
Summer 2007

PLUS: 
DOCK THIS:
IN SILICO DRUG

DESIGN FEEDS

DRUG DEVELOPMENT



ContentsSummer 2007
c o n t e n t s

BIOMEDICAL COMPUTATION REVIEW Summer 2007 www.biomedicalcomputationreview.org

FEATURES

Imaging Collections: How They’re Stacking Up
BY MEREDITH ALEXANDER KUNZ

Dock This: In Silico Drug Design Feeds Drug Development
BY KRISTIN COBB, PhD

DEPARTMENTS

1 FROM THE EDITOR: THE ACTIVE TRANSPORT OF IDEAS

BY DAVID PAIK, PhD

2 NEWSBYTES

BY KATHARINE MILLER, LOUISA DALTON, AND MATTHEW BUSSE, PhD
• Aquaporin Simulations De-Bunk Gas Exchange Assumptions
• Parkinson’s Culprit Modeled
• Clustering Without Limits
• Computer Vision That Mimics Human Vision
• Nature vs. Nurture In Silico

• Simulating Populations With Complex Diseases

31 SIMBIOS NEWS: 
IN THE (PROTEIN) LOOP

BY KATHARINE MILLER

32 UNDER THE HOOD: MUTUAL INFORMATION

BY CHIH-WEN KAN AND MIA K. MARKEY, PhD

33 PUTTING HEADS TOGETHER:     
CONFERENCES/SYMPOSIA

34 SEEING SCIENCE: REMODELING

WITH CURVATURE

COVER ART BY

SARA L. MALLOURE OF AFFILIATED DESIGN

8

Summer 2007
Volume 3, Issue 3

ISSN 1557-3192

Executive Editor
David Paik, PhD

Managing Editor
Katharine Miller

Science Writers
Katharine Miller
Louisa Dalton

Matthew Busse, PhD
Meredith Alexander Kunz

Kristin Cobb, PhD

Community Contributors
David Paik, PhD

Mia Markey, PhD

Layout and Design
Affiliated Design

Printing
Advanced Printing

Editorial Advisory Board
Russ Altman, MD, PhD

Brian Athey, PhD
Andrea Califano, PhD
Valerie Daggett, PhD

Scott Delp, PhD
Eric Jakobsson, PhD

Ron Kikinis, MD
Isaac Kohane, MD, PhD

Paul Mitiguy, PhD
Mark Musen, MD, PhD

Tamar Schlick, PhD
Jeanette Schmidt, PhD

Michael Sherman
Arthur Toga, PhD

Shoshana Wodak, PhD
John C. Wooley, PhD

For general inquiries, 
subscriptions, or letters to the editor,

visit our website at 
www.biomedicalcomputationreview.org

Office
Biomedical Computation Review

Stanford University
318 Campus Drive

Clark Center Room S231
Stanford, CA 94305-5444

Biomedical Computation Review is pub-
lished quarterly by Simbios National Center for
Biomedical Computing and supported by the
National Institutes of Health through the NIH
Roadmap for Medical Research Grant U54
GM072970. Information on the National Centers
for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics. The
NIH program and science officers for Simbios are: 

Peter Lyster, PhD (NIGMS)
Jennie Larkin, PhD (NHLBI)
Jennifer Couch, PhD (NCI)
Semahat Demir, PhD (NSF)
Peter Highnam, PhD (NCRR)
Jerry Li, MD, PhD (NIGMS)
Richard Morris, PhD (NIAID)
Grace Peng, PhD (NIBIB)
David Thomassen, PhD (DOE)
Ronald J. White, PhD (NASA/USRA)
Jane Ye, PhD (NLM)
Yuan Liu, PhD (NINDS)

20



tion of the innovation and
confirmation of the value
of the innovation.

Although broadly meant to
describe the cultural spread of

ideas and technology, it applies well in the narrower context
of academic research. While the last four stages are well cov-
ered by traditional research activities, it is the initial stage of
becoming aware of new ideas from far afield that is often the
rate limiting factor and the least formalized in research.

As a great
believer in the
power of cross fer-
tilization, I think
that diffusion is
too passive a
metaphor; I prefer
instead to think in
terms of the active
transport of ideas
and places where I
can search out
sources that facili-
tate long range
transport.

I’ve recently
found inspiration
for orthogonal
thinking from sev-
eral unconventional sources. The TED (Technology,
Entertainment, Design) Conference features a diverse set
of inspiring speakers and is podcasted on the web. Edge
Foundation is a web-based publication that includes the
World Question Center annually featuring a grand yet sim-
ple question asked of numerous notable scientists. On the
more focused topic of biomedical computation, the NIH
Biomedical Computing Interest Group hosts webcast semi-
nars, book clubs, tutorials and brainstorming events.

Although things are changing, academia is still ham-
pered by the inertia of traditional boundaries between dis-
ciplines that form unintentional energy barriers against
the diffusion of ideas. Just as a retreat or a sabbatical can
provide a refreshing perspective, a foray into some areas
that may seem off topic can also provide a little dose of
hybrid vigor to one’s work. ■■

The Active Transport of Ideas
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From theEditor
f r o m  t h e  e d i t o r

BY DAVID PAIK, PhD

A foray into
some areas that
may seem off

topic can provide
a little dose of
hybrid vigor to

one’s work.

How ideas spread gets at the very
fabric of scholarly
research and has

been studied from many 
different angles.

Many studies examine
person-to-person connec-
tivity in social networks.
Within a social network,
the average path length
between any two people is a key
concept. By asking participants in Omaha or
Wichita to mail chain letters that would get closer to
selected recipients in Boston, Milgram’s classic 1967 small
world experiment demonstrated the six degrees of separa-
tion concept. Movie buffs have created a board game using
this concept called the Six Degrees of Kevin Bacon and
those interested in mathematical genealogy have adopted
Erdös Numbers linking researchers by co-authorship to
the prolific mathematician Paul Erdös.

However, a small world is not necessarily a robust
world. In addition to path lengths, the connectedness
between different parts of the social network is an impor-
tant measure. A recent Journal of the American Medical
Informatics Association paper by Bradley Malin, PhD, and
Kathleen Carley, PhD, examines the connection
between editorial boards of medical informatics and bioin-
formatics journals to describe the fragility of links between
these two sister fields.

There are also many ways to examine the spread of ideas
more broadly. The Rogers theory of diffusion of innovation
states that depending on when they adopt new ideas, people
form a bell curve as either innovators, early adopters, early
majority, late majority or laggards and that the innovation
penetration forms an S curve over time. The five stages are
awareness of the innovation, persuasion of the value of the
innovation, decision to adopt the innovation, implementa-

DETAILS

Technology, Entertainment, Design (TED) Conferences:
http://www.ted.com

Edge Foundation: http://www.edge.org

NIH Biomedical Computing Interest Group:
http://www.nih-bcig.org 
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Aquaporin Simulations
De-Bunk Gas Exchange

Assumptions
Biologists have long taken gas

exchange for granted, assuming that
gases simply seep through the cell’s lipid
membrane. Since 1998, however, evi-
dence has been building that gases
might also be exchanged through pores
created by specialized proteins. 

Now molecular dynamics simulations
of aquaporins have weighed in on the
question. The result: “It’s now well
established that these proteins can con-
duct gas molecules,” says Emad
Tajkhorshid, PhD, co-author of the
work and assistant professor of bio-
chemistry, pharmacology and biophysics
at the University of Illinois at Urbana-
Champaign. But, he says, some uncer-
tainty remains: “Whether or not it’s
important in the human body, that’s the
controversial part.” The work was pub-
lished in the March 2007 issue of the
Journal of Structural Biology.

Fifteen to twenty years ago, scientists
believed that water permeation through
lipid bilayers was enough for water trans-
port into and out of cells. Gradually,

though, researchers realized that some
cells need to control water permeability,
and other cells have lipid bilayers that
aren’t very permeable to water.
Aquaporins, it turned out, carry water in
and out in a controllable fashion. “I
think the same might be true for gas per-
meability,” says Tajkhorshid. “Gas perme-
ability of a lipid bilayer is like an open
free highway where everything can go
through. With a protein, you can have a
gating mechanism and some regulation.”  

One of Tajkhorshid’s collaborators,
Walter Boron, MD, PhD, professor of
cellular and molecular physiology at Yale
University, has been working on gas

exchange experimentally for about ten
years. To him, aquaporins are a likely
suspect for gas conduction because they
exist in places where oxygen must go in
and carbon dioxide must come out. For
example they are plentiful in cells that
line the lung, in red blood cells, and in
astrocytes—cells at the blood-brain barri-
er. But it’s very hard to measure small
changes in oxygen concentration at the
surface of a membrane experimentally. 

So Tajkhorshid’s team pitched in
with molecular dynamics simulations.
Aquaporins occur in groups of four
(tetramers), with four pores that con-
duct water (one through each aquapor-
in molecule) and one central pore
where the molecules meet. The latter,
until now, had no known function.
When simulated using two comple-
mentary methods—explicit sampling
with full gas permeation and implicit
ligand sampling—the team found both
oxygen and carbon dioxide were
exchanged through that central pore.
Carbon dioxide was also transmitted
through the four water pores, while oxy-
gen passed through those pores only
rarely. The research also found, howev-
er, that a plain lipid bilayer conducts

two and a half times as much gas as one
embedded with aquaporin tetramers.
“The question is whether this pathway
is significant and makes any difference
in terms of total permeability of the
membrane,” says Tajkhorshid. 

The researchers hypothesize that, as
with water permeability, aquaporins may
be physiologically relevant to gas
exchange when cells have dense, rigid
lipid bilayers or when aquaporins occu-
py a major fraction of the membrane. 

Tajkhorshid plans to introduce point
mutations inside the central pore and
manipulate the behavior of a gating loop
to see how that changes the conducting

properties of the central pore.
Meanwhile, Boron’s group is looking for
a system in which gas conduction
through aquaporins is a major pathway.
Says Tajkhorshid: “Even if it’s 30 per-
cent of total gas permeability, it becomes
physiologically relevant because then
you can control it.”

According to Nazih Nakhoul, PhD,
research associate professor in biochem-
istry at Tulane University, “This idea of
gas transport through membrane proteins
is really gaining support. It’s interesting to
see molecular dynamics simulations con-
firm some of the earliest findings.”  
—By Katharine Miller

Simulations of the aquaporin tetramer
found that carbon dioxide and oxygen are
exchanged through the central pore—a site
of previously unknown function. Image
courtesy of Emad Tajkhorshid, a faculty
associate of the NIH Resource for
Macromolecular Modeling and
Bioinformatics, and his UIUC colleagues
Klaus Schulten, Yi Wang, and Jordi Cohen. 

“It’s now well established that [aquaporins] can conduct gas 
molecules,” says Emad Tajkhorshid. “Whether or not it’s 

important in the human body, that’s the controversial part.”
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Parkinson’s Culprit
Modeled

Under a microscope, the curious pro-
tein clumps that dot the brains of
Parkinson’s patients stick out like the
culprits they are. But no one has yet
caught the protein—alpha-synuclein—in
the act of causing disease. Now, investi-
gators report in an April 2007 issue of
FEBS Journal that they’re getting closer:
they’ve modeled alpha-synuclein’s early
aggregation and offered a detailed mech-
anism for its participation in neuron
death.

“This is not just the first computa-
tional model of alpha-synuclein,” says
Igor Tsigelny, PhD, an author of the
paper and a computational biologist at
the San Diego Supercomputer Center.
“Up to now, there was no molecular
concept of the aggregation going on.”

In the brain cells of Parkinson’s
patients, alpha-synuclein first starts to
cluster as a proto-fibril. It then forms fib-
ril chains, and finally ends up in the
dense clumps of fibrils called Lewy bod-
ies. Some researchers have suggested in
the past few years that alpha-synuclein
knocks off neurons right at the begin-
ning of aggregation, long before it can be
detected as a Lewy body. Biochemical
and structural evidence hints that when
a few alpha-synuclein molecules first self-
assemble into proto-fibrils, they can
form pore-like ring structures. These
may interact with the cell membrane
and allow ions to enter the cell. The
entrance of ions such as Ca2+ could
lead to neuron death. 

