understanding of the
nature of the data being used and their value as compared
to a novel incremental dataset. Moreover, such require-
ments represent a failure of the bio-computation commu-
nity’s confidence in their own methodology and a similar
failure in our ability to educate our broader biological
investigational community regarding what constitutes a fig-
ure of merit in a modern computationally-assisted scientif-
ic investigation.

I was recently reminded of this failure when I presented
results from work involving our National Center for
Biomedical Computing, i2b2 (Informatics for Integrating
Biology and the Bedside) during a session at a Keystone
meeting on insulin resistance. Using multiple datasets
from one of my previous collaborations with the Joslin
Diabetes Center in Boston, we had undertaken a simple
meta-analysis across multiple experiments conducted by
leading investigators in type 2 diabetes involving mouse
models or human models of insulin resistance. In collabo-
ration with i2b2 investigator Peter Park, PhD, we found

DETAILS

Isaac Kohane, MD, PhD, is Lawrence J. Henderson
Associate Professor of Pediatrics and Health
Sciences and Technology at Harvard Medical
School; Chair of the Informatics Program at
Children’s Hospital, Boston; and Principal Invest-
igator for Informatics for Integrating Biology and
the Bedside (i2b2) a National Center for Biomedical
Computing.
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NewsBytes
Why We Swing

Most people swing their arms when
they walk. Indeed, like several characters
in a classic Seinfeld episode, we’re sur-
prised when they don’t. Yet we don’t real-
ly need to swing our arms in order to
move forward, as we all know when we
carry a box with both hands. So why do
we swing our arms when we walk? A
recent computational model by Jaeheung
Park, PhD, a re-searcher at the Stanford
Artificial Intelligence Laboratory at Stan-
ford University, provides some insight. 

Arm swinging, Park hypothesized,
serves the same purpose as rotational
friction—the friction between the foot
and the ground that keeps our feet from
turning in or out like windshield wipers.
And his simulations, published in the
Journal of Biomechanics in April 2008,
confirmed that possibility.

In the past, many biomechanical
models of gait have omitted the arms.
But as such models strive for greater real-
ism, it has become more important to
account for secondary movement by the
arms. One way to do that is to simulate
the trajectories of the arms and joints.
But Park took a different “task-oriented”

approach adapted for human simula-
tions from his thesis advisor’s work on
industrial robots. 

In his simulations, Park instructed
the feet to perform a task—“walk”—but
gave no instructions to the arms. Then
he varied the amount of rotational fric-
tion between the foot and the ground.
When the rotational friction forces expe-
rienced by the model’s foot were large
enough to minimize body movement,
the arms didn’t swing. They didn’t need
to. But when the rotational friction at
the foot was constrained to zero, the
arms swung naturally in compensation.
This was true for two different styles of
walking—static (a kind of slow stagger
where the center of mass is always over
one foot or the other or both) and
dynamic (a more realistic style at a nor-
mal human pace). 

To Park, these results suggest that
arm swinging helps us maintain our bal-
ance on slippery surfaces because it com-
pensates for the absent rotational fric-
tion. In addition, it provides greater
comfort, since the foot and consequent-
ly all the leg joints do less work. 

“This paper has elucidated the rela-
tionship between arm swing and the

support moment at the foot,” comments
Marcus Pandy, PhD, chair of mechani-
cal and biomedical engineering at the
University of Melbourne, Australia.
More work remains to be done, though,
to understand the relationship between
the foot’s role and “energy consumption
during gait.” Pandy also notes that “it
would be interesting to see how the joint
torques predicted by the model compare
with those obtained from experiments
when humans walk at their preferred
normal speeds.” 

In the future, Park would like to
explore whether arm swinging affects
the speed of movement. Eventually, such
work might provide more evidence that
there is a good reason to swing.
—By Meredith A. Kunz

RNA Takes Shape
RNA is not just a single-stranded

template. Like proteins, many RNA mol-
ecules can fold into three-dimensional
structures that catalyze reactions and reg-
ulate gene expression. Predicting this
structure, though, remains an open chal-
lenge. Scientists at the University of
Montreal have devised a novel way to
attack the problem, which they describe
in the March 6 issue of Nature.

“Our approach is to generate a more
complete RNA secondary structure and
from there go to three dimensions
directly. Whereas before going to 3-D
from secondary structure was impossi-
ble,” says François Major, PhD, profes-
sor of computer science and operations
research, who developed the method
with graduate student Marc Parisien.

RNA nucleotides bind with each
other to form secondary structures such
as hairpins (a stem with a loop) and
helices. Though most nucleotides pair
according to Watson-Crick or wobble
rules (C-G, A-U, and G-U), a small num-
ber (about 15 percent of nucleotides in
hairpins, for example) form alternate
pairings—such as A-C or a G-U-A base
triple (where the bases meet in different
orientations). Previous programs have
fallen short of predicting these “non-
canonical” pairings that are the key to 

A simulation of human walking with zero friction at the foot generates natural arm
swing motion. Courtesy of Jaeheung Park. Reprinted from Journal of Biomechanics 41:
1417-1426, 2008 with permission from Elsevier.
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3-D structure and indeed often drive the
most interesting geometries such as
loops, bulges, and twists.

To better predict non-canonical pair-
ings, Major and Parisien identified 19
regular, repeated small motifs (mostly 3
to 5 nucleotides) in solved RNA struc-
tures. They call these the RNA structur-
al alphabet or “nucleotide cyclic motifs”
(NCMs). The most common “letter” (or
NCM) consists of two Watson-Crick
base pairs stacked on top of each other;
a bunch of these together form a basic
helix. But many of the other NCMs are
defined by non-Watson-Crick base pairs.
One example is a four-nucleotide loop
with a G-A pair at the bottom. 

To determine the 3-D structure of a
given RNA primary sequence, Major
and Parisien feed it through two pro-
grams: MC-Fold and MC-Sym. MC-Fold
enumerates all possible base pairings
(including non-canonicals) and all possi-
ble arrangements of NCMs. It then
picks the most probable arrangement
based on statistical data from solved
RNA structures. Next, MC-Sym trans-
lates the NCMs directly into 3-D struc-
tures. The pipeline is available as a web
service (http://www.major.iric.ca/MC-
Pipeline/). Currently, accuracy is limited
to sequences of fewer than 75 base
pairs—unless experimental or multiple-
sequence data are incorporated into the
program, Major says.

As a test case, Major and Parisien fold-
ed several precursor microRNAs (with
previously unknown structures). Such
molecules would be expected to share a
common structural element for binding
to the enzyme Dicer, which processes
them into functional microRNAs. The
result: despite different primary
sequences as well as non-canonical base
pairs and bulges, the pre-microRNAs all
folded into double helices. 

“That’s a pretty powerful result,”
comments Philip Bevilacqua, PhD,
professor of chemistry at Penn State
University. “I think this method is going
to be of practical benefit to the RNA
community,” he says. “This has the
potential for enormous impact, and
hopefully it will get fulfilled.”
—By Kristin Sainani, PhD

Trojan Peptide 
A powerful snippet of protein called

the Tat peptide ferries itself across cell
membranes dragging just about any-
thing it’s attached to along with it. How
it accomplishes this feat has been a puz-
zle for a decade. Now, computational
simulations offer a detailed picture of
how the string of eleven amino acids
cajoles the membrane’s lipid bilayer into
doing most of the work. 

“I was expecting that the peptide
would act like a snake going through a
hole,” says Angel Garcia, PhD, profes-
sor of biocomputation and bioinformat-
ics at Rensselaer Polytechnic Institute,
who helped design the simulations. Yet
his laboratory’s simulations suggest that
instead of the snake doing all the work,
it is as if the ground makes space for the
snake to pass. “I wasn’t expecting the
lipids to change so drastically,” he adds.

Predicted 2D and 3D structures of an RNA loop (Sarcin/Ricin loop from rat ribosomal
RNA). Left: Watson-Crick (black dots) and non-Watson-Crick base pairs predicted by MC-
Fold. Right: predicted 3D structure (blue) superimposed on the experimentally deter-
mined structure (gold). Courtesy of Francois Major and Mark Parisien.
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“Once you see it, of course, it could not
be any other way.” The work was pub-
lished in Proceedings of the National
Academy of Sciences in December 2007.

The Tat peptide, discovered on an
HIV protein, is part of a potent group of
cell-penetrating peptides sometimes
called Trojan horse peptides. They haul
drugs, proteins or DNA right across the
lipid bilayer and into the cell. The myri-
ad uses of such peptides in both therapy
and research are not hard to imagine.
But how these highly charged, water-lov-
ing bits of protein so readily cross the
waterless middle of the lipid bilayer has
evaded answer for years. 

Garcia and postdoctoral fellow
Henry Herce, PhD, decided to apply
the power of a new computer center at
RPI to conduct molecular dynamics sim-
ulations of the Tat peptide as it
approaches and crosses a lipid bilayer. 

Over and over again, the simulations
reveal how the peptide induces a change
in the bilayer. Because six of the eleven
amino acids in Tat are arginine, a rela-
tively large, positively charged amino
acid, researchers knew that Tat would be
strongly attracted to the lipid bilayer
with its blanket of negatively charged
phosphates. But Garcia did not expect
that phosphates on both sides of the
bilayer—not just on Tat’s side—would
align to help neutralize Tat’s charge. The
more peptides added to the mix, the

greater the influence on the opposite
side of the bilayer. As the arginine side
chains and distant phosphate groups
move toward each other, the bilayer
thins until it creates a hole lined with
phosphate groups, letting a small chain
of water and the peptide pass through. 

