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A pair of challenges increasingly threaten the
success of bioinformatics research: convinc-
ing biologists to share their data and con-

vincing computational colleagues to share their
code.  Many of us learned to share in preschool, but
we also learned that there are sometimes reasons to
keep a strong grip on your own stuff. The barriers
to academic sharing include protection of graduate
student and post-doc publication priority, protec-
tion of intellectual property for institutional
patents, protection of the patient confidentiality
and privacy, and protection of rights for future pub-
lication and funding applications. 

But these concerns can be overcome with appro-
priate guidelines. And I believe the parallel issues of
data sharing and code sharing can be addressed
together. Proven successes in both fields—the shar-
ing of genomics data, and the open source move-
ment—suggest the effort will be well worthwhile.

The ethic of data sharing permeates the
genomics community, a fact that derives
from the earliest examples of open biolog-
ical databases: Genbank for storing DNA
sequences and the Protein Data Bank for
storing macromolecular three-dimension-
al structures. Through the efforts of vision-
ary scientists, funding agency staff, and
journal editors, the submission of data to
databases simultaneous with publication
became a standard in these fields. The
genome sequencing project was successful
in part because the organizers created
rules very early on—the “Bermuda rules”
required nightly release of sequence data.
This led directly to the creation of data-
bases to support the sharing of microarray
gene expression data, such as the Stanford
Microarray Database (SMD), and the
Gene Expression Omnibus (GEO) at
NCBI. But biomedical computation
researchers who enter new fields with
visions of Genbank, PDB, and GEO as the relevant
precedents may be surprised at the degree of resist-
ance to data sharing in other subdisciplines. 

At the same time that biomedical computation
researchers are struggling to convince their biology
colleagues to share data, they are engaged in an
intriguing debate about the merits of open-source
code sharing. The open source movement points

to the emergence of
Linux as a major
precedent that shows the power
of shared code. Closer to biomedicine, myriad
examples of public domain software have ener-
gized certain fields, including EMBOSS for mole-
culiar biology, VTK for general visualization, and
others. These tend to be larger projects with explic-
it dissemination goals.  Of course, the NIH pro-
gram that funds the seven National Centers for
Biomedical Computation (NCBC) has software
dissemination as a major goal, and has led to the
creation of domain-specific portals such as
Simtk.org. It is more difficult, however, to procure
software created by an individual lab that is com-
peting with other labs to create novel methods for
biomedical computation. 

These parallel problems merit a common solu-
tion. I would suggest that the community is con-
verging on the included guidelines.

The current climate of tight funding for bio-
medical research, with the end of the NIH budget
doubling, could threaten the trend towards more
open sharing as investigators become nervous
about competitive advantage. However, it is critical
to preserve the gains in this area achieved over the
last decade, and to institutionalize the processes
that guarantee continued sharing. ■■

Share and Share Alike:
A Proposed Set of Guidelines 
for Both Data and Software

www.biomedicalcomputationreview.org

GuestEditorial
g u e s t  e d i t o r i a l

RUSS ALTMAN, MD, PhD

PROPOSED GUIDELINES

1Biological data sets and software
for storing, analyzing, and visual-

izing biological data should be
released to the public when the first-
pass analysis and publication is sub-
stantially complete, and no later than
one year after the appearance of the
first full scale analysis.

2Users should have no expectation of
“support” for working with the data

or software, beyond basic documenta-
tion sufficient for a motivated graduate
student to understand and use it.

3Citation of the original source
paper, consistent with scholarly

standards, should be mandated,
and failure to cite should be consid-
ered scientific misconduct.

4Downloads should be instrument-
ed, and information about fre-

quency of downloads and other
measures of impact should be includ-
ed in hiring and promotion materials.
They should be routinely addressed
and evaluated in letters of recom-
mendation written by peers.

5Funding agency staff and bio-
medical journal editors must be

firm in enforcing the sharing of
data and code.   Manuscripts should
have an identifier that lists the
eventual location of the data or
code, and a date when the data or
code will be available.
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Modeling Sex’s
(Evolutionary) Appeal 
Sex is a costly undertaking. Finding

partners takes time and energy. Sexual
contact can transmit disease. And if
reproductive success is measured by
how many genes you pass on, females
would be better off reproducing asexu-
ally. But sex must be beneficial in some
way—besides being fun—since so
many plants and animals do it without
going extinct. A new computational
model described in the March 2, 2006,
issue of Nature confirms one existing
theory about why sex is advantageous
on the genetic level.