The computer model created by
Tsigelny and his colleagues at the
University of California, San Diego, sup-
ports this theory, providing detailed
dynamics of alpha-synuclein hexamers
and pentamers and their interaction
with the cell membrane. What’s more,
the model shows that another synuclein
in the cell—beta-synuclein—blocks alpha-
synuclein’s ring-making, suggesting at
least one avenue for future inhibitory
drug development.

Modeling such a complex aggregation
wasn’t simple. Alpha-synuclein is a large
protein (140 amino acids), and to model

its hexamer interacting with the cell
membrane required juggling around a
million atoms, Tsigelny says. 

Yet more than the size of alpha-synu-
clein, what made it difficult to model
was its lack of structure. Alpha-synucle-
in is an intrinsically unstructured pro-
tein—one without a distinct three-
dimensional shape. Most proteins con-
sistently fold into a favored shape to do
their jobs, a form that can be crystal-
lized, imaged, and pored over. But
unstructured proteins flop this way and
that, even while performing their spe-
cific tasks, making them very difficult
to pin down and study. 

“We were not scared by an unstable
protein,” Tsigelny states. And he and
his coworkers developed an unusual
“all-dynamic” approach to modeling
the protein. None of the conformations
are final—they are all considered inter-

mediate and each may last only as long
as half of a nanosecond. Nevertheless,
Tsigelny says, even such fleeting inter-
mediates may aggregate. The pore-
like aggregates, they found, are far 
more stable than single molecules of
alpha-synuclein.

Having this model “is one step for-
ward,” says Hilal Lashuel, PhD, profes-
sor at the Swiss Federal Institute of
Technology in Lausanne, Switzerland.
The UCSD model provides a structural
basis for testing the hypothesis that
alpha-synuclein forms toxic pores, he
adds. But Lashuel also cautions that
only biochemical and in vivo studies can
prove whether alpha-synuclein pokes
holes in neurons. “Isolating the toxic
species is really the most difficult ques-
tion we are dealing with. You have to
catch it in the act.” 
—By Louisa Dalton

Alpha-synuclein poses as a pentamer, pore-like, on the surface of a cell membrane. Courtesy
of Igor Tsigelny
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Clustering Without Limits
Starting in preschool we all learn how

to get organized. Typically, we start with
pre-determined categories (dolls, trains,
blocks); pre-set ideas about what belongs
in each category (Barbie: doll; Thomas
the Tank Engine: train) and a fixed num-
ber of bins to put things in. 

But what if you started with none of
those initial limitations? Could you still
group the toys? It turns out that, in a
computer, such sorting is not only possi-
ble, but extremely efficient. Using a
novel algorithm called affinity propaga-
tion, researchers at the University of
Toronto found that they can not only
cluster lots of different kinds of data
appropriately, but do it better and faster
than other methods. The work was 
published in the February 16 issue of
Science.  

“Almost all existing techniques work
on a hypothesis refinement basis: they
start off with a set of assumed groups
and iteratively refine them,” says
Brendan Frey, PhD, associate professor
of electrical and computer engineering
at the University of Toronto, co-author
of the paper. “To our knowledge, ours is
the first algorithm to consider all possi-
ble groupings at once.” 

The task sounds mind-boggling: There
are a huge number of possible groupings.
But affinity propagation handles that
problem by sending messages between
data points—pair-wise—so as to maximize

the net similarity in
each group. “Each mes-
sage encapsulates or
summarizes a whole dis-
tribution of possible
groupings for one of the
data points,” says
Delbert Dueck, a PhD
candidate in Frey’s lab.
“No one has done that
before.” 

Affinity propagation
is based on an algo-
rithm called belief prop-
agation, which has been
around in various incar-
nations for many years.
But, say the authors, it’s
an approach that has
never been applied to
clustering. “Certainly
not to generic clustering
of any type of data,”

says Dueck. Indeed the algorithm is so
generic that Frey and Dueck used it to
analyze gene expression data, facial
images, and airline routes, while other
researchers have found applications in
basketball statistics, the stock market and
computer vision. And many tasks in com-
putational biology require a computer to
organize the data before using it to make
predictions. 

“Part of the attraction of the algo-
rithm is that, although it was complicat-
ed to derive, it’s quite simple to imple-
ment and to get an intuitive feel for it,”
says Frey. There are basically only two
equations to it. “Sometimes we’ll give a
talk and get emails from people who’ve
implemented it the day after,” he says. 

When the researchers looked at how
well the algorithm performed compared
to other clustering methods they found
it remarkably efficient. “A problem our
algorithm could solve in about five min-
utes on one computer would take other
methods up to one million years to solve
on that same computer,” says Frey.  

Frey and Dueck use affinity propagation
to cluster data around “exemplars”—
data points that best represent their
compatriots. In this graphic, after start-
ing with an equal chance of serving as an
exemplar, candidates for that job have
already emerged (red dots). Each data
point sends messages to each candidate
exemplar conveying how well it repre-
sents the blue point compared to other
candidate exemplars. And candidate
exemplars send messages conveying
their availability to serve as an exemplar
for particular data points.

“Part of the
attraction of the

[affinity propagation]
algorithm is that,
although it was
complicated to
derive, it’s quite

simple to implement
and to get an

intuitive feel for it,”
says Brendan Frey.

If asked to cluster facial images, a standard clustering method
(k-means clustering) would take up to a million years on a sin-
gle computer to achieve the accuracy achieved by affinity prop-
agation after five minutes. 
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lished out of the lab run by Tomaso
Poggio, PhD, at MIT’s McGovern
Institute for Brain Research.

For decades, scientists have struggled
to create computer programs that can rec-
ognize visual objects as well as humans
can. Some computer systems excel at rec-
ognizing one particular object, but none
are anywhere close to recognizing the wide
range of objects observed by the human
brain. Visual
recognition is
complicated by
two conflicting
goals: a program
must be specific
enough to discrim-
inate between 
different objects,
such as a person
or a car, yet flexi-
ble enough to rec-
ognize the same
type of object in
different sizes,
poses, and light-
ing. 

To achieve these goals, Serre and col-
leagues used data recorded from real
neurons in the visual system to program
two fundamentally different kinds of vir-
tual neurons called S (simple) and C
(complex) units. S units recognize specif-
ic features of an image; C units monitor
a range of S units in one area and allow
for variation in position and size.  

The researchers were surprised to
find that a simple system, consisting of
four alternating layers of S and C units,

Tim Hughes, PhD, of the Center for
Cellular and Biomolecular Research at
the University of Toronto, is considering
using affinity propagation in his
research. “It seems like it would do best
when things really do form independent
groups, and when the data are
fairly sparse, so most of the correlation
matrix can be dropped in early  
cycles,” he says. “I think it will work well
with exon-profiling data or  
genome-tiling data, where there is also a
constraint that the groups  
have to correspond to regions near each
other on the chromosome.”
—By Katharine Miller

Computer Vision that
Mimics Human Vision
Our brains can recognize most of the

things we pass on an evening stroll:
Cars, buildings, trees, and people all reg-
ister even at a great distance or from an
odd angle. Now, a new computer vision
program can do the same thing. It suc-
cessfully rivals the human ability to rap-
idly recognize objects in a complex pic-
ture because it mimics how  information
flows during the initial stages of visual
perception.

“We’ve built a model to be as close as
possible to what is known about the
human visual system,” explains Thomas
Serre, PhD, a postdoctoral associate in
the Center for Biological and
Computational learning at MIT and
lead author of two papers recently pub-

was able to classify pictures of a busy
street scene as well as other leading
mathematics-based computer vision sys-
tems, as described in the March 2007
issue of IEEE Transactions on Pattern
Analysis and Machine Intelligence. 

Serre’s team then built a more com-
plex system, consisting of many S and C
layers designed to closely match the flow
of information in a human brain during

the first 100-200
milliseconds of
perception. This
enhanced system
performed as well
as humans on a
rapid object recog-
nition task: distin-
guishing animals
from non-animals
when images were
flashed in front of
humans and com-
puters. The work
appeared in the
April 2007 issue of
the Proceedings of

the National Academy of Sciences. The
computer system even made errors simi-
lar to the errors made by humans, sug-
gesting that the model recapitulates the
early processes of the human visual sys-
tem. 

The model will be used as a tool by
neuroscientists to better understand the
human visual system, and also has prac-
tical applications for surveillance, driv-
ing assistance, and autonomous robot-
ics. According to Poggio, the team’s next

When presented with a real-world
street scene (left), Serre’s computer
vision system successfully recog-
nized pedestrians, cars, buildings,
trees, sky, and the street (right).
Although not pictured, the model
also successfully identified bicycles.
Note the error in this example: the
model mistakenly classified a street
sign as a pedestrian. Graphic cour-
tesy of Stanley Bileschi, PhD,
McGovern Institute for Brain
Research at MIT.

“We’ve built a model 
to be as close as

possible to what is
known about the

human visual
system,” says
Thomas Serre.
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goal is to extend the model to include
the “back projections” from other parts
of the brain that allow feedback process-
ing of visual information after 200 mil-
liseconds. 

“This is the first demonstration that
a purely bottom up approach to visual
object recognition, inspired by record-
ings from the neurons in the brain, is
effective as a practical computer vision
system,” says Terry Sejnowski, PhD,
head of the Computational Neuro-
biology Lab at the Salk Institute. “There
is much more work to do, both to
improve its performance, and also to use
it to better understand how our own
visual system works.”
—By Matthew Busse, PhD

Nature Versus 
Nurture In Silico

Every generation, a few noncon-
formists crop up in tissue cultures of
genetically identical cells. The question is:
are the wayward simply born that way, or
did something in the environment affect
them? “You have these two possibilities—
intrinsic or extrinsic, nature or nurture,”
says Andras Paldi, PhD, a biologist at
Genethon in France. 

Now, Paldi and his colleagues have
modeled such cultured cells to deter-
mine whether extrinsic or intrinsic
influences play a key role in the sponta-
neous emergence of phenotypic varia-
tion. It turns out that for spatial patterns
beyond randomness to arise, there has
to be some effect of sensing neighboring
cells—i.e., extrinsic factors must play a
role. And the extrinsic model resembles
results seen in real cells. The work
appears in April in PLoS One.  

Paldi’s work was motivated in part by
the open question among stem cell biol-
ogists of what triggers a stem cell to dif-
ferentiate. Why, in the same warm spot,
getting the same rich media, do some
cells differentiate and others stay stem
cells? It is commonly assumed that this is
because the decision to differentiate is
intrinsic—that is, purely random. 

To test that assumption, Paldi’s group
started by designing two simple, multi-

agent based models of a tissue culture
plate. In each model, all cells act inde-
pendently and can switch between two
cell types: A or B. In the “extrinsic”
model, A cells turn into B cells when it
gets crowded, and back to A cells when
they have more space. In the “intrinsic”
model, each cell has fixed probabilities of
switching from A to B and back again.

When the
scientists ran the
models, they
found each pro-
duces a stable,
heterogeneous
population, yet
they differ in the
cell patterns.
The intrinsic
model predicts
lone A cells dis-
tributed evenly throughout a largely B
population. Extrinsic predicts that the A
cells will cluster. The result held even
though the cells were allowed to migrate.

This pattern difference allowed the
researchers to compare their computa-
tional simulation with real cells. Using a
muscle cell line that can switch between
two distinct phenotypes, a stem-cell like
progenitor state and a differentiated state,
they found that the cell pattern mostly
resembles that of the extrinsic model.
Many of the rare, stem-cell like cells clus-
ter; a few are solitary. 

What’s important here, Paldi says, is
that they find environment playing a
role—a significant one. In the case of stem
(progenitor) cells, it means neighbor cells

can affect the differentiation process.
“The stem cell nature is not an intrinsic
property of the cell,” he says. “It is a prop-
erty of the whole cell population.” Paldi
further believes the work supports the
effort to find a way of converting adult,
differentiated cells into stem cells (and
avoid the need for harvesting embryonic
stem cells)—a possibility that has not just

sc ient i f ic ,
but social
and political
implications
as well. 

Christa
M u l l e r -
S i e b u r g ,
PhD, how-
ever, dis-
putes that
s c i e n t i f i c

conclusion. “The idea that mature cells
can turn into stem cells is very attractive
to many modelers but has little support
through experimental data,” says the
professor at the Sidney Kimmel Cancer
Center. 