“The idea that the bilayer is
‘thinned,’ thereby allowing the cationic
TAT to touch anionic phosphate head
groups on both sides of the membrane
was utterly unexpected,” says Steven
Dowdy, PhD, a Howard Hughes investi-
gator and professor of cellular and
molecular medicine at the University of
California, San Diego. Dowdy says the
information from Garcia’s computation-
al work will inspire experimental testing
of the mechanism. And, he says, it could
be very helpful in designing enhanced
peptides with increased potential to
deliver drugs or DNA where researchers
want them.
—By Louisa Dalton

Window into 
Microbial Behavior

We know they are there, but most
microbial denizens of deep oceans, sea
floor vents, even our own intestines,
remain a mystery. Because most microbes
won’t grow in the lab, researchers have
few clues to their communal activities.

With better gene sequencing and compu-
tational ability, researchers now sample
genes from whole communities to assem-
ble the “metagenome”—a picture of the
genes driving metabolic processes impor-
tant to growth and survival in a given
environment. 

In a new study, researchers found
remarkable diversity in how microbes
function in each of nine distinct biomes.
Indeed the bacterial and viral genomes
from each biome had distinguishing
metabolic profiles. And viral genomes—
which researchers expected would be
similar across environments—were just as
different as the bacteria. 

It turns out that there’s a surprisingly
extensive genetics arms race going on
between bacteria and the viruses (called
phages) that infect them, says Rob
Edwards, PhD, assistant professor in
the Computational Sciences Research
Center at San Diego State University.
Viruses are actively shuffling their host
bacteria’s DNA. “We didn’t know (just)
how much DNA the viruses move
around,” Edwards says. In fact, it hap-
pens so often that, he believes, the virus-
es likely profit from moving pieces of
DNA that are beneficial to the bacteria. 

Edwards and his collaborators from
San Diego State University, Argonne
National Laboratory and around the
world reached these conclusions by com-
paring nearly 15 million sequences from

At left, four Tat peptides (red) cluster on one side of a lipid bilayer (white) attracted to the phosphate groups (yellow). As the Tat peptide reach-
es toward phosphate groups on the opposite side (middle), the bilayer thins enough for a chain of water molecules (blue) and the peptide to
pass through the membrane (right). Courtesy of Angel Garcia. Reprinted from Proceedings of the National Academy of Sciences 104:52 (2007).
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“Bacterial genomes are scrambled and
slapped together by viruses. The core
functions probably cannot be
exchanged, but peripheral functions can
be passed around,” he says, in a process
unique to bacteria that likely speeds up
their rate of evolution. 

Such gene swapping may also yield
therapeutic insight. A lot of diseases,
such as atherosclerosis and stomach can-
cer, have “a very strong microbial com-
ponent,” Edwards says. “We are working
with the NIH to get at the bioinformat-
ics of this.”
—By Roberta Friedman, PhD

How the Zebrafish Gets
its Stripes (or Spots)

Normal zebrafish have stripes, but
mutant forms may display spots, blotch-
es, or labyrinthine patterns. It’s a sce-
nario that Rudyard Kipling might turn
into a wonderful “just-so” story. But a

45 microbial communities, including 42
viral genomes, as reported in Nature on
April 3, 2008. It’s easy and relatively
inexpensive to generate a DNA sequence
these days, Edwards says, “What is not so
easy is to figure out what it actually means.”

Thanks to the SEED database
(www.theseed.org), developed in collabo-
ration with researchers at Argonne Labs
and the Fellowship for Interpretation of
Genomes, which annotates or assigns
known function to gene locations, scien-
tists can upload gene sequence data and
seek a pattern of metabolic activities that
exist in their samples. They can thereby
begin to compile the collective activities
of a given community, be it a coral reef,
a mine shaft, or a person’s bronchi. 

This sort of work will definitely help
researchers understand and harness the
functions of bacteria, says Eric Delwart,
PhD, a virologist at the Blood Systems
Research Institute and the department
of Laboratory Medicine at the
University of California, San Francisco.

more scientific explanation comes from
a new computer model that can replicate
the diverse ways that pigmented cells
organize themselves on zebrafish skin.
The results may help scientists gain a
better understanding of development in
general, helping explain how myriads of
cells turn into tissues, organs, and entire
organisms. 

“Our aim here is not to build better
zebrafish,” says Troy Shinbrot, PhD,
who developed the model along with his
graduate student, Carlos Caicedo-
Carvajal. “We want to understand how
tissues and organs develop and how cells
migrate, survive, and form the shapes
that govern function.” The work was
published in Developmental Biology in
January 2008.

According to Alan Turing’s theory
from the 1950s, pigmented cells arrange
themselves into patterns under the guid-
ance of chemical agents. More recent
studies of zebrafish stripe formation sug-
gest that mechanical interactions
between cells—how strongly they push or
pull one another—could also play a vital
role. To test the latter hypothesis,
Shinbrot and Caicedo-Carvajal devel-
oped a simplified energy-minimization
model of cells of two different colors
interacting within a rectangular region. 

Using different combinations of val-
ues for the forces between like (homo-
typic) and unlike (heterotypic) cells, the
researchers generated a range of possible
patterns. “To get stripes, we need both
heterotypic attraction and a delicately
balanced homotypic repulsion,” says

The survival techniques of bacteria in nine different biomes (represented by different colored
symbols) can be distinguished based on the prevalence of various metabolic gene subsystems
such as respiration, membrane transport, virulence, or sulphur metabolism. The length of the
lines represents the degree of influence of a metabolic process. Courtesy of Elizabeth
Dinsdale. Reprinted by permission from Macmillan Publishers Ltd: Nature, 452, 629 - 632 (12
Mar 2008). Coral and microbialite photos by F. Rohwer. 

Normal and leo mutant zebrafish (left) and
their corresponding normal and abnormal
simulated patterns (right). Courtesy of Troy
Shinbrot and David Parichy. Reprinted from
Developmental Biology, 315, Caicedo-
Carvajal, CE; Shinbrot, T, In Silico Zebrafish
Pattern Formation, 397–403 (2008), with per-
mission from Elsevier.
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Shinbrot. If these conditions were not
met, the simulations showed that spot-
ted, striated, labyrinthine, and other
non-striped patterns developed; in par-
ticular, when all the inter-cellular forces
were attractive, only spots formed. The
researchers showed that some of these
abnormal patterns resemble those
observed on certain mutant zebrafish
varieties with defective pigment path-
ways.

This in silico approach could be
applied to a broad range of problems in
cellular development, says Shinbrot. The
researchers are now using it to help
oncologists compare four different pat-
terns of abnormal tissue commonly seen
in early breast cancer tumors.

“The authors have done a nice job of
showing how you can produce a whole
repertoire of patterns simply by tuning
the strengths of attractive and repulsive
cell interactions,” says Ed Munro, PhD,
a computational cell biologist at the
University of Washington in Seattle.
However, Munro cautions that the
results obtained using the authors’ sim-
plified model need further biological
validation. “By demonstrating one way
in which cells can make patterns, you
haven’t shown that’s how embryos do
it,” he notes.
—Chandra Shekhar

Modeling the Spine,
Cord and All

When the bones and discs of the
spinal column are broken, crushed, or

displaced, the spinal cord itself may be
devastatingly damaged. Now, a new com-
puter model suggests that the manner in
which the injury occurred may affect the
spinal cord in distinct and significant
ways. 

This work could have a wide-reaching
impact on spinal treatment, says
Thomas Oxland, PhD, professor of
orthopaedics and mechanical engineer-
ing at the International Collaboration
on Repair Discoveries (ICORD) Centre
at the University of British Columbia. If
cord injuries could be subclassified by
type, it is possible that physicians may be
able to treat them differently. Oxland
was lead author of the work, published
in Annals of Biomedical Engineering in
March 2008.

Before modeling the human spine,
Oxland’s team, which included his mas-
ter’s student Carolyn Greaves, and
Mohamed Gadala, PhD, a professor of
mechanical engineering, had already
begun animal studies to examine the
relationship between the type of spinal
column injury and the strain on the
cord. But they wanted to compare their
animal data to the human spine.
Because it’s impossible to use human
experimental models, the group simulat-
ed the spine and the spinal cord using
data from the Visible Human project.

Like others who have modeled the
spine, Oxland and his colleagues created
a finite element model of the human
cervical (neck) spine. They then simulat-
ed injury to it by applying engineering
torques, not unlike those used to study
the strain on a bridge. What’s new here

is that they observed the effect of differ-
ent types of injuries on the spinal cord
itself. The result: distinct patterns of
strain and deformation depending on
whether the spine suffered a burst frac-
ture, a dislocation, or a stretching injury.
The work stopped short of examining
actual cord damage but, Oxland says,
“one would expect that [these mecha-
nisms] would produce very different pat-
terns of damage in the cord.” 

Oxland acknowledges that their now-
static model cannot yet capture the
dynamic forces at work when a real-life
injury happens, often in a fraction of a
second. His team is working on intro-
ducing more variables and lifelike prop-
erties now. He also plans to match up
the simulation results with his lab’s ani-
mal experiment data to better under-
stand cord damage.

David Shreiber, PhD, an assistant
professor of biomedical engineering at
Rutgers University, thinks this model
will help advance the field—one that still
lags behind brain injury research. “It’s
significant because it’s the foundation of
more work on injury to the cord,” says
Shreiber. The model is flexible enough
that it can be used to understand many
types of injuries. “The nice thing about
this computational system is that you
can apply the loading conditions how-
ever you want—you can look at twisting,
at pressure applied internally, and other
cases of spinal injury,” he adds.
—Meredith A. Kunz ■■

These cross-sections of a simulated spinal cord show the different deformation patterns induced when the cord is subjected to a transverse
contusion injury (left), a distraction injury (center) and a dislocation injury (right). Courtesy of Carolyn Greaves. Reprinted from Greaves, C,
Gadala, M; Oxland, T, A Three-Dimensional Finite Element Model of the Cervical Spine with Spinal Cord: An Investigation of Three Injury
Mechanisms, Journal of Biomechanical Engineering 36:396 (2008) with kind permission of Springer Science and Business Media.
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Successful Collaborations:

Helping biomedicine 
and computation 

play well together 

Social scientists who study science
have noticed a trend: More and more
researchers are collaborating. Over the last
twenty years, the number of co-authored
papers has increased in every scientific disci-
pline and across diverse geographic areas.
Co-authored papers are also cited more fre-
quently than single-authored papers, accord-
ing to what are called “bibliometric” studies. 