Sui Huang, MD, PhD, at
Children’s Hospital Boston, would
have liked to see Paldi’s group perturb
the cell line or the culture to confirm
their model. But both he and Muller-
Sieburg believe the study addressed an
important question, that of heterogene-
ity of a genetically identical population
of cells. And, says Huang, it certainly
“contributes to the discussion in the
community.”
—By Louisa Dalton

Agent-based computer models predict the
pattern (left) produced when genetically
identical cells have an inherent probability
of changing (from green to red and vice
versa), and the pattern (right) produced
when cells are triggered to change by an
extrinsic factor, such as cell density. Top
images represent exponential growth; 
bottom are at equilibrium. Courtesy of
Andras Paldi.

Why, in the same warm
spot, getting the same

rich media, do some cells
differentiate and others

stay stem cells?
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Simulating Populations
with Complex Diseases
Diabetes, breast cancer, multiple

sclerosis, Alzheimer’s disease. All are
associated with several genes’ alleles
interacting in complex ways with one
another and the environment. Now,
using a computationally intensive
method known as forward-time simula-
tion of human populations, researchers
are hoping to gain a better understand-
ing of how such complex diseases
become established.

“In a real population you just see peo-
ple with the disease,” says Marek
Kimmel, PhD, professor of statistics at
Rice University and co-author of the
work. “You don’t see who in the popula-
tion has the disease genes because peo-
ple carrying these genes do not necessar-
ily become diseased.” But in the model
population, he says, “you see both.” And
the researchers’ approach allows them to
simulate a very complicated scenario—
including changes in types of selection
pressure. 

“This lets us evaluate how well statis-
tical genetics tests determine what genes
are responsible for the symptoms of a
disease and how frequently those genes
appear in the population.” That’s a
non-trivial exercise, he says, because it
has been impossible, until now, to 
compare the many existing gene-map-
ping methods head-to-head. The work
was published in PLoS Genetics in
March 2007.

Before now, the most commonly
used approach to simulating diseases in
human populations—called the “coales-
cent” method—worked by coalescing
backward in time to a most-recent com-
mon ancestor. But it’s extremely diffi-
cult to take selection into account using
the coalescent method, says co-author
Bo Peng, PhD, a postdoctoral fellow at
the University of Texas MD Anderson
Cancer Center. Moreover, that
approach gets too complicated if more
than one disease gene is involved. So
Peng and his colleagues turned to for-
ward-time simulation, an approach
that’s been around for about one hun-
dred years. 

But that technique is not without its
problems. When a population evolves for-
ward in time, there are simply too many
possible outcomes. Most notably, when
you introduce a disease allele, it can rapid-
ly be eliminated and replaced with new
alleles. So Peng came up with a trick: He
pre-sets desired disease allele frequencies in

the current generation, extrapolates them
backward, and starts the simulation from
there. As Kimmel puts it, “We are restrict-
ing potential variability in one aspect of
the present in order to produce a simula-
tion that resembles something close to the
actual variability that exists now.”

The simulation uses a scripting lan-
guage called simuPOP, a general-purpose
forward-time simulation environment

based on Python. The software is freely
available at http://simupop.sourceforge.net,
under a GPL license.

When Peng and his colleagues used
their method to compare several gene map-
ping techniques they found that certain
methods worked better for loci that were
located distantly from one another; and

other methods were
more effective when
loci were close together.
Overall, though, says
Kimmel, “We’re mildly
pessimistic” about cur-
rent gene mapping
approaches. “When
the number of loci
involved in complex
disease is greater than
two, the methods rap-
idly lose their power.”
Until recently, gene
mapping for complex
diseases has been disap-
pointing, he says. Loci
identified in such
efforts have later
turned out to be statis-
tical artifacts. “Our
modeling could figure
out if this is inevitable,”
he says—and help guide
people toward more
effective approaches. 

David Balding,
PhD, a professor of
statistical genetics at
Imperial College in
London, does similar
work using forward-
time simulations of
large genomic
regions. He has
become pessimistic

about the method’s usefulness for
understanding complex diseases because
no one really knows what kind of selec-
tion is going on. Nevertheless, he says,
this work can be useful for studying
selection itself. “People tend to look at
selection one allele at a time,” he says,
“But forward-time simulation lets us do
it with complex interactions.”
—By Katharine Miller ■■

MULTIPLE
SCLEROSIS

CANCER

DIABETES

“In a real population, you just see
people with the disease,” says
Marek Kimmel. “You don't see
who in the population has the

disease genes...”
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In the beginning there was the
Visible Human. It broke new
ground by gathering some 2,000

serial images from a death row
inmate’s cadaver, and was the first
time researchers had sectioned a single
human being and gotten it right. 

But the project broke new ground in
another way as well. As the first large,
publicly-available image collection, it
proved that “If you build it, they will
come,” according to project director
Michael Ackerman, PhD, of the
National Library of Medicine (NLM).  

The Visible Human was initially
envisioned as a tool for teaching anato-
my. But soon after the database
launched in 1994, use agreements
started pouring in from scientists who
wanted to create 3-D images to test for
radiation absorption or design artifi-
cial hips and knees, not to mention
from artists illustrating anatomical
injuries in court cases, to name just a
few of the dozens of projects based on
the Visible Human data.

Despite the suggestion that such
large image collections could inspire
new types of research, the Visible
Human Project remained the only
public imaging database available for
many years. During that time, large
public databases in other fields—most
notably genomics and proteomics—cre-
ated whole new realms of research. 

Today, unlike genetic sequence data,
which are centralized in GenBank,
and protein structures, which reside in
the Protein Data Bank (PDB), imaging 
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data still lacks a central repository. But an increas-
ing number of people are hoping to create image
collections from thousands of people, and not just
one prisoner in Texas. 

The question is whether the shift from examining
images one at a time to looking at them in large
groups will not only lead to better research of the
type already done today, but will create something
fundamentally different. Just as the field of genetics
transformed into genomics when biologists moved
from looking at individual genes and diseases to
examining the whole genome, so too imaging could
see a shift. A field that has traditionally studied nar-
rowly defined problems using small collections
gleaned from physician-collaborators could find itself
faced with huge collections and the potential to
reveal new correlations between diseases, genes, and
anatomy. As in genomics, it will be possible to look
at variation both within and between diseases like
never before. 

Before this transformation can happen, though, a
leap of faith is required: Researchers must share their
images now in hopes of greater rewards later. That’s
one of the current challenges researchers are tackling.
There are others as well: Researchers must find ways
to increase computer storage capacity; create a com-

This section through the Visible Human Male’s thorax shows his heart (with muscular left ventricle), lungs, spinal
column, major vessels, and musculature. Image courtesy Michael Ackerman, Visible Human Project, National Library 
of Medicine.

Specialists carrying out
imaging projects feel

they should be the first to
reap the benefits of the
information the images

contain, rather than
having to share the data.
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mon language for describing images;
develop standards for “metadata” that
will explain where an image comes from
and what it shows; find ways to map
images from different individuals onto
an agreed upon “model;” and improve
existing ways to analyze and interpret
images consistently. They also must
make images available remotely, so that
physicians in rural areas will have access
to large comparative collections.

As these barriers fall and imaging
collections become more readily avail-
able, suddenly, imaging researchers will
be able to do what  genomics research-
ers do all the time: look at human 
systems in their entirety rather than in
pieces.  

But before we get ahead of ourselves,
let’s review the challenges.

BUILDING AND SHARING
THE COLLECTION

Creating image data is easier than
ever. Imaging capacity has increased by
leaps and bounds. X-ray technology,
developed in the 1890s, was followed by
incrementally stronger imaging meth-
ods, from ultrasound (widely available in
1970s), to positron emission tomography
or PET (1970s), to computerized axial
tomography or CT scans (1970s), to mag-
netic resonance imaging or MRI (early
1980s) and functional MRI (early 1990s).
New techniques are still appearing.

And with major improvements in
data storage and networking, scientists
do not worry as much about amassing
bigger data sets. Big disks are relatively

cheap—researchers might pay around
$3,500 for a terabyte of storage—and the
capacity of computer networks to trans-
mit large images is ever improving. Fred
Prior, PhD, of Washington University
School of Medicine in St. Louis, recent-
ly purchased space to store new research
images he expects will be generated dur-
ing the next three years at the
Electronic Radiology Laboratory which
he directs. His team’s new Network
Attached Storage system from BlueArc
can hold 102 terabytes, with an option
to expand to 500 terabytes or, with an
upgrade, to 4,000 terabytes (4
petabytes)—a number once unthink-
able. And that does not even include
clinical imaging, another huge figure. 

Even with such imaging, storage,
and computing power in hand, a ques-
tion remains: how to motivate other
researchers to share their images?
Scientists feel a sense of proprietary
ownership over the images they have
collected. While patients can perhaps
stake the greatest claim to the images,
most images are technically “owned” by
the institution where they were made,
and specialists carrying out imaging
projects feel they should be the first to
reap the benefits of the information the
images contain, rather than having to
share the data. 

“Science is highly competitive.
Scientists want to get the first publica-
tion, to gain funding, and get academic
promotions,” says Arthur Toga, PhD,
head of the Laboratory of Neuro
Imaging (LONI), at the University of
California, Los Angeles. 

Indeed, in 2000, a spat erupted in
the brain imaging world when Michael
Gazzaniga, PhD, director of the
National fMRI Data Center, wrote to
fMRI specialists who had contributed
to the Journal of Cognitive Neuro-
science, telling them they would be
required to share their experimental
data with the center if they wished to
publish in journals including Science
and the Journal of Neuroscience.
Researchers immediately raised objec-
tions, sending a letter to the center’s
financial backers and 14 journals.
Releasing their images, they argued,
“impinges on the rights authors should
have on the publication of findings
stemming from their own work.” The
center decided to establish a “data
hold” for a period of time, to allow
authors to profit from their images first.

Maryann Martone, PhD, has run
up against some of the same issues. As
co-director of the National Center for
Microscopy and Imaging Research

Researchers have shared abundant
images in the Cell Centered Database.
Here, a screenshot shows the types of
images and movies available. Image
courtesy Skip Cynar, National Center for
Microscopy and Imaging Research,
University of California, San Diego.

“Neuroscientists who do complicated
imaging studies are not that happy about

having data out there before they 
can mine it,” says Maryann Martone.
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(NCMIR) at the University of California, San
Diego, she has led the creation of the Cell
Centered Database (CCDB), one of the first
Internet databases for cell-level structural data.
She also coordinates a project supported by the
Biomedical Informatics Research Network
(BIRN) that investigates mouse models of human
neurological disease. 

“These resources were created with the idea
that people were going to populate them from the
community, but neuroscientists who do compli-
cated imaging studies are not that happy about
having data out there before they can mine it,”
she says. Because NCMIR is a “technology devel-
opment center” funded by the NIH, she says, it
has a mission “to serve a large collaborative com-
munity.” So she decided to begin with her own
center’s data and hope that others would follow:
“We do imaging that is unique. I figured, if we
just took all the data around here and made it
available, that would be helpful.” It was: the proj-
ect was one of the first web databases devoted to
electron tomography when it launched in 2002.
Since then, it has continued to give access to com-
plex cellular and subcellular data from light and
electron microscopy. Meanwhile, Martone and
colleagues are still thinking about the best ways to
encourage other research groups to share their
data with the site.

As so often happens in the world of science, it
is funders—in particular, big government-spon-
sored efforts—who are beginning to change the
rules of the game. One project aiming to put its
arms around as many images as possible is caBIG™.
Launched in 2004 by the National Cancer
Institute (NCI), it embraces 50 cancer centers and
30 other organizations. caBIG™ is an attempt to
bring together the huge amounts of data gathered
and tools created in NCI-funded cancer clinical

trials. It aims to take an “open source” approach—
creating an environment of sharing information in
the work it funds. According to some, this is the
wave of the future. 

“Increasingly, the NIH is requiring that peo-
ple share data,” says Daniel Rubin, MD, MS, a
clinical assistant professor and research scientist
at Stanford University Medical Center. Clinical
trial information, for instance, is becoming more
readily available, Rubin says. He points to the
American College of Radiology Imaging Network
(ACRIN) as an example of this trend. This NCI-
funded group hosts an imaging database that
houses a large archive of clinical trial imaging
data in cancer fields. 

Toga thinks that it is ultimately in a scientist’s
self-interest to share. Lots of data is needed if sci-
entists want to identify subtle differences between
images, he says. “You can’t possibly collect it on
your own.” What helps, he says, is when a couple
of folks get together and say, “I’ll share mine if you
share yours,” which is becoming more common. 

METADATA: CAPTURING
THE CONTEXT

One cooperative project in which Toga has
been involved is the NIH-sponsored Alzheimer’s
Disease Neuro-imaging Initiative (ADNI), which
encompasses 60 different sites that are sharing
image data on the disease. But if a researcher looks
at an ADNI image without knowing whether the
patient has a disease or not, or without access to
the person’s age or gender, or the drugs he or she
has been taking, it becomes much less useful. 

One of the most important parts of collecting
large amounts of imaging data is also to capture
each image’s back story—the context in which it
was made and the condition of the patient at the

IMAGE COLLECTIONS: 
How They’re Stacking Up

One of the most important parts of collecting large
amounts of imaging data is also to capture each image’s

back story—the context in which it was made and the
condition of the patient at the time.
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time. For images, efforts to create a
framework for recording such informa-
tion—known as metadata—currently lag
behind efforts in other realms (e.g., the
“MIAME” standards for microarray
data). But work is now underway to
improve the situation.

Some metadata—such as a patient’s
name, home address, and identifying
features—must be removed before
images enter a large database. The
process of “de-identification of protect-
ed health information” follows federal
privacy regulations.

But other useful information needs
to be incorporated into image collec-
tions. Before image metadata can make
sense, though, more standardization
needs to be introduced into the field,
many say. Radiologists have a long tra-
dition of looking at images with expert
eyes and dictating a free-flowing analy-
sis, which becomes a text report that
often uses terms in unique ways. That
makes it difficult for other scientists or
doctors to understand the image’s con-
text and content in a uniform way. 

Attempts to collect and codify meta-
data are already well underway. One of
caBIG™’s initiatives in its In-vivo
Imaging Workspace is called “vocabu-

laries and common data elements,” an
effort to standardize terminology in
cancer analysis. Rubin, one of the
group’s co-leads, reports that they are
trying to structure radiology imaging
findings, to establish controlled termi-
nologies for radiology, and to associate
specific metadata about patients with
each image gathered. 

Indeed, such efforts do not end with
cancer research, but could sweep across
all aspects of radiology. Rubin is also
involved with a project called RadLex,
which is being created to offer a uni-
form lexicon for radiologists. RadLex
plans to unify radiology term standards
and to make the new terminology freely
available on the Internet. Rubin sees
these attempts to create a common
vocabulary as the first steps in making
metadata meaningful and useful for
researchers and clinicians alike.

COMPARING IMAGES:
SNAPSHOTS AND SCALES
The race to create useful imaging col-

lections faces another hurdle: how can
multiple images be compared in a way
that makes sense? Each human’s body
parts are shaped differently, with varia-

tions that range from slight to
immense. On top of that, describing
shape is notoriously difficult. Though
shape has been explored by the scientif-
ic community since the time of the
Greeks, we still have no quantitative
parameters for defining the shapes of
“normal” human organs, let alone
those suffering from disease. In addi-
tion, images are affected by the exact
place and time they are taken, and the
precise method used to take them. All
this serves to undermine any straight-
forward database of imaging data.
“Image data is a snapshot of one
instance of a thing at one time under
certain conditions. It’s not a ground
truth like a gene sequence,” says
Martone.

If all images can be standardized in
the way they are conducted—that is, the
types of equipment used, and the
kinds of patients included, and the dis-
ease(s) being examined—comparison
becomes easier. That is part of the suc-
cess of ADNI, according to Toga: its
research sites are required to follow
strict protocols for their equipment
and image acquisition.

Imaging specialists have also come
to rely on the best available scientific

Brain imaging studies are expanding into ever-larger populations. This
enables digital atlases to be developed that synthesize brain data across
vast numbers of subjects. Mathematical algorithms can exploit the data in
these population-based atlases to detect pathology in an individual or
patient group, to detect group features of anatomy not apparent in an indi-
vidual, and to uncover powerful linkages between structure and demo-
graphic or genetic parameters. In this image, researchers from UCLA’s
Laboratory of Neuro Imaging (LONI) have used composite tensor mapping
to show how Alzheimer’s patients’ brains exhibit loss of gray matter.
Courtesy of Dr. Arthur W. Toga, Laboratory of Neuro Imaging, UCLA.  
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means of shape comparison, and they try to
incorporate this material into their collections.
One example is in neuroimaging, where pictures
of the brain are often linked to coordinate 
systems. Like a road map, these identify what
parts are found where with reference to a 
grid or common starting point. For example,
Talairach coordinates measure distances 
from a specific spot in the brain, the anterior
commissure. 

However, researchers find fault with existing
coordinate systems because they fail to accommo-
date variation in large populations. While they
may serve well for a single human or animal, they
are not as helpful when scientists aim to “warp”
many individuals onto a common model to illus-
trate the workings of a disease, for example. As a
result, some recent brain atlases have developed
their own, mathematically-complex methods for
mapping variability in big groups onto a single
framework. 

In human brain mapping, researchers have
found novel ways of dealing with natural varia-
tion between human brains. Toga reports that
the 15-year-old International Consortium for
Brain Mapping (ICBM) describes the brain in a
probabilistic sense. For example, the atlas might

tell viewers that there is an 80 percent likeli-
hood that the basal ganglia is in a particular loca-
tion that has been set out by coordinates.

Another means of handling variation is evi-
dent in the Allen Brain Atlas, an extensive map-
ping of the mouse brain’s gene expression creat-
ed by the Allen Institute for Brain Science in
Seattle. The team behind this atlas created its
own coordinate system to ensure extra accuracy.
The ABA is a union of neuroscience, genetics,
and informatics. To map gene expression onto
the 3-D mouse brain model, a team of neu-
roanatomists drew all the regions of the brain,
and then “we lofted those regions onto a 3-D
model of the brain using informatics algo-
rithms,” says Michael Hawrylycz, PhD, director
of informatics at the Allen Institute for Brain
Science. Using high-level computations, an
image of gene expression was then mapped onto
the reference atlas’s coordinates, creating pic-
tures that form the database. ABA scientists
chose one mouse to be the reference model, and
the rest of the mouse data was warped to fit into
the spatial framework of that single animal’s
brain. “We wanted a mouse that was held under
exactly the same conditions that we were going to
run the genes under,” Hawrylycz says.

The Allen Brain Atlas produced this 3-D
reconstruction showing normal expression
of manosidase 1a in the adult mouse brain
viewed from the front left. The translucent
forms represent the left half of the brain
and reflect the underlying standard
anatomical reference framework to which
the gene expression data was registered.
Each colored sphere reflects expression of
the Man1a gene in a 100 μm3 area. The
size of each sphere corresponds to expres-
sion density, and the color reflects expres-
sion level. The large red arc indicates that
this gene is turned on strongly in the hip-
pocampus, a part of the brain known to be
involved in learning and memory. The
image was generated from the Allen Brain
Atlas (www.brain-map.org) using the 3D
visualization tool, Brain Explorer.  Courtesy
of the Allen Institute for Brain Science. 
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Another vexing challenge for image
comparison is the issue of scale.
Martone points to the problems con-
fronted by brain researchers when they
try to see the workings of a disease on
multiple scales in a large set of images
taken using different technologies.
“We go from MRIs, to optical
microscopy, to electron microscopy,
then to X-ray crystallography,” she says.
“Every time you traverse scales, there
are gaps. Every time you switch tech-
niques, you lose continuity.” Even the
contrast mechanisms are different, so
one scale may contain fluorescents
while another is gray scale, disorient-
ing researchers. It’s like being con-
fronted with a GPS tracking image of a
moving vehicle one minute, and a
Polaroid photo of the vehicle’s front
wheel the next. 

To combat confusion, Martone’s
team is trying to create new coordinate
and reference systems that ease the tran-
sition among scales when studying neu-
rons in the brain. She cites a new soft-
ware project that attempts to correlate
microscopy with “feature-based match-
ing systems” that describe the attributes
of such cells in a uniform way.

ANALYZING IMAGES IN
THREE DIMENSIONS

Those who set out to compare
images are also getting help from
advances in image analysis software, a
field that has advanced rapidly in the
past few years. Ron Kikinis, MD, pro-
fessor of radiology at Harvard Medical
School, has helped lead the way. He
and colleagues developed the “3D
Slicer” image analysis software, initially
a joint, open-source effort between the
Surgical Planning Lab at Brigham and
Women’s Hospital, where Kikinis is
founding director, and the Artificial
Intelligence Lab at MIT. Created to
help visualize medical image data in 
3-D, it has been used with success in
fields as far flung as astronomy 
and geology. 

Although Slicer was conceived as
an interactive tool for processing sin-
gle images, it is also useful for
researchers working with large sets of
images, Kikinis says. “Now people are
beginning to build informatics frame-
works to hold and manage images;
and soon people will shift focus to
how to process those images,” Kikinis
explains. “With all the progress in
image acquisition, you still need to
turn data into medically-relevant
information, and that requires image
analysis,” he says. The current version
of Slicer is interoperable with BIRN’s
informatics frameworks and is also
linked directly to the National Cancer
Imaging Archive (NCIA)—a large
repository of cancer trial images—as a
recommended viewer for its images.
Slicer can be used to review image sets
for prototyping and results for quality
assurance. For example, before pro-
cessing hundreds of images, it’s wise
to test your algorithms and procedures
with a handful first. That’s where
Slicer’s interoperability with large
databases can be used as a tool that
offers essential functionality.

Another fundamental tool avail-
able to image users is the Insight Tool
Kit (ITK), which Ackerman of NLM
says took some three years to develop.
Based on GE’s Visualization Tool Kit
(VTK), ITK’s algorithm allows a user
to identify a body part—for instance,
the heart—and then ask the tool to
draw a line around everything that
looks like heart tissue. “Up until now,
you’d have to do that by hand,” says
Ackerman. The tool saves users’ time
and is constantly being updated, mak-
ing it ever more efficient.

Other complementary efforts are
working to ensure that researchers in
distant labs can create their own
image analysis applications on a lab
workstation. Fred Prior has worked
with other researchers to oversee cre-
ation of the Extensible Imaging
Platform, or XIP. “The idea is that
there are lots of commercial worksta-

tions that are optimized for clinical
reading, lots of research packages like
Slicer, and great toolkits like ITK that
give you functionality, but what’s miss-
ing is a way to build custom applica-
tions for these tools,” says Prior. 
XIP will give users a “rapid develop-
ment environment,” he says, enabling
researchers to do image processing
more easily. XIP’s initial targets are
cancer researchers already working 
in the grid, but its potential is 
much greater. 

“We’re hoping we’ll see a cottage
industry building new applications in
this XIP framework to do things 
like virtual colonoscopy and radiation
therapy analysis,” Prior says. The
“slick part” in Prior’s words is 
that such applications could be run
through the grid and offered to other
researchers remotely through the 
platform—creating a whole new level
of sharing.

In quite a different application of
image analysis, some researchers are
honing in on new ways to help scien-
tists and doctors find the images they
need using tools that analyze its image
content rather than its metadata.
Known as content-based image
retrieval, these programs also strive to

“Image data is a
snapshot of one

instance of a thing at
one time under certain

conditions. It’s not a
ground truth like a
gene sequence,” 

says Martone.
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overcome errors caused when inaccurate text-
based keywords lead to mismatches in retrieving
images, write Paul Miki Willy and Karl-Heinz
Küfer, PhD, of the German Fraunhofer Institut
Techno- und Wirtschaftsmathematik in a 2004
paper. Content-based programs attempt to index
images according to visual features such as color,

texture, and shape. Ultimately, some hope that
these systems might allow a physician to click on
an image of a cancer in a particular patient and
ask a database to show similar images for compar-
ison. So far, this technology has not yet reached a
wide audience; some believe more work is needed
to ensure accuracy in such searches.