And many collaborations bridge disci-
plines. Biomedical computation—interdiscipli-
nary by nature—is no exception. Many of its
goals require the involvement of people with
different expertise. 

So if collaborations will be a fact of life
for many involved in biomedical computing,
what can be done to make them productive?
Can social scientists provide any insights?  

Skepticism abounds about whether
social scientists’ observations of scientists are
more informative than scientists’ own experi-
ence. The ingredients of a successful collabo-
ration seem obvious: good leadership, trust
among the participants, face-to-face meet-
ings and strong communication skills.

BY KATHARINE MILLER 
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But then why do many initial collaborations fail? Studies show that even when 
collaborators are in the same location (a best case scenario), fewer than a third of col-
laborations succeed, says Gary Olson, PhD, a professor of human computer interac-
tion at the University of Michigan who has studied collaborative science. So if 
common sense can only take us so far, perhaps rigorous research is needed to fill in
the gaps. Sociological research can produce counterintuitive findings; answer debates
about contrasting models of collaboration; and provide specifics about what works
and what doesn’t work. “We have an idea about what factors matter, how they mat-
ter, and how to intervene to make a collaboration work,” Olson says. 

Judy Olson, PhD, also a professor of human computer interaction at the
University of Michigan, has developed a “Theory of Remote Scientific Collaboration.”
The “TORSC,” as it’s known in social science circles, describes a number of factors that
can affect the success of collaborations. As suggested by the word “remote” in the
theory’s name, the most important factor is distance itself. In addition, collaboration
readiness, technical readiness, modularity of tasks, and a management plan can
make a huge difference—as the leaders of various collaborations attest below.  

Some believe that changes in the next generation’s social world—which is so
reliant on computer interaction—will alter the collaborative landscape. If so, it will
provide plenty of fodder for further sociological study.  But for now, using guidelines
based on the TORSC factors seems wise.

Thirty meters. That’s the rule of thumb. When cowork-
ers are located more than 30 meters from one another, a col-
laboration’s effectiveness declines precipitously, according
to the “Allen Curve” discovered by Massachusetts Institute
of Technology researcher Thomas Allen in the 1970s.
Accidental meetings in the hall, water-cooler conversations,
lunchroom chats—all of these unplanned encounters
between collaborators drop off beyond that distance. And
that matters a great deal, says Jonathon Cummings, PhD,
associate professor of management at Duke University’s
Fuqua School of Business. It becomes harder to foster a col-
legial social environment, build common ground, maintain
awareness of what others are doing, attend to the project,
and adjust to surprises, research shows. 

Collaborators located in different buildings within the
same university or institution can compensate for a lack of
informal interaction with regular in-person meetings. “But
as soon as it’s not built into their plans, then the 30-meter
rule really does operate,” Cummings says. 

Furthermore, many collaborations—including biomed-
ical computation collaborations—happen at distances meas-
ured in miles rather than meters. They range across differ-

PROXIMITY MATTERS
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ent states, regions, or countries and connect multiple insti-
tutions. And these distances really do get in the way of suc-
cess, according to many sociological studies. 

Research by Cummings and his colleague Sara Kiesler,
PhD, Hillman Professor of Computer Science and Human-
Computer Interaction at Carnegie Mellon University,
specifically shows that multi-institutional collaborations are
less successful than collaborations within a single institu-
tion. They studied nearly 500 collaborations funded under
the National Science Foundation’s Information Technology
Research (ITR) program. The collaborations were relatively
small—five to ten principal investigators each. But even at
that scale, they found that as the number of universities
involved increased, researchers spent less of their funding
on practices that foster collaboration. They held fewer meet-
ings, made less effort to divide up responsibilities effective-
ly, and transferred less knowledge (such as the best way to
do things) from one part of the organization to another.
The result: collaborations involving more institutions actu-
ally generated fewer positive outcomes (such as papers, new
models, new ideas, new software, spin-off projects, or PhD
dissertations for graduate students).

“So in a sense, these distributed projects are shooting
themselves in the foot by not investing in the very things
that would help them succeed,” Cummings says. Cummings
believes this happens because of budgetary selfishness. If
you’re spread across multiple institutions, he says, “you’re
more likely to spend the money on your own institution’s
needs—salaries and graduate students—than to spend it on a
shared workshop or conference.”

This finding raises an important question: as interdisci-
plinary research collaborations become more and more
common, should they be promoted more within universi-
ties or between them? In recent years, top universities have
invested heavily in bringing multiple disciplines physically
together under one roof. The Clark Center at Stanford, the
Lewis-Sigler Institute for Integrative Genomics at Princeton,
and the Broad Institute of MIT and Harvard, represent a
few prominent examples. In contrast, funding agencies have
been “looking to get the most bang for the buck” by sup-
porting between-university collaborations, Cummings says.
Cummings’ research supports the former strategy. If given
$100 million to invest in either a Clark Center or a collab-
oration among multiple institutions, he says he would
“without a doubt” build a Clark Center. 

But Mark Ellisman, PhD, director of the Biomedical
Informatics Research Network (BIRN), thinks otherwise.
BIRN, launched in 2001, was one of the first large-scale bio-
medical “collaboratories”—a term that refers to large distrib-
uted collaborations that rely heavily on tools of the digital
age. BIRN, a National Institutes of Health initiative, con-
sists of 31 research groups at 23 universities around the
United States and in England. All are working together on

infrastructure development and three projects centered
around the imaging of human or mouse brains. 

As a result of his experience with BIRN, Ellisman thinks
we’re coming to the end of the era when universities need
to attract the best and brightest to their own faculty. “I can
gather the best scientists in the world in a virtual collabora-
tion more quickly, and act to conquer big challenges,” he
says. “I don’t need to find a way to move everybody here.” 

Cummings concedes that it may not be possible to
address some complex problems without involving multiple
institutions—particularly where there’s scarce expertise or
scarce equipment. “But I would say those are rare or far less
likely than other types of projects.” 

And Cummings admits that distance isn’t everything. As
described below, readiness and modularity of tasks can, to
some extent, help to overcome the problem of distance. As
can taking the lessons of Cummings’ research to heart: if
you’re planning a multi-institutional collaboration, set aside
money and time to make it all come together—plan on hold-
ing symposia; dividing up tasks effectively, and meeting face-
to-face on a regular basis. Don’t leave it to chance, or it
won’t happen—unless your institutions are less than 30
meters apart. 

“I can gather the best scientists in the
world in a virtual collaboration more

quickly, and act to conquer big 
challenges,” says Mark Ellisman. 

“I don’t need to find a way to move 
everybody here.”  

Successful Collaborations
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COLLABORATION READINESS
Collaborations collapse when people don’t have the

right motivations and experience before they launch—what
Gary Olson’s group calls “collaboration readiness.” “All
kinds of projects fail when people try to collaborate because
the funding agency said they had to or they think they’ll get
more money if they collaborate—exogenous reasons that
don’t really make the collaboration work,” Olson says. 

For example, in the case of the ITR projects that
Cummings studied, few of the researchers involved had
worked together before. “The funding agencies were hold-
ing a big carrot that says we’ll only fund you if you put
together a distributed interdisciplinary project,” Cummings
says. “So you had all these people clamoring to find partners
to collaborate with. In my view, that’s kind of going about
it all wrong. . . . Taxpayer money is being spent on sort of
trying out a relationship.” In a separate study, Cummings
showed that people who have never worked together before
are less likely to overcome the barriers of working across
institutions. 

Ellisman admits that in the early days, BIRN researchers
had to overcome a lack of collaboration readiness. “Many
collaborators were happy to see extra research dollars but
actually doing something beyond the office next door, or

having to sit in video teleconferences was a bit more painful.
They had to work up to it.” 

And participants have sometimes been unwilling to
share data too soon—a factor in collaboration readiness.
But, as Ellisman puts it, “With NIH saying ‘thou shalt do
things differently,’ we got everyone to sign off that if they
were going to take money under BIRN, there would be
open access.” 

A lack of common ground can also raise readiness con-
cerns, as BIRN researchers discovered in the Mouse BIRN
project: Researchers from different subdisciplines referred
to the same location in the brain using different terminolo-
gy. BIRN solved this problem by building ontologies to
establish a common vocabulary and by creating a “Smart
Atlas,” which allowed data to be placed within a common
coordinate system.

TECHNICAL READINESS
The TORSC holds that remote collaborations must also

exhibit “technical readiness,” meaning the participants
must be comfortable with the use of communication tools
that make long-distance collaboration easier. “If physicians
are working together and the video conferencing tools don’t

READINESS MATTERS
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work, they’ll just walk away,” says Gary Olson. “In the early
stages, with new or experimental software, there’s a break-
ing-in period and you could lose an entire collaboration if
you don’t provide good support.” 

When BIRN first set about creating tools to standardize
and calibrate magnetic resonance imaging (MRI) machines
at multiple institutions, they solved the local support prob-
lem with “BIRN-in-a-box.” They shipped an entire integrat-
ed hardware system, preloaded and preconfigured with
BIRN software, to each of the institutions involved. This
minimized the amount of local technical development
required. 