The Cell-Centered Database, a project of the National Center for Microscopy and Imaging Research, brings together
data from different experiments so that multi-scaled views can be created, helping scientists to study how higher
order structures, such as cellular networks, are assembled out of finer building blocks, such as dendritic architectures.
This montage shows seven orders of magnitude of scale from centimeters to nanometers.  A slice through a centime-
ter-sized mouse brain was obtained by making a mosaic from thousands of multiphoton microscopic images. Then flu-
orescence microscopy was used to isolate a spiny neuron (first sub-panel). Correlating cell structures identified under
the light microscope for subsequent examination under the electron microscope permitted biologists to visually recon-
struct the three-dimensional structure of dendritic structures with nanometer resolution. The second and third sub-
panels portray electron tomographic reconstructions of an unbranched spiny dendrite from cerebellum and its
nanometer-sized synaptic complex (from hippocampus). Image courtesy Skip Cynar, National Center for Microscopy
and Imaging Research, University of California, San Diego.
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ACCESSING IMAGE
DATABASES: CONNECTING

TO THE GRID
All these image collections will 

do little good if no one can access
them remotely. Researchers at the
crossroads of biomedicine and compu-
tational science are tackling that 
problem now. 

One promising answer is to create
“federated databases”—groups of
unique imaging collections that are
linked together by a sort of “grid,” and
that are accessible remotely via a seam-
less user interface that makes the data

sets resemble one single virtual data-
base. Joel Saltz, MD, PhD, professor
and chair of the department of bio-
medical informatics at Ohio State
University, leads a group that develops
technologies that can enable “grid”
access for large image collections to
create such federated systems. His
group has developed middleware to
support complex distributed applica-
tions. It attempts to stitch together dif-
ferent bodies of images, making them
available and searchable.

“The overall goal of the effort is to
develop an infrastructure to connect

multiple databases, to allow people to
discover what images are out there, and
to analyze both remote and local
imagery and to integrate image data
with information from molecular stud-
ies, clinical studies, and pathology spec-
imens,” Saltz says. The National Cancer
Institute caBIG™ project has incorporat-
ed the Ohio State group’s  software in
the caGrid software package. This was
first distributed in December and, Saltz
says, quite a number of funded efforts
have begun to incorporate it. Furthest
along in the process of opening up an
image database to many users with

Slicer3 image analysis software is an integral part of the brain atlas created by the Surgical Planning Laboratory and the Psychiatry
Neuroimaging Laboratory (PNL) at Brigham & Women’s Hospital in Boston. This three-dimensional digitized atlas of the human brain is used
for surgical planning, model-driven segmentation, research, and teaching. As this screenshot illustrates, Slicer3 enables users to outline and
manipulate specific regions of the brain in three dimensions based on multi-modal volumetric input data including specialized MRI methods.
An additional goal of this brain atlas is that it can be used as a template for automatically segmenting regions of interest in large new MR
data sets. Image courtesy of Ron Kikinis, Surgical Planning Laboratory, Brigham & Women’s Hospital.



18 BIOMEDICAL COMPUTATION REVIEW Summer 2007 www.biomedicalcomputationreview.org

IMAGE COLLECTIONS: 
How They’re Stacking Up

Saltz’s help is the National Cancer 
Imaging Archive.

These new systems may not be open to just
any member of the public—at least some will
require registration and credentials. But the
incentive to participate is high. Researchers and
physicians who gain access will be able to com-
municate with each other in new ways that could
make a big difference to patients. A major bene-
fit for those linking their images to a grid is the
possibility of “central review,” says Saltz. In cen-
tral review, radiologists remotely read an image

and provide their feedback via software that
allows a user to capture mark-ups, pointers, and
comments. For instance, a radiologist in Omaha
might send out a CT scan of a patient’s lung via
Saltz’ software to radiologists around the world
as well as to computer-aided diagnosis 
algorithms available at supercomputers in
research centers. She might hear back from 
radiologists in Mumbai, Tokyo, and Chicago,
and from computers at a handful of univer-
sities, possibly discovering lung nodules she 
had missed.

This screenshot from the Saltz lab's gridIMAGE application shows how radiologists in remote locations can review and
markup images from multiple collections. A radiologist accesses the interconnected or “federated” imaging databases
through a single interface and can submit a review request to other participating physicians who use the same data-
base. The reviewers can add marks and comments and then submit their marked-up results to a central result server,
which transmits it to the radiologist who made the request. This application is based on the Saltz lab’s In Vivo
Imaging Middleware. Image courtesy Joel Saltz, Ohio State University.
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APPLICATIONS:
WILL THEY COME?

If researchers overcome the barriers
described above, the question then will
be whether it will prove worthwhile. Will
innovative applications follow? In other
words, if you build it, will they come? 

Early indications are that they will. For
some physicians, the near-term possibility
of central review alone will make federat-
ed imaging databases worth the effort. 

For neuroscientists, gaining insights
into the brain’s workings and connec-
tions requires large numbers of fine-
grained images. In the past, scientists had
done studies of specific parts of the brain,
but few had tried to discover the overall
structure of the brain. Large neuroimag-
ing projects such as the ABA are attempt-
ing to change that. Indeed, some hope to
one day map every single neuron in the
human brain, creating a data set of
upwards of 1 million petabytes. This “con-
nectome,” promises to be the image-based
Human Genome Project of brain
researchers. Its success will rely on com-
puter-assisted image acquisition and
analysis to map the structure of the nerv-
ous system, says Jeff Lichtman, MD,
PhD, professor of molecular and cellular
biology at Harvard.  

In clinical trials for cancer treatments,
image collections help in evaluating a
drug’s effectiveness, says Carl Jaffe, MD,
diagnostic imaging branch chief for the
cancer imaging program in the division of
cancer treatment and diagnosis at NCI.
The promise of using image collections to
speed drug development is already beck-
oning. “The regulatory authorities are
more willing to accept regression of a
tumor as a sign of a drug’s effective-
ness…and imaging is the pivotal marker
for this,” he says. A large database of refer-
ence images helps to balance “reader arti-
facts”—that is, errors in radiologist’s assess-

ments—and to substantiate that a tumor
has indeed changed size in an important
way, he explains. Researchers could use a
central review-style process to verify their
reading of an image. “An image database
allows you to go back to a larger commu-
nity of observers and confirm whether or
not something seems to be supportable.” 

For researchers studying rare diseases,
the goal is to find others to compare
against and to increase understanding
remotely. For example, says Jaffe, in the
old days, a researcher hoping to test a
drug for a rare disease such as retinoblas-
toma—a cancer of the retina with an inci-
dence of only 430 cases per year—would
have to request MRI films from around
the country to try to prove that his trial
worked on a range of patients. But some
films would come back too dark, some
too light, and some without the right
metadata. If all the data and images could
be collected digitally in an online data-
base, the researcher would more quickly
understand the drug’s impact.  “What
you want is an electronic, common pool
of data and metadata,” Jaffe says.

Surgeons and other physicians could
also benefit from such systems as
Rubin’s efforts to use large groups of
images to inform a doctor of how to diag-
nose and treat a patient. Using Rubin’s
decision support software, physicians
can select from a series of structured
annotations of an image and upload the
image data. Then a computer program
tells them the likelihood of disease. “We
want to give radiologists a tool to help
them decide when to biopsy based on
what they see,” he says. While it is partly
based on the knowledge of expert radiol-
ogists, this type of technology will work
even better when a large number of
images are available to inform the pro-
gram—hence the need for large databases
filled with rich stores of metadata.

Increasing numbers of researchers on
the biomolecular scale are also using
imaging in their research, including scien-
tists like Martone and the people who uti-
lize the ABA and other such atlases. For
example, labs are using the ABA to inves-
tigate risk factors for multiple sclerosis
and to identify genetic hotspots associated
with memory performance. And new
databases at the cellular level are popping
up, including the Open Microscopy
Environment, a large public database
focused on microscopy imaging data.

THE NEW NEW THING
Imaging is just one of many bioscience

fields moving towards more and better
information sharing and collecting. While
the field faces its own hurdles—the diffi-
culties of comparing images, for example—
it falls within a larger trend of making data
available and  breaking down the silos of
single organ or disease-focused work that
for so long dominated the sciences. It’s the
same impulse that inspired the release of
the genome and the dawn of genomics,
and could cause a similarly radical shift in
how people use image data.

The next generation of applications will
reveal whether the rise of large imaging col-
lections will create a new science, just as
genetics spawned genomics. Ultimately, it
might be possible to cross-compare
between imaging and genomics. That’s
already happening in brain research proj-
ects such as the Allen Brain Atlas, but the
trend could spread throughout the body.
And as in genomics, the shift could gener-
ate an entire new field of research in which
scientists could build an entire career. 

If the Visible Human is any proof, sim-
ply building large, accessible collections of
images will attract scientific curiosity and
will launch a wealth of useful applications
we cannot even imagine today.  ■■

The next generation of applications will reveal whether the 
rise of large imaging collections will create a new science, 

just as genetics spawned genomics.
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Once upon a time, not long ago, HIV/AIDS was a scourge, killing any-
one who contracted the deadly virus. Now, many people are living with
the disease, which they control with drugs initially developed in the 1980s
and early 1990s using an approach called computer-aided drug design—
the use of computer models to find, build, or optimize drug leads. 

Armed with information about the 3-D structure of HIV protease, an
enzyme essential to the HIV reproductive cycle, computational

researchers designed molecules in silico to
precisely fit the shape of the

enzyme’s active site—as
though fitting a key to a

lock. The resulting
drugs, potent inhibitors
of HIV protease and the

HIV life cycle, were
brought to market in record

time and revolutionized the treat-
ment of HIV/AIDS. 

Around the same time, another anti-viral—Relenza, which treats
influenza and was a forerunner to Tamiflu—was also designed using these
methods. These HIV and flu drugs are among the best known success sto-
ries of computer-aided drug design (see page 23 for both stories).

Since those early successes, computer modeling has become an integral
part of drug discovery. “Almost everything that has recently moved for-
ward from big pharmaceutical companies to market has involved some
sort of collaboration with computational chemistry. It’s like asking, were
there chemists involved? Of course there were. It is part of the process,”
says Tara Mirzadegan, PhD, head of the computer-aided drug design
group at Johnson & Johnson. 

DOCK THIS: 
Drug Design 

Feeds Drug Development
BY KRISTIN COBB, PHD
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Quite often, computers play a role
without making the big splash they did
with Relenza and the protease
inhibitors. That’s probably because no
drug is created solely in silico; the com-
puter is just one of many tools in this
process. But as algorithms evolve, com-
puting power explodes, and scientists
solve a greater number of 3-D protein
structures, computer-aided design has
the potential to dramatically cut the
cost and time of drug discovery. How?
By narrowing down the field of com-
pounds that might help treat a particu-
lar disease; by assembling novel drug
molecules to disrupt specific disease
pathways; and by providing new attack
routes against traditionally difficult
drug targets. Computers are also
increasingly playing a role in optimizing
drug leads for bioavailability and safety. 

Despite the over-hype of computers
as the saviors of drug development
companies, many still expect this
process to bear important fruit.
Computer-aided drug design played a
critical role in the design of several
drugs that are now in late preclinical
or early clinical development. Only
time will tell which of these, if any, will
emerge as drug success stories. 

VIRTUAL SCREENING
How it works:  In the ideal situation,

the 3-D structure of the target molecule
(usually an enzyme or receptor) is
known, allowing scientists to directly
visualize drug-target interactions in sili-
co. Structure-based methods have
evolved in two directions since Relenza
and the HIV proteases—virtual screen-
ing and fragment-based design.

In virtual screening, the 3-D struc-

ture of a target is screened against
libraries of potentially active small mol-
ecules. The computer “docks” each
compound, or ligand, into the target’s
active site and scores its geometric and
electrostatic fit. 

Considerable progress has been
made in docking programs in the last
two decades, but scientists agree that
the problem is complex and that they
have yet to find a perfect solution. To

start with, the ligand and protein target
are often pictured as a rigid lock and
key—but in fact they are dynamic, mov-
ing objects that continually change
shape and adjust their shapes in
response to each other. 

“Imagine taking a fluffy ball and trying
to mold it to optimally fit some kind of a
binding site. There are just way too many
configurations,” says Dimitris K.
Agrafiotis, PhD, vice president of 

Docked Drug. This 3-dimensional computer graphic shows a candidate drug (a JAK2
inhibitor) docked in the active site of its target protein (JAK2). JAK2 protein is implicated
in various myeloproliferative disorders (diseases that produce excess bone marrow cells,
such as chronic myelogenous leukemia, or CML) estimated to affect 80,000-100,000 peo-
ple in the U.S.. Courtesy of SGX Pharmaceuticals, Inc.

“Almost everything that has recently moved forward from big
pharmaceutical companies to market has involved some sort
of collaboration with computational chemistry. It’s like asking,
were there chemists involved? Of course there were. It is part

of the process,” says Tara Mirzadegan.

Continues on page 24
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EARLY EXAMPLES: ANTI-VIRAL DRUGS
Relenza and the HIV protease inhibitors stand out as

the two classic examples of computer-aided drug design.
Relenza was developed through a collaboration of

Australian scientists, including Jose N. Varghese, PhD,
head of structural biology at CSIRO Molecular and Health
Technologies. In 1983, Varghese and his colleagues used
X-ray crystallography to solve the 3-D structure of the
enzyme neuraminidase, one of two potential protein tar-
gets on the surface of flu. Neuraminidase plays a critical
role in the flu life cycle: after the virus replicates within a
host cell, neuraminidase releases the newly formed viral
progeny by cleaving a bond between the viral surface pro-
tein hemagglutinin and a sugar on the host cell surface,
sialic acid.

A series of structural experiments revealed important
insights. The active site of the enzyme was high-
ly conserved in all strains of flu—both
human and animal; the virus routine-
ly escaped antibody recognition by
mutating around the periphery of
the active site but never chang-
ing the active site itself.

“Because it was so highly
conserved, it seemed clear to us
that it must have a very important
function,” Varghese says. “So, clear-
ly if one made a molecule that went in
there and blocked that site, it would be pretty
effective.” 

A synthetic analog of sialic acid was known to inhibit
neuraminidase, but without sufficient potency. Using the
crystal structure of neuraminidase bound with this ana-
log, the researchers set out to design a better inhibitor in
silico. Computer predictions revealed that a particular
guanidinium-for-oxygen substitution would give tight
binding. Synthesis of this compound—Relenza—turned
out to be tricky, but eventually succeeded. 

“It bound in nanomolar binding, so it was very tight,
and it certainly blocked the virus replication right down
to its tracks,” Varghese says. 

Relenza was licensed to GlaxoSmithKline Inc. in 1990
and approved by the FDA in 1999. Following their
lead—and capitilizing on a patent oversight, according
to Varghese—Gilead Sciences developed the better-
known neuraminidase inhibitor, Tamiflu (marketed by
Roche). Both drugs may be important in the fight
against bird flu, Varghese says. 

Development of the HIV protease inhibitors lagged
behind that of the neuraminidase inhibitors by several

years, but the former won FDA approval sooner (in the
mid-1990s) because of the pressing medical need.

Dale Kempf, PhD, who is now a distinguished
research fellow in Global Pharmaceutical Research and
Development at Abbott, was involved in Abbott’s devel-
opment of ritonavir (brand name Norvir), which started
in late 1987. 

“It’s one of the first examples of the application of
genomics for drug design,” he says. When the HIV
genome was sequenced and published in the mid-
1980s, several groups recognized characteristic
sequences suggestive of a protease enzyme. 

Interestingly, the gene encoded only half a protein,
which led Kempf and others to realize that the protease
must be composed of a dimer—two identical halves that

come together to form one active site. This pro-
vided a key structural insight even before

X-ray crystal structures of the protease
were available: the active site had

to have a particular type of sym-
metry, known as C2 or two-fold
symmetry (rotation 180 degrees
around a central axis yields the

identical structure). 
Kempf’s group used that insight

to create a computer model of the
protease active site and to design possible

inhibitors in silico by starting with a known sub-
strate, chopping off half of the substrate, and rotating
the remaining half by 180 degrees. 

“And when we went into the lab and made those
compounds, they turned out to be very potent
inhibitors,” Kempf says. 

Using a combination of the X-ray crystal structures of
HIV protease (which had since become available) and
computer graphics, they modified these compounds in
silico to visualize how certain substitutions would
improve characteristics like bioavailability. The first com-
pound with sufficient oral bioavailability, ritonavir, was
synthesized in 1991. 

In 1996, the FDA approved ritonavir in record time
(72 days). The total development time—about eight
years—was roughly half that of a typical drug, due both
to the structure-based approach and to the FDA’s accel-
erated review. Several other HIV proteases emerged
around the same time, including saquinavir (Roche) and
nelfinavir (developed by Agouron, now a subsidiary of
Pfizer). These drugs helped to revolutionize the treat-
ment of HIV.
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informatics at Johnson & Johnson
Pharmaceutical Research & Develop-
ment. “Small molecules—unless they’re
very small—tend to be very flexible. They
flop around a lot. They can assume a mul-
titude of conformations in 3-D.” If a mol-
ecule has five rotatable bonds, then each
bond can rotate at many different angles,
creating a lot of freedom to take on
unique conformations.

Most docking programs now
account for the flexibility of the ligand
by sampling its many conformations
and docking each one, but adequately
accounting for the flexibility of the tar-
get protein is a much more challenging
problem. Adding protein flexibility
exponentially increases computing
demands. 

“The state of the art today is coming
up with sensible simplifications that

make the problem computationally
tractable but still meaningful,”
Agrafiotis says.

Besides the flexibility of the protein,
many docking programs do not ade-
quately account for the influence of
water—which surrounds all molecules in
living systems. “The mathematical mod-
els for defining water and how it shapes
itself around the receptor and the drug
molecule are still pretty unclear,” says
Kent Stewart, PhD, a research fellow
in structural biology at Abbott.

In addition, the algorithms estimate
binding energies using classical
Newtonian physics, rather than quan-
tum physics—which also reduces accura-
cy. “You can calculate the binding ener-
gies from some sort of Newtonian point
of view, treating atoms as sort of balls
attached to springs. Or you can treat it

from a quantum mechanical point of
view. Now the quantum mechanical cal-
culations, as you can imagine, are hor-
rendous,” says Jose N. Varghese, PhD,
head of structural biology at CSIRO
Molecular and Health Technologies.
“At this stage, it is a computational chal-
lenge.”

Methods of scoring how well a small
molecule fits a protein’s active site also
must trade off between speed and accu-
racy. “The scoring function that we use
has many shortcuts and approxima-
tions,” says Mirzadegan. Her group will
virtually dock the company’s one mil-
lion proprietary compounds (which it
has purchased or developed over the
years) against a given target, and pick
the highest ranked 10,000 for biological
testing. “We cannot afford docking one
compound per day. That would be one

Cancer Interrupted. This three-dimensional computer graphic shows a drug candidate (MET tyrosine kinase inhibitor) bound to its target pro-
tein. MET receptor tyrosine kinase controls cell growth, division, and motility and is implicated in a range of cancers, including renal cell carci-
noma, gastric cancer, lung cancer, glioblastoma and multiple myeloma. Courtesy of SGX Pharmaceuticals, Inc.

Continued from page 22
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million days. So we have to do it in a
matter of seconds or sub-seconds.” 

But increased computing power can
help boost the speed of virtual screen-
ing without compromising accuracy. In
2000, for instance, Arthur J. Olson,
PhD, professor of molecular biology
and director of the Molecular Graphics
Laboratory at The Scripps Research
Institute, started the FightAids@Home
project, which uses internet-based grid
computing—as was popularized by the
SETI@Home project—to do virtual
screening for new anti-HIV drugs.

“If most people who have comput-
ers use only about five percent of the
CPU cycles—and the rest of the cycles
are just idle—how much wasted or avail-
able computing is there?” Olson asks.
“It turns out to be an amazing number.”
His grid computing project makes use
of that idle computer time and helps
evaluate drugs for dealing with HIV
proteins’ habit of rapidly mutating to
escape drug pressures. Fortunately, the
3-D structures have been solved for
many of the mutant HIV proteins.
With the help of about 500,000 volun-
teer computers, Olson used AutoDock
(a popular docking program that was
developed in his lab) to screen 2000
small molecules against several hundred
different HIV protease mutants. The
program took six months to run; he
estimates that on the Scripps super
computer, with 300 processors running,
it would have taken 50 years. 

Besides identifying several drug
leads, which are now in testing, Olson
recognizes an even more important pay-
off: “When you do such massive dock-
ings, you actually are collecting more
than just an answer; you’re collecting a
lot of statistics.” Such data could, for
example, be used to identify a subset of
mutants that represent a spanning set—

one that captures all unique interac-
tions with the ligands screened. “Doing
docking on only this subset of mutants
would free up computer time for screen-
ing larger libraries, using more dynamic
representations of the protein tar-
gets, or using more accurate scoring
functions,” he says.

The Folding@Home project at
Stanford also uses grid computing 
for drug design. Led by Vijay S. 
Pande, PhD, associate professor of
chemistry and of structural biology,
Folding@Home focuses on simulating
protein folding and misfolding, but “as

our work matures, we have been look-
ing into the next steps involved in com-
putational drug design,” Pande says.
Using distributed computing, his group
has devised new, more accurate algo-
rithms for docking and for calculating
ligand-protein binding energies. These
algorithms are being used in the design
of several new drugs, including new
inhibitors of the cytokine-cytokine
receptor interaction (involved in can-
cer); novel chaperone inhibitors (also
involved in cancer); and novel antibi-
otics that target the bacterial ribosome.

“Distributed computing is a key

Anti-Cancer Key. An anti-cancer drug compound—nutlin—bound to the cancer-causing pro-
tein MDM2. Courtesy of RMC Biosciences, Inc.

“The state of the art today is coming up with sensible simplifi-
cations that make the problem computationally tractable but

still meaningful,” says Dimitris K. Agrafiotis.
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aspect to this, as it allows us to do cal-
culations otherwise impossible,”
Pande says.

FRAGMENT-BASED DESIGN
Fragment-based methods take a

“Lego” approach to drug design. In a
lab, scientists create chemical libraries
of small compounds, or fragments—per-
haps one-third the size of a typical
drug—that are easily linked together.
They then screen the libraries for bind-
ing activity experimentally, using high-
throughput X-ray crystallography (or
NMR or mass spectrometry); when a
fragment binds to the target, the crys-
tallography provides an exact 3-D pic-
ture of the bound fragment in the active
site. Next, with the help of computer
modeling, fragments are turned into
potent drug leads by adding new chem-
ical groups to the initial core fragment
or by stitching together several frag-
ments that bind to different points in
the active site. 

“I think this approach is showing
quite good promise,” Varghese says.
“In fact, with the advent of these mod-
ern synchrotrons, scientists can do this
fairly quickly—and a lot of pharmaceu-
tical companies are moving in this
direction.”  

The approach offers a combinatorial
advantage: “Instead of having a data-
base of say four million compounds

that a really large company would have,
you take compounds that are say one-
third of the size, and explore them com-
binatorically. If you explored ten frag-
ments in three different positions,
you’d actually explore 1000 combina-
tions. So with a database of something
like 400 compounds, you can explore a
chemical space that is in the several mil-
lions,” says Sir Tom Blundell, FRS,
FMedSci, professor and chair of bio-
chemistry at the University of
Cambridge. In 1999, Blundell co-
founded Astex Therapeutics to do frag-
ment-based methods; the company is
now testing a kinase inhibitor—a type of
cancer drug—in clinical trials.

“The experiment is really one of
using crystallography to do your
screening. So you’ve pushed the crys-
tallography technology to the point
where you can do it so rapidly that it
becomes effective to use as a screening
tool,” says Siegfried Reich, PhD, vice
president of drug discovery at SGX
Pharmaceuticals, another company
that uses fragment-based methods.
(Reich previously helped develop the
HIV protease inhibitor nelfinavir at
Agouron.) When it was founded in
1999, SGX was named Structural
Genomix and its aim was to use high
throughput X-ray crystallography to
solve a record number of protein struc-
tures. But this was not sustainable as a
business model. So, in 2000, the com-

Fragment-based design. Drug companies, such as SGX pharmaceuticals, screen hundreds of fragments in their fragment libraries and identi-
fy hits that serve as the building blocks for novel drug candidates. Knowledge of the binding mode of each fragment to its target is com-
bined with advanced computational tools to produce “engineered” drug leads. For example, in this series, a hit is first identified through
crystallographic screening (yellow); then chemical groups (red and pink) are added to the bound fragment to increase its binding affinity.
Courtesy of SGX Pharmaceuticals, Inc.