These days, it’s BIRN-on-a-disk, which uses virtualization
software—with the same goal. That shift to a much simpler
technological model is not insignificant. Indeed,
Cummings suggests, in the United States these days, the
technology needed for collaboration is already robust.
“Most scientists are pretty savvy technology-wise. They can
use wikis, email, video and tele-conferencing, instant mes-
saging,” he says. “In this day and age, it’s hard to see that as
an issue.” But, he notes, international collaborations might
present a different picture if issues around broadband and
computer power lead to a tilted playing field. 

However, even in this country there are signs that people
are only partly technically ready—and that the technology is
only partly there. When researchers at the University of
Illinois, Urbana-Champaign, created a collaborative, online
research environment called BioCoRE, they thought others
would be drawn to the interface for securely managing a
number of research projects, sharing files, and scheduling
supercomputer time. But, says Kirby Vandivort, senior
research programmer on BioCoRE, “A lot of people saw
BioCoRE as only being a Web interface to their normal
tools.” It was very difficult to convince people of the value
added over email and SSH, a program that lets you securely
access and submit jobs on remote computers. So although
2500 people have registered for BioCoRE, only about 50 to

100 folks use it regularly—and approximately half of those
are located at the University of Illinois, Urbana-Champaign.

Perhaps the most interesting thing about BioCoRE is
how it’s evolving. The BioCoRE interface is now built right
into the research group’s most popular software—VMD,
which is used for molecular dynamics visualization. So if
researchers want to chat or share a molecule with a collabo-
rator, or schedule supercomputer time, they can now do it
entirely within VMD. “This is the real jewel that we didn’t
actually anticipate when we started,” says Vandivort. And it
suggests that technology is still finding new ways to make
collaboration easier. 

In larger collaborations, especially at a distance, having a
management plan is key, according to the TORSC. “The
more seriously the scientists take that plan, working out
exactly who will do what. . . the more likely the success,”
writes Judy Olson.

The tricky thing, Gary Olson says, is that scientists and
funding agencies are not keen on spending money on man-
agement. They’d rather see the money go to the science
itself. But some organizations see the need to take manage-
ment seriously. BIRN has had a management plan from the

Successful Collaborations

MANAGEMENT MATTERS

“In the early stages, with new
or experimental software,

there’s a breaking-in period and
you could lose an entire collab-

oration if you don’t provide
good support,” says Olson.
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get go. They created an oversight committee that, in turn,
commissions a variety of standing and ad hoc committees.
And BIRN also has as one of its cores the BIRN
Coordinating Center.

Good management helps ensure fairness, Gary Olson
says. “It’s easy for the home institution to gobble up the
lion’s share of the resources with others getting dribs and
drabs. But that’s going to kill the collaboration if people feel
they’re not being treated fairly. We’ve seen lots of examples
of that.” 

Another challenge is getting everyone in a collaboration
to treat each other as equals. For example, Ellisman points
to various NSF-funded cyberinfrastructure projects, in
which tension between computer scientists and biomedical
scientists impeded collaboration. The result: The computer
scientists built something that was underutilized because
biologists hadn’t been fully engaged in development. 

Ellisman says avoiding this pitfall was his hardest chal-
lenge as director of BIRN. “People want to feel recognized
for their contribution,” he says. For example, because BIRN
needed to involve computer scientists working at the cut-
ting-edge of their own field, it was critical that the biomed-
ical researchers realize the computer scientists’ contribu-
tions were equally important—“so they aren’t computer sci-
entists in the service of biomedicine.” 

“We started out talking about ‘if you’re a biologist, hug
your computer scientist,’” Ellisman says. 

Besides fairness, good management also helps build and
maintain a collaborative infrastructure. For example, BIRN
set out to create a geographically distributed repository of
medical images and make them available for large-scale
cooperative studies more or less in real time. This involved
inventing new software tools to normalize MRIs across mul-
tiple institutions; de-identifying health records; and getting
approval from the numerous institutional human subject
review boards. 

“It’s hard work and you take a lot of lumps,” he says.
And the coordinating center for BIRN ends up being
viewed as a service provider. “Like if the telephone doesn’t
work. It’s not how great it is, but what’s not working today,”
he says. “It’s part of what happens when you build some-
thing that becomes like a utility.”

STARTING OFF RIGHT
A failed collaboration can sometimes lead
to legal disputes and misery. To avoid dis-
aster, start your collaboration off right.
You might look for Gary and Judy Olson’s
soon-to-be-released book, Science on the
Internet.  Or, if you want more of a short
course, consult “Guidelines for Negotiating
Scientific Collaboration,” published in PLoS
Biology in June 2005, or “With All Good
Intentions,” published in Nature in April
2008, which includes a “collaborators’
prenup.”  

COUNSELLING 
FOR COLLABORATORS
If things start to go sour, get help. The Olsons
and their colleagues at the University of
Michigan often provide advice to collaborations
that are struggling. In addition, Gary Olson now
has a grant to create an online tool to help
researchers evaluate their own collaborations
using the TORSC.  He calls it a “Wizard”—a
“Collab-o-matic,” if you will. Answer a series of
interview questions about your project, and it will
give you automatic feedback. The wizard is cur-
rently being developed and tested. To Olson, it’s a
way to share what his group has learned and also
to collect enormous amounts of additional data.
So keep your eye out for it. You might be surprised
what it will tell you. And what you can tell the
Olsons.

“It’s easy for the home institution to
gobble up the lion’s share of the

resources with others getting dribs
and drabs. But that’s going to kill

the collaboration if people feel
they’re not being treated fairly,”

Olson says.
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According to the TORSC, successful collaborations
divide the work so that it can be done without the need for
a lot of chit-chat. “We have seen a number of projects fail
because tightly coupled work spanned people in different
locations,” writes Judy Olson and her TORSC colleagues.
“The more modularized the work at different locations, the
more likely is success.”

Indeed, distance may not matter so much when a collab-
orative task is easily divided into distinct tasks. And
Cummings says this should provide a glimmer of hope to
biomedical computing collaborations located at multiple

universities. According to his research with the ITRs, proj-
ects that produced computer hardware, software and
datasets seemed to suffer less from being located at multiple
universities. 

“I believe there’s something fundamentally different
about tools projects,” Cummings says. “Tool development
often can be decomposed or broken down, and program-
mers and other developers seem to have a shared under-
standing of how to visualize that process.” By contrast,
Cummings says, other scientists might not have a clear and
common understanding of what a successful outcome

Successful Collaborations

MODULARITY MATTERS



14 BIOMEDICAL COMPUTATION REVIEW Summer 2008 www.biomedicalcomputationreview.org

would look like or what the steps would be to get there.
“The nature of the work—the ability to modularize it and
divide it up,” says Cummings—that’s where biomedical com-
puting researchers might have an edge. 

The Protein Structure Initiative (PSI) is one prominent
collaborative project that, on the surface at least, seemed to
divvy up tasks effectively. For example, the PSI funded four
large-scale centers in various locations around the country.
Each of them then created its own multi-institution pipeline
for crystallizing proteins, analyzing their structure, and
maintaining and disseminating the data generated. Each
institution had a discrete job. 

“You have to have independent tasks,” says Ian Wilson,
PhD, professor of molecular biology at the Scripps Research
Institute and director of the Joint Center for Structural
Genomics, one of the four PSI centers. But structuring the
pipeline in a modular fashion isn’t quite enough, Wilson
says. “It has to be seamless.” Making the work flow smooth-
ly took a lot of hard work over the first five years of the proj-
ect. Some of that involved building relationships among

people who didn’t know each other before—establishing
“collaboration readiness” after the fact. “We had meetings
every week among the cores to discuss how communication
could be better and to determine how to move materials
through the pipeline more efficiently.” At this point,
Wilson says, “We’ve got a fantastically well-integrated team
working on this seamless pipeline.” 

But just as that happened, a new coordination task
emerged: in PSI-2 (the initiative’s second five years), the four
centers were tasked with working together on communal
goals, Wilson says. And the bioinformaticians across the
four centers have to work together as well. “We have to
decide as a group what to do for 70 percent of the project,”
he says. So modularity only got them so far. Ultimately, all
of the centers have to agree on how to achieve the overall
mission of the PSI.

Some social scientists suggest that the shift toward collab-
orative science mirrors changes in the social order: As global
networking becomes the modus operandi in all realms,
including business and social life, so too will it become a nat-
ural part of science. If this is true, then the culture vultures
who see Web 2.0 as the wave of the future—with its
MySpaces, Facebooks, and Wikipedias—would also predict
that this social climate will affect the scientific endeavor. An
impact on collaborative science seems almost inevitable. 

According to Cummings, this idea may take some time
to be realized. “I think the social structure of science is very
resistant to change,” he says. Web 2.0 tools promoting col-
laboration won’t overcome a culture in which junior faculty
are less rewarded for playing a role in a collaboration than
they are for producing strong individual research. “You’re
looking at hiring and promotion of junior faculty, tenure
committees, how departments are structured in universities
and labs, norms for sharing and being open about informa-
tion, journals and their restrictions on intellectual proper-
ty,” Cummings says. “All of these factors play a much larger
role than people who are optimistic about the technology
may realize.”

But Ellisman disagrees: “The world people sit at everyday
is a collaborative one,” he says. In fact, the BIRN portal
right now is a customizable, chattable, bloggable, build-your-
own environment type of space. And the next generation
will move toward standardization. Just as browsers such as
Firefox, Explorer and Netscape have all started to look alike,
with similar menus, he says, “for these collaboration spaces
we’re going to see a kind of refinement in what is practical
and familiar.” 

And he sees a gradual shift toward openness as well—a
fundamental change in scientific culture. Colleagues
Ellisman’s age (60), may still cling to their data, he says.
“But for my youngest children, it’s obvious that in the open,
available, electronic age where you can exchange music legal-
ly or illegally, everything should be open.” Indeed, he says,
“We need to err on the side of open access all the way down
to the laboratory notebook.” 