Distributed
computing is key to
developing better,

more accurate
algorithms for

computer-aided
drug design, says
Vijay Pande. “It
allows us to do

calculations
otherwise

impossible.”
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pany changed its name to SGX
Pharmaceuticals and put its crystallog-
raphy power to use in drug discovery. 

One of their lead candidates is a new
inhibitor of BCR-ABL, a perpetually
active kinase enzyme involved in chronic
myelogenous leukemia, or CML. The
BCR-ABL inhibitor Gleevec has had
enormous success in treating CML
patients, but 20 percent are resistant to
Gleevec. So scientists at SGX cloned,
expressed, purified, and crystallized the
Gleevec-resistant protein. Then they
screened their fragment library against
the wild type and mutant versions of
BCR-ABL to find compounds active
against both. The fragment hit that even-
tually led to their lead candidate started
with a low binding affinity of just 10
micromolars (i.e., a fairly high concen-
tration of compound was required to
bind at least half the protein). 

This is where the medicinal chemists
and structural biologists sit down with
the computational chemists, Reich says.
Computational chemists virtually build
new compounds by adding chemical
groups to the starting fragment. For
example, they might try linking all the
different simple alkyl amines to one of
the fragment’s “chemical handles” (sites
on the fragment that easily bind to
other chemical groups), Reich explains.
The computer calculates the binding
affinity for each iteration, until it finds
one with tight binding. Specialized ver-
sions of docking programs are used to
calculate the binding affinities. But
because you already know exactly how
the fragment binds, you start with more
information than in virtual screening.

By elaborating their initial lead in this

way, SGX got their first hit down to
nanomolar potency—i.e. very little of the
compound was required in order to bind
the protein—in about three months.
“That gives you a flavor for how fast this
can go,” Reich says. 

TRICKY TARGETS
Docking algorithms and fragment-

based methods work well on soluble
enzymes that are easily crystallized and
contain well-defined pockets where lig-
ands can bind—but many diseases
instead involve membrane-bound recep-
tors or protein-protein interactions.

Membrane-bound receptors transmit
signals from outside to inside the cell.
Because the proteins are embedded in
the membrane, they cannot easily be
crystallized and it is difficult to solve
their structures. For example, 25 percent
of the top 100 drugs on the market today
target G-protein coupled receptors—
including the dopamine and serotonin
receptors in the brain—but the structure
of only one mammalian G-protein cou-
pled receptor is known. 

When structural information is
unavailable, computational chemists use
ligand-based methods to hunt for new
drug leads. They superimpose a set of lig-
ands with known activity against the tar-
get and compare their structural and
chemical features. A common pattern,
called a pharmacophore, emerges—key
functional groups (such as hydrogen
bond donors, electrostatic charges, and
hydrophobic patches) must be in certain
positions. This fingerprint is then used
to virtually screen libraries for novel
compounds with similar patterns.
Ligand-based methods pre-date the struc-

ture-based methods and have helped
develop many drugs, including drugs to
treat high blood pressure, pain, and
depression.

Protein-protein interactions occur via
surfaces that are often featureless and
shallow, and binding affinities can be
quite large—so it’s hard for small mole-
cules to disrupt these interactions, says
Arthur Olson of Scripps Research
Institute. You have to find or design
drugs that can bind to multiple
footholds, or hot spots, on the protein
surface, which is challenging, he says. “I
think that this is an area that is really still
in its infancy.”

But some progress is being made.
Kent Stewart of Abbott Labs hopes to
control BCL-2, a protein that is over-
expressed in certain cancers. It blocks
apoptosis (programmed cell death) and
thus keeps cancer cells alive. Compared
to HIV, Stewart says, which has an actu-
al cave you can dock a molecule into, on

Tricky Target. This computer model of a
bacterial cell membrane helped scientists
at Polymedix design new antibiotics that
mimic the action of the defensin proteins
(natural proteins in the body that kill
bacteria by puncturing their membranes).
Courtesy of Polymedix.

“When you’re talking about toxicity, it’s much easier to give a
compound to a rat than it is to dock against all possible proteins

that are in the rat, even today,” says Art Olson. “But someday, you
might be able to do that. We’re certainly creeping up on that.”



28 BIOMEDICAL COMPUTATION REVIEW Summer 2007 www.biomedicalcomputationreview.org

DOCK THIS: Drug Design Feeds Drug Development

BCL-2, “there’s no such thing as a cave;
it’s a very flat and open surface, so it’s
hard to get molecules that actually
stick,” So, using a fragment-based
approach, scientists at Abbott linked
together two fragments that bind to the
BCL-2 protein surface, resulting in a
potent compound that can disrupt the
protein-protein interaction. The com-
pound is now in late preclinical devel-
opment.

Some companies have made these
difficult targets their niche area. For
example, Polymedix’s mission is to
develop drugs against membrane-bound
targets, protein-protein interactions,
and membrane-protein interactions,
using a suite of computational tools
specifically developed for these aims (by
professors William DeGrado, PhD,
and Michael Klein, PhD of the
University of Pennsylvania). 

Polymedix is working on a new line
of antibiotics that mimic the action of

defensins—natural proteins found in
the body that kill bacteria. 

“They work similarly to a needle or a
corkscrew going into a balloon. They
directly attack and perforate the bacteri-
al cell membrane,” says Nicholas
Landekic, MBA, President, CEO, and
co-founder of Polymedix. Because they
do not target bacterial proteins—which
can easily evolve to escape drug pres-
sures—defensin-like drugs should not
engender bacterial resistance, he says.

Scientists at Polymedix built a com-
putational model of a defensin protein
inserted into a bacterial cell membrane
(a peptide-membrane interaction).
Then they virtually transformed the
defensin protein into a drug-sized com-
pound. By swapping amino acid groups
for chemically analogous small mole-
cule groups, they shrunk the protein
while preserving its chemical interac-
tions (electrostatics, lipophilicity, etc.)
within the membrane. 

The result: drug leads one-tenth the
size of the defensins, but about 100-fold
more potent and 1000-fold more selec-
tive. “So we’ve been able to improve on
nature,” Landekic says. The compounds
are now being tested in animal studies.

“We’ve spent less than 14 million dol-
lars to date since starting Polymedix, so
in terms of an efficiency and efficacy
rate, I think that’s pretty good,” he adds.

MAKING CHEMICALS
INTO DRUGS

Computer-aided methods can identi-
fy drug leads with potent activity against
a target, but these compounds are far
from being drugs. Drugs must also be
bioavailable and safe. Safety problems
derail many drugs late in development,
so identifying potential safety snags
early on could save considerable time
and money.

Cancer Interference. The oncogenic protein BCL-2 helps keep cancer cells alive via a protein-protein interaction. This Bcl-2 inhibitor—devel-
oped at Abbott using a fragment-based approach—binds to the BCL-2 protein surface and disrupts the protein-protein interaction. The com-
pound is in late preclinical development. Courtesy of Abbott.
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“How well can we evaluate bioavail-
ability and toxicity in silico? It’s 
pretty blunt and not a very popular
answer: we don’t do very well,”
Stewart says. “The biological mecha-
nisms underlying bioavailability 
and toxicity are complex. So the math-
ematical models in those areas are still
in their infancy,” 

Olson agrees: We are a long way
from being able to simulate a drug’s
effect on the entire human body.
“When you’re talking about toxicity, it’s

much easier to give a compound to a rat
than it is to dock against all possible
proteins that are in the rat, even today,”
he says. “But someday, you might be
able to do that. We’re certainly creeping
up on that.”

Computers do play a role today,
however. Drugs must meet properties
that fall under the ADME acronym: be
Absorbed by the body, Distributed to
the target tissues, and not Metabolized
or Excreted too quickly. Software pro-
grams check molecules for key features

(known as “Lipinski’s Rule of Five”)
that are associated with favorable
ADME profiles, such as having five or
fewer hydrogen bond donors and a
molecular weight below 500. 

With enough computing power, sci-
entists can also virtually screen a candi-
date compound against a large panel of
proteins from the body, to make sure the
compound will not cross react with other
enzymes or receptors to cause side effects. 

To ensure that molecules identified
in the computer will have real-world

HIV Protease Inhibitor. The second-generation HIV protease inhibitor, Kaletra, was developed at Abbott. Here Kaletra is shown bound to the
active site of HIV protease. Courtesy of Abbott.

For the field to progress, says Anthony Nicholls, the current
software needs to be more closely scrutinized—using prospective

studies that directly compare the impact of computer-aided
methods with more traditional drug design approaches. 
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DOCK THIS: Drug Design Feeds Drug Development

value, computational scientists benefit
from working closely with medicinal
chemists during lead identification and
optimization.

“Medicinal chemists would tell you
that there’s lots of intuition involved, so
it’s not all computational,” says Hans
Wolters, PhD, associate director of
informatics at XDx, Inc. For example,
he says that as computer scientists
became more involved in making drugs,
the molecular weight of candidate com-
pounds began to creep up precipitous-
ly—to sizes that would not be easily
absorbed by the human body.
Medicinal chemists help recognize this
type of problem early in the process. 

DEBATING THE IMPACT
In the past two decades, although

computer-aided drug design has
become an integral part of drug dis-
covery, some remain skeptical as to
whether these methods are delivering
on their promise. The productivity of
the pharmaceutical industry has actu-
ally declined in the past decade (The
FDA approved 58 drugs from 2002 to
2004 compared with 110 from 1994 to
1996, according to the Tufts Center
for Drug Development.) Though this
is likely due to many factors—in partic-
ular, tightening safety standards and
the enormous cost and time of clinical
trials—the trend has left some wonder-

ing whether large investments in tech-
nology, including computer-aided
drug design, are paying significant 
dividends. 

Many modeling programs are unreli-
able, and they are not making a big dif-
ference in the real world, cautions
Anthony Nicholls, President and
CEO of OpenEye Scientific Software,
which develops software for computer-
aided drug design. “It’s all done on
faith. It’s all done on the idea that ‘oh,
we’re using computers, so it must be
better,’” he says. “I think a lot of people
are fooling themselves.” He believes
that, for the field to progress, the cur-
rent software needs to be more closely
scrutinized—using prospective studies
that directly compare the impact of
computer-aided methods with more tra-
ditional drug design approaches. 

Other scientists agree that the algo-
rithms are still being refined, but have a
more optimistic outlook. They say that
progress is steady and that computer-
aided design is already having an
impact. Klaus Klumpp, PhD, an asso-
ciate director at Roche (who was
involved in the development of the HIV
protease inhibitor saquinavir), points to
a suite of emerging drugs for hepatitis C
virus (HCV) as a case in point.

HCV was discovered in 1989 and
the virus was difficult to grow, so struc-
tural information for HCV polymerase
and HCV protease became available rel-

atively late—in the mid-to-late 1990s. By
this time, computer-aided drug design
was well integrated into big pharmaceu-
tical companies. Several companies
quickly identified binding sites and
designed inhibitors, many of which are
now in early clinical trials. “It is expect-
ed to completely change the treatment
paradigm for HCV infected patients,”
Klumpp says. 

Richard Casey, PhD, founder and
chief scientific officer of RMC
Biosciences, Inc., has also witnessed the
dramatic effect that computers can have
on drug design. His company provides
computer-aided drug design services for
small and mid-size pharmaceutical com-
panies, which often lack in-house teams. 

Recently, he made 3-D models and
performed in silico docking studies for a
mid-size pharmaceutical company that
had identified active lead compounds but
had no understanding of how they were
binding the target, an RNA synthetase. 

“When they saw this for the first
time, it was the ‘aha’ effect: So that’s
why this compound has high activity
and this compound does not. It was a
real eye-opener for them,” Casey says.

“I think in the next seven to 
ten years, with the computational
power that’s coming on line here 
pretty soon and the steady develop-
ment in algorithms, computer-
aided design is going to make a huge
difference.” ■■

“I think in the next seven to ten years, with the computational
power that’s coming on line here pretty soon and the steady

development in algorithms, computer-aided design is going to
make a huge difference,” says Richard Casey. 
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In the (Protein) Loop

In the gaps between the tight coils and flattened sheets
that comprise most protein structures, flexible loops
wave and bend. When crystallized, these loops can

appear fuzzy in an electron density map—like moving
objects captured in a still photograph. Often, loops may
have an important role in a protein’s function, but because
they are so mobile, their structure and dynamics can be
hard to study.

To better understand how protein loops move, Simbios
researchers have created LoopTK, a toolkit that samples
and visualizes many conformations of a loop, and provides
various algorithms to manipulate and analyze loop struc-
tures. “We want to find answers that are distributed over
all the motion space,” says Jean-Claude Latombe, PhD,
a roboticist and professor of computer science at Stanford
University whose team developed the software. LoopTK is
now available for download on the SimTK.org web site.

Latombe and his colleagues set out to place protein loops
so that they correctly connect up with the protein’s coils and
sheets while avoiding atomic clashes in the loop and
between the loop and the rest of the protein. “Solving both
constraints simultaneously is the hard part,” says Latombe.
“That’s what we do with LoopTK. And we can do it very
fast. We can sample many conformations very quickly.” 

LoopTK relies on two techniques: seed sampling and
deformation sampling. The seed sampling algorithm starts
with nothing but the amino acid sequence of the protein.
It then tries to place the loop in the full range of possible
solutions. When several correct placements are found, the
deformation sampling algorithm is used to deform the
loop slightly without breaking the ends and without creat-
ing collisions among the atoms. “The two techniques are
very complementary,” says Latombe. “One gives you a
global picture of the entire molecule in space, and the

other allows you to explore specific regions of the motion
space in more detail.”

Latombe’s group is working with others on two appli-
cations of LoopTK. With the part of the Joint Center for
Structural Genomics located at the Stanford Linear
Accelerator Center, they are interpreting fuzzy electron den-
sity maps created from X-ray crystallography. “One would
like to know the full range of loop conformations that could
fit into this fuzziness,” says Latombe. The resulting loop posi-
tions could then be submitted to the Protein Data Bank.
“Biologists need to be aware of the flexibility of the loop and
the uncertainty in the conformation,” says Latombe.
LoopTK can provide a sense of which conformations are
more likely—a characterization of the distribution of possible
conformations. 

In a second project, LoopTK is being used for functional
homology research. Russ Altman, PhD, chair of Stanford’s
bioengineering department, and his group are trying to
extract structural knowledge based on partial knowledge
about a protein’s function. For example, if a protein X is
known to bind to pro-
tein Y, LoopTK might
help to infer possible
conformations of the
loop that are consistent
with such binding.  

“There might be
dozens or more applica-
tions for this tool,” says
Latombe. “What we
hope is that by putting
it on the web site other
people will explore
those possibilities.” ■■

SimbiosNews
s i m b i o s  n e w s

BY KATHARINE MILLER

Simbios is a National Center for 
Biomedical Computing located 
at Stanford University.

The Latombe group’s seed sampling algorithm successfully
defines the motion space for loops surrounded by empty space
(as shown here) as well as for loops that are more constrained
by the surrounding protein structure (not shown).  In this pic-
ture, the red dots show the positions of the middle C atom of
the loop in many sampled conformations, but for clarity only a
small number of these conformations are displayed in their
entirety. Courtesy, Jean-Claude Latombe and Peggy Yao.

DETAILS

LoopTK, a C++ based object-oriented toolkit, models
the kinematics of a protein chain and provides
methods to explore its motion space. In LoopTK, a
protein chain is modeled as a robot manipulator
with bonds acting as links and the dihedral degree
of freedoms acting as joints. 

LoopTK is now available for download at
https://simtk.org/home/looptk. An application
programming interface (API) lets users embed
LoopTK in their application software. 

LoopTK will be presented at the 7th Workshop on
Algorithms in Bioinformatics in Philadelphia on
September 8-9, 2007. (http://www.wabi07.org/ ) 
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Mutual information (MI) is defined in information
theory as a measure of the dependencies between
two random variables. There are many biomedical

applications in which it is beneficial to quantify the infor-
mation content using a measure such as MI. In classifica-
tion problems, MI is used as a dependence measure to select
features such that they are dissimilar from each other in
order to reduce feature redundancy. MI can also be used in
database retrieval. The MI is calculated between a query
item and every entry in the database in order to identify the
entry in the database that is most similar to the query item. 

In image processing, it is also used extensively as a sim-
ilarity measure for image registration and for combining
multiple images to build 3D models. We will use the appli-
cation domain of medical image registration to illustrate
the utility of MI.

The mutual information of random variables A and B
is defined as 

where p(a,b) is the joint probability distribution function
of A and B, and p(a) and  p(b) are the marginal probabili-
ty distribution functions of A and B, respectively. 

Thus, in the context of medical image registration, MI
measures the distance between the joint distributions of the
images’ gray 
values p(a,b) and
the distribution
when the two
images are inde-
pendent from
each other. It is a
measure of the
dependence be-
tween the two
images. Since the mutual information I(A,B) is the reduc-
tion in the uncertainty of A due to the knowledge of B,
when p(a) = p(b), the uncertainty is minimal and the reduc-
tion of uncertainty is maximized. 

In medical imaging, it is often necessary to compare
images of a patient that are acquired at different times or by
different modalities. For example, images may be taken pre-

and post-operatively in
order to assess the success-
fulness of a surgery. To
facilitate the interpretation
of such sets of images, reg-
istration—the process of
aligning multiple images—is neces-
sary. The goal of registration is to identify a transformation
that maps each point in one image to the corresponding
point in the other image. 

One approach to image registration is based on defin-
ing landmarks or fiducial points in the images. By deter-
mining how to align those landmarks, one can determine
how to transform one image to match the other. However,
manual definition of landmarks is time consuming, may
be difficult even for an experienced observer, and suffers
from intra- and inter-reader variability. 

Another approach to image registration is to determine
a transformation based on a measure of the similarity of
the images, such as MI. Since larger MI corresponds to
more similarity of the two images, MI is maximized in reg-
istration algorithms. 

In image registration, the goal is to determine a trans-
formation of one image such that the MI between the trans-
formed image and the reference image is maximized.
Different types of transformations may be considered based
on the application. The simplest class of transformations

only permits
rotations and
translations. In
medical imag-
ing, a wider vari-
ety of scaling
and shape
changes are
often needed,
including non-

linear transformations that allow for non-uniform changes
across the image. An optimization algorithm is applied to
dynamically search among transformations for the one with
maximal MI. 

MI has been shown to be especially valuable for regis-
tering multi-modality images. For example, computed
tomography (CT), positron emission tomography (PET),

and magnetic resonance imaging (MRI) images
of the same patient provide complementary
information. Registration based on MI enables a
healthcare provider to directly correlate the data
from such different imaging techniques. MI has
also shown promise for registering time series
images. A series of images over time is often
used to evaluate tissue function in addition to
structure. ■■

DETAILS

Chih-Wen Kan is a graduate student in The University of Texas
Department of Biomedical Engineering. She works on developing
diagnostic decision support systems in Dr. Mia Markey’s
Biomedical Informatics Lab (http://bmil.bme.utexas.edu/).

Under TheHood
BY CHIH-WEN KAN AND MIA K. MARKEY, PhD

Mutual Information

u n d e r  t h e  h o o d

I(A,B) = ∑ p(a,b)log
a,b

p(a,b)

p(a)p(b)( )

In image registration, the goal is to determine
a transformation of one image such that the

mutual information between the transformed
image and the reference image is maximized.
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p u t t i n g  h e a d s  t o g e t h e r
PuttingHeadsTogether

The 6th Annual International Conference on
Computational Systems Bioinformatics (CSB2007)
coordinated by the Life Sciences Society.

WHAT: This conference is
designed for any scientist
interested in the interaction of
biology and computing who
wants to gain fast access to
current research results; network
with other life scientists; and
listen to and meet scientific
stars. CSB2007 will continue to
be a five-day single track
conference featuring 10 half-day
tutorials, 30 referred papers plus
keynote speakers, 150 posters
and five full-day workshops. Special events for the evenings are
being planned.

WHEN: August 13-17, 2007

WHERE: University of California, San Diego

MORE INFO:
http://lifesciencessociety.org/CSB2007/index07.html

Stanford’s Bio-X Symposium: Life in Motion

WHAT: Bio-X, Stanford’s interdisciplinary life sciences
initiative, hosts a major symposium each year. This year Bio-X
has teamed up with Simbios—Stanford’s National NIH Center
for Physics-based Simulation of Biological Structures—to hold
a symposium entitled, “Life in Motion”. The goal of this
symposium is to educate students and scientists from different
disciplines about the exciting uses of simulations driven by the
laws of physics and mechanics across a range of scales, from
molecules to organisms. The talks will be presented by a series
of experts and innovators from around the world. Confirmed
speakers are: Sylvia Blemker; Joachim Frank; Robert Full;
Jessica Hodgins; John Hutchinson; Roger Kamm; Mimi
Koehl; Vijay Pande; Klaus Schulten; Demetri Terzoplulos.

WHEN: October 25, 2007

WHERE: James Clark Center Auditorium, 
Stanford University

MORE INFO: simtk.org/home/lifeinmotion

The Pacific Symposium on Biocomputing (PSB) 2008

WHAT: The Pacific Symposium on
Biocomputing (PSB) 2008 is an
international, multidisciplinary
conference for the presentation and
discussion of current research in
the theory and application of
computational methods in
problems of biological significance.
PSB is a forum for the presentation
of work in databases, algorithms,
interfaces, visualization, modeling,
and other computational methods,
as applied to biological problems,
with emphasis on applications in
data-rich areas of molecular biology.
Papers and presentations are
rigorously peer reviewed and are
published in an archival
proceedings volume. 

WHEN: January 4-8, 2008

WHERE: The Fairmont Orchid on
the Big Island of Hawaii

DEADLINES: Call for Papers—July 16, 2007; 
Poster abstract submissions—Nov. 9, 2007.

MORE INFO: http://psb.stanford.edu/

OF NOTE: This year, Simbios will be holding a special session
at PSB: Multiscale Modeling and Simulation: from Molecules to
Cells to Organisms

WHY “PUTTING HEADS TOGETHER”?

This magazine strives to build connections
among diverse researchers, all of whose work
touches on biomedical computation. Because
these highlighted conferences & symposia 
do the same thing, we are giving them a 
well-deserved spot in these pages. If you have 
a favorite conference you’d like to see 
appear in this magazine, let us know: editor @
biomedicalcomputationreview.org.
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The coarse-grained membrane simulation starts with a flat membrane containing 46,080 lipids and 36 large hemispherical “caps” (shown in pink)
representing membrane proteins. Over the course of roughly one millisecond, the proteins begin to aggregate and form a large vesicle. The final
image shows a cross-section of the vesicle in order to reveal the protein caps within.  Courtesy of Kurt Kremer and Markus Deserno.

Whenever a cell needs to get rid of
waste, transport materials, sort
proteins, or build new

organelles, membranes remodel them-
selves. Often that means forming small
enclosed compartments called vesicles.
Now researchers have gained a better
understanding of that process using
coarse-grained computer simulations.
The work was published in the May 24,
2007 issue of Nature.

Researchers knew that specialized pro-
teins are involved in triggering mem-
branes to remodel themselves, but exper-
imental and theoretical research could
not explain how they do it. Because the
energy required for major remodeling
projects is greater than the energy used to
bind the specialized proteins to the mem-
brane (or to each other), some suspected
that membrane curves themselves could
carry the necessary energy. 

Using coarse-grained simulations,
Kurt Kremer, PhD, Markus Deserno,
PhD, and their colleagues at the Max
Planck Institute for Polymer Research in
Mainz, Germany, showed that curvature-
mediated attraction can indeed explain
how membranes refashion themselves.
Once a membrane starts to bend, pro-
teins embedded in that membrane begin
to cluster and draw the membrane into a
curved shape—not unlike a vesicle.

Remodeling by Curvature

s e e i n g  s c i e n c e
SeeingScience