Some scientists are already there. People are blogging
about the potential for open lab notebooks at

“Tool development often can be
decomposed or broken down, and 

programmers and other developers
seem to have a shared understanding

of how to visualize that process,”
Cummings says.

THE FUTURE OF 

COLLABORATION

WILL WEB 2.0 CHANGE
HOW WE COLLABORATE?
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OneBigLab.Blogspot.com. The Web site myExperiment.org
is giving it a go by allowing researchers to upload workflows
so that other people can benefit from them. And in April
2008, Scientific American reported on the phenomenon—
pointing to the early success of OpenWetWare.org, a wiki
created by graduate students at the Massachusetts Institute
of Technology in 2005. Protocols posted on that site have
become useful to many other scientists around the world. 

As for scientists using Web 2.0 to find collaborators,
Nature ran a story in February 2008 titled “The New
Networking Nexus.” It describes the spawning of Web sites
geared toward bringing researchers together online to dis-
cuss their common interests. Examples include Nature’s
own site called Nature Network (network.nature.com),
which apparently draws interdisciplinary scientists, and
Community of Science (COS.com). But, some say, getting a
critical mass of participants limits the usefulness of these
and other sites. 

Right now, so many are attempting to develop Web 2.0
tools for science that it’s tough to see where they’ll lead.
Tools such as the BioCoRE Web site are created with a spe-
cific purpose in mind, but they may end up being used in a
different way, or perhaps not being used at all. 

Ellisman predicts that Wikipedia is the model of the

future. “This is what we expect the world to look like—where
all mankind’s knowledge is available to all from anywhere,
anytime. That’s what the electronic age we’re poking
through right now is going to make possible.”

If he’s right, as data becomes available virtually and
search engines become more intelligent, perhaps collabora-
tion among colleagues will become so interwoven with the
everyday lives of scientists that it won’t even be called col-

laboration anymore. But don’t count on that happening
anytime soon. 

For now, say the social scientists, if you want to succeed,
your best bet lies in collaborating with people who work less
than thirty meters away and with whom you’ve worked
before. Oh, and don’t forget to divvy up the tasks effective-
ly and create a management plan. Though research shows
that following these guidelines only gives you a 30 percent
chance for a successful collaboration, it is a possibility that
can become a reality, even for remote collaborations.

“The biggest reward from running BIRN,” Ellisman says,
“has been seeing the acceptance by the biomedical research
community of the notion of working across the boundaries of
institutions and different domains, and of cooperating to take
on larger challenges for the benefit of society and for our under-
standing of biomedicine and the human predicament.” ■■

“The world people sit at everyday is a collaborative one,” Ellisman says.

Successful Collaborations
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Mining
Biomedical
Literature: 

Using computers to
extract knowledge

nuggets  

BY KRISTIN SAINANI, PHD
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Not long ago, reading biomedical litera-

ture involved hours in the library comb-

ing through rows of dusty periodicals—

not to mention pocketfuls of change for the copy

machine. Now, although the collective knowl-

edge of biology and medicine is at our fingertips,

finding the information you need is more daunt-

ing than ever. MEDLINE, which already indexes

more than 5000 journals and 17 million citations,

is growing at an exponential rate. A PubMed

search can return tens of thousands of docu-

ments for a single gene and hundreds of thou-

sands for a single disease. 

“There’s been an explosion in the amount of

textual data in this domain,” says Sophia

Ananiadou, PhD, director of the United

Kingdom’s National Centre for Text Mining and a

reader in text mining at the School of Computer

Science, University of Manchester. “Biologists are

drowning in text.”

The authors of this diagram sorted 800,000
published papers into 776 paradigms based on
how often the papers were cited together by
other authors. Curved arcs connect paradigms
that shared papers, with the length of those
arcs determined by repulsion between para-
digms (based on non-shared author citations).
The diagram effectively separated physics (top)
from chemistry (right) and medicine (lower
left). Created by K. Boyack, D. Klavans, and
W.B. Paley with data from Thompson ISI.
Commissioned by K. Borner and reprinted by
permission from Macmillan Publishers Ltd:
Nature, 444:985, 2006. 
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Electronic access offers the promise that computers might rapidly process and

integrate this wealth of information. But the information is recorded in natural

language and pictures, which are hard for computers to make sense of. General-

purpose text mining tools make a stab at it. But despite substantial progress dur-

ing the past half century, they are far from giving computers the ability to “read”

and understand language in any human sense. Plus, tools developed for general

English don’t work well when applied to papers containing bioscience jargon. 

Fortunately, computational linguists and computer scientists are teaming up

with biologists and physicians to develop text-mining tools for biomedicine.

“There’s been a huge expansion of the field in the past six or seven years,”

Ananiadou says, including a flurry of papers, competitions, and conference ses-

sions.

Researchers have developed a range of approaches. Some rely on minimal

language processing, such as statistical algorithms that look at word counts.

Others, by contrast, dig deeper to discern basic language structure and meaning

(such as identifying noun phrases or genes) or even reveal the complete gram-

matical structure of millions of sentences. The latter approach is the most sophis-

ticated and (if perfected) promises to deliver the most precise and comprehen-

sive information, but lower level approaches can deliver a big payoff with much

less complexity. Besides mining text, other researchers are working on an

arguably more difficult problem for a computer—mining images and diagrams.

The potential applications are as wide-ranging as the biomedical literature

itself. Researchers are not simply retrieving and repackaging what is already

known, but are also deriving new knowledge by discovering connections that

were previously unnoticed. Systems can already generate novel hypotheses by

connecting missing links in the literature; predict unknown features of genes

and proteins; help researchers make sense of microarray data; extract informa-

tion to fill biological databases; build large networks of protein, gene, molecule,

and disease interactions; evaluate the literature-wide evidence for scientific

facts; and trace the evolution of scientific ideas. 

Someday, text-mining may even make connections that bridge entire disci-

plines—from physics to statistics to biology, for example, says Andrey Rzhetsky,

PhD, professor of medicine and human genetics at the University of Chicago.

“You may be able to discover connections between ideas that are far, far away

in the knowledge universe,” he says. 
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In the 1980s, Don Swanson, PhD, now professor
emeritus at the University of Chicago, made an early
successful attempt to generate novel hypotheses by
mining the biomedical literature. He was able to iden-
tify indirect connections between therapies and dis-
eases that had never been explicitly linked in the liter-
ature. For example, he tied fish oil to Raynaud’s dis-
ease, and magnesium to migraines. Both treatments
were later tested and proven effective. 

“One experimental paper may report explicitly that
A influences B; another paper, published in some
other journal at some other time, may report that B
influences C. The inference ‘A influences C’ will rep-
resent an implicit assertion that may be novel, non-
trivial and worthy of investigation,” explains Neil R.
Smalheiser, MD, PhD, assistant professor in psychia-
try at the University of Illinois at Chicago. He teamed
up with Swanson in the 1990s to automate this strat-
egy, creating an online tool called Arrowsmith, which
has since been updated and expanded.  

Arrowsmith has about 1200 unique users per
month. And even though it only parses the titles of
papers, Smalheiser says it has already helped
researchers formulate new experiments. Among the
documented successes, John Goudreau, DO, PhD,
an associate professor of neurology and toxicolo-
gy/pharmacology at Michigan State University used
Arrowsmith to link Parkinson’s disease and Viagra
(which had never been studied together): Viagra
increases cyclic GMP levels in cells, and cyclic GMP
are neuroprotective in several model systems for
Parkinson’s. He subsequently received a grant from
Pfizer to study the association. 

Arrowsmith: Word Matching 

How it works:  Arrowsmith performs separate
PubMed searches for user-entered “A” and “C”
terms and seeks common words or phrases (“B-
terms”) in the retrieved titles (excluding com-
mon English words such as “the” and
“patient”). Using filters, the B-term search can
be limited to certain categories—for example,
diseases. (http://arrowsmith.psych.uic.edu/
arrowsmith _uic/index.html.) 

Word Hopping
Connecting the Missing Links

A C

B1

B2

B3

B4

ETC.

Discovering New Connections: Arrowsmith finds links (B) between
previously unlinked literatures (A and C). For example, a search for
“Viagra” (A) and “Parkinson’s disease” (C) returned the common
phrase “cyclic GMP” (B)—a potential connection between a disease
and drug that had never been studied together before. Credit: Vetle I.
Torvik and Neil R. Smalheiser, University of Illinois at Chicago
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Anyone who has browsed books at Amazon.com
has seen some basic text mining in action; for exam-
ple, books are tagged with “Statistically Improbable
Phrases”—terms that occur significantly more fre-
quently in a particular book relative to other books—
to give customers one snapshot of a book’s essence. A
similar strategy can be applied to the medical litera-
ture to capture the essence of a gene or protein. 

For example, a team led by Hagit Shatkay, PhD,
an associate professor in the School of Computing at
Queen’s University in Ontario created a text-based
tool to predict where proteins localize in the cell. The
idea is that the biomedical literature available for a
protein can give clues about its cellular location even
before that protein has been localized experimentally.
For example, because mitochondrial proteins and
nucleus proteins play different roles in the cell,
research publications describe them using different

terms, Shatkay says. Their program finds terms that
occur significantly more frequently in abstracts associ-
ated with proteins of a particular location compared
with other locations—for example ‘bind’, ‘dna’, ‘con-
trol’, ‘histone’, and ‘transcript’ for nucleus proteins. 

They combined this text-based tool with MultiLoc,
a tool that predicts protein localization based on
sequence data, which was created at the University of
Tübingen in Germany (by a team of scientists led by
Oliver Kohlbacher, PhD, professor for simulation of
biological systems). “MultiLoc, as far as I know, was
the most extensive and accurate system at the point
where we joined forces,” Shatkay says. “The question
was could we use text to make it even better?”

Indeed, the integrated tool, SherLoc, gave signifi-
cantly better predictions of protein localization than
MultiLoc alone. Across all organelles, average accura-
cy for MultiLoc was 74.6 percent and for SherLoc was

85.1 percent (as estimated by cross-
validation). “We show that by
using text, you can really get an
improvement,” Shatkay says. 

A similar text-based strategy can
also be applied to help researchers
interpret microarray data, Shatkay
says. When a biologist identifies a
cluster of co-expressed genes, she
can then predict whether they
share biological function based on
the similarity of their literature
profiles. “The advantage of doing
it in document space is it gives you
some idea of semantics,” Shatkay
says. If genes cluster based on
shared function, the resulting
word profile will betray the func-
tion (for example, with informa-
tive terms such as “fatty acid
metabolism”). When clusters form
for reasons besides function—such
as shared experimental methods—
this will be similarly transparent.
It’s been almost a decade since she
and others—including Steven
Edwards, PhD, Mark Boguski,
MD, PhD, and John Wilbur, MD,
PhD, then all at National Center
for Biotechnology Information

Word Profiles
Classifying Genes and Proteins

SherLoc: Classifying Genes and Proteins

How it works: SherLoc, (http://www-bs.informatik.uni-tuebin-
gen.de/Services/SherLoc/) combines a sequence-based tool
(MultiLoc) and a text-based tool. The text-based tool trains a
machine-learning algorithm on abstracts associated with
already localized proteins. The program reduces abstracts to a
"bag of words"--a list of all words and all two-term phrases
(consecutive pairs of words) and their frequencies, excluding
common words like "the." Then it finds terms that appear sig-
nificantly more often in abstracts associated with proteins of a
particular location and it assigns weights to these terms based
on their importance in classification. Once trained, the resulting
algorithm can be applied to the literature associated with a
new protein to predict its location.
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(NCBI)—pioneered this strategy, and other scientists
are now rediscovering it, she says.

Shatkay’s approach involves little natural language
processing; it doesn’t identify ‘this is a gene’ or ‘this is
a noun’, for example. But the simplicity is what makes
the work elegant. “There are some text-related prob-
lems that are relatively easy to solve,” Shatkay says.
“And the question is, if we solve these problems, can
we get anything out of it or do we need to solve the
really hard problems before we can get any leverage
from text?”

“It won’t be as clean, it won’t be as nice as natural
language processing, but it’s really readily available.
It’s low-hanging fruit,” she says.   

While statistical approaches yield a big payoff for
less effort, researchers in natural language processing
are after the holy grail of text mining—getting com-
puters to understand language in some way. 

If you just use machine learning and count bags of
words while ignoring linguistic structure and mean-
ing, “there's stuff that's just going to stay out of reach,”
says Kevin Cohen, lead artificial intelligence engineer
at The MITRE Corporation and biomedical text min-
ing group lead at the University of Colorado School of
Medicine.

But tackling natural language is enormously diffi-
cult. “There’s this sense, this assumption, that it
should be easy. You can talk and understand things
and read things really easily. But of course your whole
brain is designed for that,” says Alex Morgan, MS, a
doctoral student in biomedical informatics at Stanford
University. “And you think that things like analytical
chemistry and scheduling of flights are really compli-
cated problems, but those are trivial computer prob-
lems [compared with natural language processing].”

To incorporate language, text-mining researchers
use extensive lexical resources (including word lists,
thesauri, and ontologies) to look up word variants and
meanings; manually created rules about grammar and
language; and machine-learning algorithms trained on
collections of text marked up with linguistic informa-
tion (annotated corpora).

In the world of news and journalism, considerable
progress has been made on two key language-based
tasks: identifying simple entities such as places, organ-
izations, and people; and extracting simple facts such
as “Company A took over Company B.” Researchers
have achieved near human proficiency on the first
task, evaluated with F-measures—a quantity that com-
bines precision (getting it right) and recall (not miss-

Toward Language
Teaching Computers To Read Biology

“There are some text-related
problems that are relatively

easy to solve,” says Hagit
Shatkay. “And the question
is, if we solve these prob-

lems, can we get anything
out of it or do we need to
solve the really hard prob-

lems before we can get any
leverage from text?”
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ing anything)—above 95 percent; and reasonable per-
formance on the second task, with F-measures of 70 to
80 percent. But when off-the-shelf systems were
applied to biology, they did poorly. Having been
trained on text from the news world, such as The Wall
Street Journal corpus, they were ill-equipped to tackle
biomedical journal articles written by scientists and
containing considerable jargon and nonstandard
grammar. 

Fortunately, in the past decade, several key events
have advanced natural language processing in the bio-
medical domain. First, researchers in Japan—led by
Junichi Tsujii, PhD, professor of computer science at
the University of Tokyo and professor of text mining
at the University of Manchester in the United
Kingdom—created the GENIA corpus, a collection of

PubMed abstracts annotated with both linguistic and
biological information. Corpus-based techniques had
revolutionized natural language processing, Tsujii says.
“I thought I should apply a similar approach to bio-
text mining.”

“Then we made that corpus available to all the re-
searchers in the world,” he says. “And I think that con-
tributed quite a lot to the progress of bio-text mining.” 

Another driving force was the creation of a series of
challenge evaluations (competitions) for text mining
in biology called BioCreAtIvE (Critical Assessment of
Information Extraction systems in Biology), which
started in 2003 and is run by The MITRE
Corporation and the Spanish National Cancer
Research Center (CNIO). Challenge evaluations can
help drive a field forward by creating resources, build-
ing a community of researchers, and providing stan-
dards for assessment. 

“At the time, I found myself asking: What’s the

state of the art with respect to text mining for biology?
And, if we can do 90-plus percent accuracy on
newswire, why don’t we get that performance in biol-
ogy?” says Lynette Hirschman, PhD, director of bio-
medical informatics at The MITRE Corporation.
There was also a need for a standard way to assess text-
mining tools and a need to assess them on datasets
other than the ones that were used to train them.
Results on researchers’ private datasets were all over
the map, says Hirschman. The BioCreAtIvE competi-
tion was intended to fix that problem.

As described below, BioCreAtIvE has also
addressed key challenges in bio-text mining—including
promoting the development of tools to find gene and
protein mentions in text and extracting basic facts,
such as protein-protein interactions. 

One of the most basic tasks in natural language
processing is to recognize important entities in run-
ning text. In biology, this means identifying genes,
gene products, diseases, drugs, and cells and linking
them to a unique identifier (such as an EntrezGene or
SwissProt ID). If this foundational task is done poor-
ly, the accuracy of higher-level tasks suffers. 

“It’s a very pragmatic problem, but it’s very hard in
the biomedical domain. It’s surprisingly much easier

“There’s this sense, this assumption, that it should be easy [for
computers to read natural language]. You can talk and under-
stand things and read things really easily. But of course your

whole brain is designed for that,” says Alex Morgan.

The Name Game
Tagging Genes and Proteins
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in economics or business or news, because categories
are better defined and less overlapping,” Rzhetsky
says. “But here it’s essentially a mess.”  

Gene and protein names present a particular chal-
lenge. Historically, scientists have used whimsical
names that are not readily distinguishable as genes, for
example: cheap date, heartless pinhead, and Indy
(short for “I’m not dead yet”). A gene or protein may
also have multiple name variants, for example, S-
receptor kinase with and without the hyphen; or
nuclear factor kappa B and NFKB. Further, it may be
hard to distinguish between a gene and its gene prod-
uct; for example, ‘p53’ could refer to a gene, protein,
or mRNA. Gene and protein names may also be
shared across species. “Those things never happen in
the newswire domain. Bill Clinton is always Bill
Clinton,” Tsujii says.

The bio-text mining community
has focused considerable attention on
this problem in the past five years.
Several named entity recognition tools
for biology are publicly available, such
as those provided by the United
Kingdom’s National Centre for Text
Mining (http://www.nactem.ac.uk/),
a centre created to provide text-mining
tools and services for biologists.
Existing tools draw on dictionary look-
up (matching strings in text with lists
of names); manually constructed rules,
such as ‘any word ending in ase is a
protein’ or ‘any phrase containing the
word receptor is a protein’; and
machine-learning techniques. 

The top systems in BioCreAtIvE—
which all include machine-learning
components—achieve F-measures of 80
to 90 percent for finding gene men-
tions and normalizing these genes to a
unique ID, which represents the state
of the art for this task. 

What’s promising is that the best
systems in BioCreAtIvE 2006-2007
surpassed those in 2004, Hirschman
says, and progress should continue. 

The next step is to extract simple facts, such as pro-
tein-protein interactions, gene-disease relationships,
and drug-gene relationships. These facts can be used
to fill biological databases or to reconstruct biological
pathways.

Fact extraction systems in biology use various
degrees of “parsing”—teasing out a sentence’s gram-
matical structure. Early systems used no parsing, but
simply inferred interaction when two proteins (or
other entities) appeared in the same sentence (co-
occurrence). Later systems used shallow parsing—iden-
tifying noun and verb phrases—to find telltale patterns
such as two noun phrases around the verbs “phos-
phorylate,”  “bind,” or “activate.” The latest trend is

Sentence Slicing
and Dicing
Mining for Relationships

Chilibot:  Shallow Parsing

How it Works:  The user enters gene names and other keywords
(such as addiction or nicotine). For each possible pair of terms,
Chilibot (http://www.chilibot.net) queries PubMed to retrieve
abstracts and then sentences where the pair co-occurs. The sys-
tem does a shallow parse of each sentence and, based on the
presence of verbs such as “activate,” “enhance,” “reduce,” and
“suppress,” infers a broad relationship for each pair—stimula-
tory, inhibitory, or neutral. Then Chilibot presents all the pairs
and relationships on a graph, with colors to represent the rela-
tionship type—red for inhibition, green for stimulation, and
yellow for unresolved. From the graph, the user can jump back
to the sentence that generated the relationship, and, from
there, to the PubMed abstract. 
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to use deep parsing—specifying the full grammatical
structure of a sentence—to unravel nested and com-
plex relationships and deal with more complex gram-
mar (such as passive voice). 

A widely used fact-extraction system that employs
shallow parsing is Chilibot, short for “chip literature
robot.” The program constructs relationship networks
among biological concepts, genes, proteins, and drugs,
and presents them in graphical form. 

“You provide a list of terms and then you retrieve a
graph of highly summarized relationships between the
terms,” says Hao Chen, PhD, assistant professor of

pharmacology at the University of Tennessee Health
Science Center. Chen, a neurobiologist, wrote the
program to help him interpret microarray data. It will
show how a list of co-expressed genes connects with
each other and with a biological process, such as
addiction.

Chilibot has been used in the design, interpreta-
tion, and validation phases of experiments, Chen says.
“There are many programs with a similar function.

But Chilibot probably is one of the most user-accessi-
ble interfaces of this technology on the web,” he says.

Shallow parsing has limitations, though. “Basically,
you get what you pay for,” says Ananiadou. Deeper
parsing delivers more precision and handles complex,
nested chains of interactions. For example, the sen-
tence “Phosphorylated Cbl coprecipitated with CrkL,
which was constitutively associated with C3G”
involves several nested relationships that can only be
correctly mapped out with deep parsing.  “If you want
to work on systems biology, with pathways, you need
to go to a much deeper level,” Ananiadou says. “So

this is where the community is moving now.”
Not only are researchers trying to achieve depth,

they are also trying to achieve breadth. Some groups
have actually parsed the whole of MEDLINE and
beyond. “Anything that can synthesize all the litera-
ture is presumably better than something that only
looks at a little bit,” Morgan says. 

For example, Tsujii’s lab developed a deep parsing
tool called Enju (http://www-tsujii.is.s.u-tokyo.

“Anything that can synthesize all the literature is presumably
better than something that only looks at a little bit,” 

Alex Morgan says. 

Building Networks: The Chilibot
program mines PubMed abstracts
for broad relationships (stimulato-
ry, inhibitory, or neutral) between
genes, proteins, drugs, and biolog-
ical processes and presents them
graphically. Here, Chilibot summa-
rizes how a group of genes relate
to each other and to the biological
concepts of plasticity and cocaine. 
Credit: Hao Chen, University of
Tennessee Health Science Center
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ac.jp/enju/index.html), named after a Chinese tree of
wisdom (since it generates syntax trees). Enju is a cut-
ting-edge system, one of the few text-mining programs
in biology that does full parsing, Tsujii says. Tsujii’s
team used Enju to parse all 70 million sentences in
MEDLINE in about eight days (using a 350 PC clus-
ter). From there, they extracted all the biomedical
events (such as protein-protein interactions) reported
in MEDLINE; these results form the basis of an intel-
ligent search tool called MEDIE. “Our next goal is to
map all the events reported in MEDLINE to some

kind of complex network,” Tsujii says.
Another cutting-edge program that employs litera-

ture-wide deep parsing is GeneWays (http://gene
ways.genomecenter.columbia.edu/), developed at
Columbia University. GeneWays extracts knowledge
on biological relationships in signal transduction
pathways and puts these facts into a database that biol-
ogists can download. The latest run (which took about
3 months) parsed about one-third of a million full-text
articles from 100 peer-reviewed journals as well as all
of PubMed, and generated about 8 million redundant

MEDIE and GeneWays:  Deep Parsing

MEDIE: MEDIE uses the deep-parsing results from Enju to index MED-
LINE with biomedical relationships and events. Using MEDIE, “biologists
can retrieve all the papers in which some specific protein activates some
specific biological process,” Tsujii says. For example, a biologist can
search for “What does p53 activate?” or “What causes cancer?”  MEDIE
is provided jointly by the United Kingdom National Centre for Text
Mining and the University of Tokyo, http://www-tsujii.is.s.u-
tokyo.ac.jp/medie/. GeneWays: GeneWays ( http://geneways. genome-
center.columbia.edu/) employs a deep parsing tool called GENIES to
extract knowledge on about 500 different types of binary relationships
between genes, gene products, small molecules, diseases, and drugs in
signal transduction pathways. GeneWays stores these facts in a down-
loadable database that biologists can use to generate large graphical
networks and help them interpret experimental data.  

Open access publishers—such as PubMed Central and PLoS—have 
unlocked a critical door for bio-text miners by providing full-text articles in a 

computer-friendly format.
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and 4 million unique facts, says Rzhetsky (who helped
develop GeneWays). In addition to helping
researchers interpret experimental data, Geneways
can be used to trace the evolution of ideas in the sci-
entific literature or help derive consensus from con-
flicting statements in the literature. For example,
Rzhetsky’s team is working on an algorithm that eval-
uates the weight of evidence supporting or contradict-
ing a particular fact and generates a probability that
the fact is true. “You can try to reconstruct truth,”
Rzhetsky says.  

The performance of state-of-the-art fact extraction
systems in biology is unknown, but—on a fact-by-fact
basis—it may be low. The top systems on a protein-pro-
tein interaction task in BioCreAtIvE 2006-2007
achieved F-measures of only about 35%. Though fact
extraction remains largely a research problem, tools in
use today are benefiting users. These systems exploit
redundancy (looking at multiple mentions of a fact) to
increase recall and accuracy.

If you combine information extracted from 50,000
paragraphs, “you’re going to get the right answer,”
Morgan says. “Eventually you’re going to have seen
that fact so many times that it must be true and all the
ones that are wrong disappear, because they’re ran-
dom instances that don’t happen that often.”

The bio-text mining community faces several key
challenges. To date, tools have focused on mining
abstracts, which are more readily available than full-
text articles. But the bulk of information, as well as
the tables and figures, are contained in full text. 

Many full-text articles require a subscription for
access; and even when available, they may be in for-
mats that don’t work well for text-mining applications.

“Trying to process a PDF document is a nuisance.
You can convert it to plain text but it doesn’t convert
very well,” Hirschman says.  

Open access publishers—such as PubMed Central
and PLoS—have unlocked a critical door for bio-text
miners by providing full-text articles in a computer-
friendly format. But much of the literature still
remains inaccessible.

Another challenge is making tools that are useful
to biologists. Systems are typically evaluated as to their
recall and accuracy in handling canned problems, but
usability to biologists may actually be a more impor-
tant benchmark. 

“We’ve been pushing for evaluations that will let us
quantify the value of a particular system and its per-
formance to a biologist. How much will it help you do
your job?” Cohen says. “I’m happy to say that in the
last couple years, for the first time, we’ve actually seen
productive research in that area.” 

Despite such challenges, bio-text mining has
advanced considerably in a short amount of time.
Rather than scientists tracking down one journal arti-
cle at a time in the library, computers are now doing
the legwork—surveying millions of abstracts and hun-
dreds of thousands of full-text articles at once and
returning insights that don’t exist in a single article. 

“We’ve made enormous progress,” Hirschman
says. “We have a very vibrant community of
researchers now. The results are getting better. We
understand where we are and what resources we
need.” And if key challenges, such as full-text access
and usability, can be met, she and others expect the
field to advance rapidly. 

Moreover, says Rzhetsky, “I strongly believe that
text mining can speed up scientific progress.” ■■

Pulling Out Pathways: The GeneWays program parses the biomedical
literature and returns millions of published relationships between
genes, gene products, small molecules, diseases, and drugs. Here,
researchers mapped the relationships between genes believed to be
involved in autism (blue), bipolar disorder (yellow), and schizophrenia
(red) to look for genetic overlaps between the three diseases. Credit:
Ivan Iossifov, Columbia University, and Andrey Rzhetsky, University of
Chicago 

Full Text Ahead
Advancing Biology and Medicine
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While considerable effort has gone into processing biomedical
text, much less attention has been paid to processing fig-
ures. Yet figures and figure-related text (captions and text

referring to figures) make up 50 percent of a typical biomedical paper,
says Robert P. Futrelle, PhD, associate professor of computer and infor-
mation science at Northeastern University. 

Technology for mining figures is still in its early stages, and most
of the work is focused on information retrieval—the ability to search
for images and diagrams the way we search for documents. As with
text mining, the simplest approach is to use statistical methods in
which programs look for patterns of pixels rather than patterns of
words. But so far this just allows researchers to classify images in
broad terms. For example, in a search of medical images, this tech-
nique might separate a chest X-ray from a CT scan. “The technology
of image processing is not nearly as advanced as text processing,” says
William Hersh, MD, professor of medical informatics and clinical epi-
demiology at Oregon Health & Science University. 

Besides medical images, other researchers are working on classi-
fying biological images. For example, a team led by Robert Murphy,
PhD, professor of biological sciences, biomedical engineering, and
machine learning at Carnegie Mellon University, developed SLIF
(Subcellular Location Image Finder, http://slif.cbi.cmu.edu), a tool that
divides multi-part figures into individual panels and picks out fluores-
cence microscope images (using a machine-learning classifier). Beyond
classification, the tool also extracts facts about protein subcellular
localization from image features and caption text. SLIF was used to
automatically extract fluorescence microscope images from 15,000
PNAS papers and to store them in a searchable database indexed
(where possible) by protein, cell type, and subcellular location.

Futrelle is trying to do even deeper processing—akin to parsing
sentences—to extract meaning from diagrams (line drawings and
graphs). In diagrams, the lowest level items are not words, but indi-
vidual lines that have essentially no meaning on their own, he says.
“If you just had the lines in a bag and pulled them out it wouldn’t
mean anything; but if you put them in place, all of a sudden, ‘bingo,’
you have something,” he says.

Rather than look for nouns, verbs, and prepositions, his team
looks at the lengths, positions, and connectivity of lines to detect
standard pictorial expressions, such as plus signs, arrows, and error
bars. “So, we have parsed diagrams. We have taken data graphs and
pulled out everything—all the little tick marks and the scale lines and
the data points,” he says. His lab is now redeveloping the approach in
a newer programming language. 

In the future, Futrelle says he hopes to build tools that perform
intelligent searching for particular types of diagrams (such as a bar
graph about a specific topic) and that automatically add metadata—
tags that identify: “this is a gene diagram” or “this is a bar graph”—
to figures in the literature. Beyond information retrieval, Futrelle’s
work could also form the basis of systems that actually mine figures
for new knowledge, similar to current text-mining systems.   

Getting the Picture
Mining Images and Diagrams

Scientists are making progress mining
information from figures such as these.
Chest Xray reprinted from Marashi SM,
Eghtesadi-Araghi P, Mandegar MH. A
large left ventricular pseudoaneurysm in
Behçet's disease: a case report. BMC Surg.
2005 Jun 14;5:13. Flourescence Microscope
image reprinted from: Zamora-Veyl FB,
Kroemer M, Zander D, Clos J. Stage-specif-
ic expression of the mitochondrial co-
chaperonin of Leishmania donovani,
CPN10. Kinetoplastid Biol Dis. 2005 Apr
29;4(1):3. Diagram example reprinted
from: Jackson AP. Tandem gene arrays in
Trypanosoma brucei: comparative phy-
logenomic analysis of duplicate sequence
variation. BMC Evol Biol. 2007 Apr 4;7:54.
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ver the last three years, the lab of Vijay Pande,
PhD, at Stanford University has optimized their
molecular dynamics (MD) algorithms to take

advantage of the fast computing that’s possible with GPUs,
or graphics processing units (see this issue’s Under the
Hood column for more information about GPUs). Now,
through their collaboration with Simbios that capability
will be made freely available to the whole community via a
library called Open Molecular Mechanics, or OpenMM.

“OpenMM will be a tool that unifies the MD commu-
nity,” says Russ Altman, MD, PhD, principal investigator
of Simbios and a professor of bioengineering, genetics,
medicine, and computer science at Stanford University.
“Instead of difficult disparate efforts to recode existing MD
packages to enjoy the speedups provided by GPUs,
OpenMM will bring GPUs to existing packages and allow
researchers to focus on discovery.” 

There are tens of MD packages available today:
GROMACS, NAMD, and Amber to name just a few.
Currently, if an applications developer wanted to acceler-
ate their MD software using GPUs, they would have to
write multiple versions of their code since each GPU man-
ufacturer uses a different set of commands. OpenMM
would provide a common interface, hiding the details of
programming the different GPUs.

“The user wouldn’t even have to think about any of the
GPU craziness,” says Pande, associate professor of chem-
istry and of structural biology at Stanford University and
lead of the OpenMM project. “All they would know is that
they want to do a force calculation or an energy calculation
and they’ll just know it’s going to be done fast on a variety
of hardware.”

How fast?  “On GPUs, we routinely get speedups by a
factor of 100 and in some cases, close to a factor of 1000,”
says Pande. “Those types of speedups can really change
how your work gets done. Things that used to take three
years can now get done in a day.”

Grant Krafft, PhD, Chairman and Chief Science
Officer of Acumen Pharmaceuticals, Inc., has benefited
directly from faster simulations. His company uses Pande’s
simulation software to help them design molecules to treat
and prevent Alzheimer’s. 

“With the expanded capabilities of these simulations,
we can get a more complete picture of which molecular
assemblies prefer to form,” Krafft says. “What’s really
important is that they don’t incorporate approximations
that many other molecular dynamics calculations have to
incorporate, approximations that would lead to errors.”  

OpenMM makes it possible for other scientists to
achieve similar results with their preferred MD code with-
out much more programming and without an expensive
supercomputer or a cluster. The only additional hardware
that might be needed would be a high-end GPU board,
which costs just a few hundred dollars these days and is
straightforward to install.  

The first release of the OpenMM library is planned for
the fall of 2008. The release will include integration of the
OpenMM library into the GROMACS MD package. 

“Nobody’s really coming close to what Vijay’s doing in
terms of duration of folding and dynamics studies,” says
Krafft. But with the release of OpenMM, those capabilities
could easily become available to all. ■■

SimbiosNews
s i m b i o s  n e w s

BY JOY KU, PHD

Simbios (http://simbios.stanford.edu) 
is a National Center for Biomedical Computing
located at Stanford University.

DETAILS

OpenMM is part of Simbios’ new protein folding
driving biological problem (DBP). Hundreds of the
protein folding trajectories generated by the Pande lab
are also being made available as part of this DBP. See
https://simtk.org/home/foldvillin.   

To learn more about OpenMM, visit https://simtk.org/
home/openmm. The first open code release of OpenMM
is planned for Fall 2008 and will be available for
download from this Web site.   

OpenMM:  Bringing GPU Acceleration
Capabilities to Molecular Dynamics

O

OpenMM makes it easy to use GPUs to speed up different molecular dynam-
ics packages.
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nyone who has ever waited minutes, hours, or
even days for software to complete a biomedical
computation will be happy to hear that almost

every personal computer is capable of better.  Today, most
standard PCs, both desktops and laptops, come with a
graphics processing unit (GPU) in addition to the central
processing unit (CPU).  And, thanks to the video gaming
market, GPU hardware has advanced at a much faster
pace than CPU hardware.  In fact, GPUs have advanced
so quickly that today they have ten times more computa-
tional power than CPUs (see the graph).

Why are GPUs faster than CPUs for most biomedical
computations?  A CPU is a serial computing device, pro-
cessing data sequentially.  A GPU is a parallel computing
device, processing many chunks of data all at the same
time.  Since most biomedical computations are paralleliz-
able, GPU computing provides a powerful alternative to
traditional CPU computing without the expense of pur-
chasing a room full of clustered computers.

The big bottleneck for GPU computing is writing soft-
ware specialized for the GPU.  Since GPU computing is in
its infancy relative to CPU computing, only a small frac-
tion of programmers around the world are familiar with
GPU-based programming languages such as CUDA,
Brook+, or Ct.  GPU software developers must scale a seri-
ous learning curve if GPUs are to serve the mainstream.

To solve this problem, easy-to-use GPU programming
toolboxes are now available, such as the Matlab-based one
from AccelerEyes (see the framework).  The utility of these
tools is to help researchers tap into the benefits of GPU
computing.

But GPUs are already having an impact in biomedical
computing. Examples include image-guided brain surgery,
molecular dynamics simulations, and genomics.

Complex algorithms which take hours when run on a
CPU can now be used in real-time.  And the computing
power made available by a GPU on a standard PC now
costs hundreds of times less than that of a cluster of PCs
having similar computing power.

With these kinds of speed improvements and cost ben-
efits, GPU programming is sure to become mainstream.
It’s clearly faster than running software on your CPU
(especially when that same computer already has the hard-
ware necessary to go faster); and it’s clearly cheaper than
buying a room full of clustered computers. Now the soft-
ware world just needs to catch up. ■■

DETAILS

John Melonakos, a PhD student at Georgia Tech, is an
active participant in the National Alliance for Medical
Image Computing (NA-MIC), one of the National Centers
for Biomedical Computing.  He joined with Tauseef ur
Rehman, Gallagher Pryor, and James Malcolm to start
AccelerEyes LLC, which is developing technologies that
enable CPU-based code to run on GPUs.  The AccelerEyes
Jacket Product, connecting Matlab to the GPU, is avail-
able by visiting www.accelereyes.com.  For more infor-
mation or to inquire about joining the AccelerEyes team,
please send an email to:  john.melonakos@accelereyes
.com.

Under TheHood
BY JOHN MELONAKOS

Parallel Computing 
on a Personal Computer

u n d e r  t h e  h o o d

Over the last few years, the power of GPUs had increased dra-
matically compared to that of CPUs, as shown in this chart com-
paring NVidia graphics processors with Intel processors.

AccelerEyes is a new programming tool that allows researchers
to use GPUs for Matlab tasks.  Courtesy of John Melonakos.
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he mesh body of a human form floats over the Brooklyn
Bridge. Dots of color, embedded with video testimonials,

share the collective health problems of 9/11 survivors. In this
incarnation, PhineasMap is pure art. “I was attempting to visu-
alize a single, public body that we can all connect to in some
manner,” says Virgil Wong, “as a common point to empathize
with the pain of other people.”

PhineasMap is now evolving into a health encyclopedia, an
avatar for individual human health, and a representation of
the collective health of people in a particular location.

“We’re currently using this model as a way to archive and
access health information,” says Wong, the Web Center direc-
tor at NewYork-Presbyterian Hospital and Weill Cornell
Medical College.

Initially, the PhineasMap body will be used as an access
point for general health information. He is connecting it to
the NewYork-Presbyterian and Weill Cornell online health
encyclopedia, which includes a large interactive media library
of medical and surgical videos and animations. Users would
then click on a part of the body to learn more about it. “The
3-D anatomical body is becoming a natural interface for con-
textualizing the library of information we already have,” he
says. Next, the body would be tailored to reflect the diseases
and conditions of individual patients. It could even grow with
you, he explains, “so you could go back to see your health at
any previous point in time.” Eventually, the map will also rep-
resent large populations and perhaps serve as an epidemiolog-
ical tool. “What would the collective body of San Francisco or
New York City look like?” Wong asks. ■■

An Avatar of Human Health
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PhineasMap floating above the Brooklyn Bridge. Courtesy of Virgil Wong,
www.virgilwong.com/installations/phineasmap