“This is very difficult to measure in real
organisms,” says Ricardo Azevedo, PhD,
assistant professor of biology and biochem-
istry at the University of Houston. “But

things that take years or decades in the lab
take only hours in the computer.”

Evolutionary biologists have posited
several reasons for the success of sexu-
al reproduction. The mutational deter-
ministic hypothesis suggests that sex
helps remove harmful mutations from a
population because offspring receive
genes from two parents. But the bene-
fits of mutation purging can only over-
come the costs of sex if the rate of
harmful mutations is high. Multiple
mutations must also be more harmful
than would be expected from their
individual effects, a condition known
as negative epistasis. Azevedo’s model
suggests that the mutational determin-
istic hypothesis may be true.  

Azevedo along with Christina Burch,
PhD, assistant professor of biology at the
University of North Carolina, Chapel

Hill, and three graduate students creat-
ed a model that treats each “organism”
as a network of interacting genes. The
network is expressed as a matrix of num-
bers (positive, negative or zero) repre-
senting the effect of each gene on the
activity of every other gene in the organ-
ism. Large populations of sexually and
asexually reproducing cyber-organisms
(networks) were created with different
rates of spontaneous mutation. In the
first part of the simulation, each organ-
ism’s genes interact. Organisms that
produce stable patterns of gene expres-
sion produce offspring in the second part
of the simulation; unstable networks
don’t—natural selection at work. When
the populations reached equilibrium in
their sensitivity to mutations, the sexual
populations had become more insensi-
tive to mutations than asexual popula-

NewsBytes

“If the conditions in the model
are real, then when sex evolves
it creates conditions that help
sustain itself over time,”
Ricardo Azevedo says.

“If the conditions in the model
are real, then when sex evolves
it creates conditions that help
sustain itself over time,”
Ricardo Azevedo says.
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basal tissues of the stem and flowed up
to the growing tip, they were only able
to get the leaf patterns observed in
nature when they altered the model to
have auxin produced locally at the tip. 

They also found that by varying the
parameters of the model, they could pro-
duce the leaf patterns found in other
plants, which, Prusenkiewicz says, “rein-

forces our belief that what we have shown
is actually true, and it is not just true in
Arabidopsis, but also in other plants.”  

Prusenkiewicz characterizes their
model as part of a broader inquiry into
how genes and molecular level process-
es determine the macroscopic forms of
organisms, which he calls “one of the
most fascinating questions in develop-
mental biology right now.” 
—Louis Bergeron, MS

tions and had also evolved negative
epistasis. Compared to asexual crea-
tures, they more effectively purge nega-
tive mutations from the gene pool.

“If the conditions in the model are
real, then when sex evolves it creates
conditions that help sustain itself over
time,” Azevedo says.

“The prevalence of sex begs to be
studied,” comments Andreas Wagner,
PhD, an associate professor of biology
at the University of New Mexico. “To
the extent that an abstract model can
tell you anything about the evolution
of sex, [Azevedo and Burch] have
made an important contribution.”
But, he says, he’d like to see the work
confirmed in living systems. 

Azevedo agrees this paper is a first
step. He is trying to make the model
more applicable to multicellular organ-
isms while his collaborator, Burch, con-
ducts experiments with viruses in order
to confirm the model’s results.
—Linley Erin Hall

Modeling 
Whorls of Leaves

The petals of every flower and the
leaves sprouting from every plant stalk
have characteristic arrangements, a
phenomenon called phyllotaxis. For
two centuries, botanists have puzzled
over the force driving such regularity. 

“If you want to understand how plants
acquire their form, this is one of the
very key questions,” says Przemyslaw
Prusinkiewicz, PhD, professor
in computer science at the
University of Calgary in Alberta,
Canada. He and his colleagues
recently presented a new cellu-
lar-level computer model of the
process. The work appeared in the
January 31, 2006, issue of the Proceedings
of the National Academy of Sciences.  

Previous experimental work by
Prusinkiewicz’s Swiss collaborators had
shown that a plant hormone, auxin,
plays a crucial role in phyllotaxis, as
does a protein called PIN1, which regu-
lates the transport of auxin. The team
hypothesized that there was a feedback
mechanism in which the distribution of

auxin determined the location of the
PIN1 proteins, the position of which, in
turn, governed the flow of auxin.  

They devised a computer model to
test the theory quantitatively by simu-
lating the properties of individual cells
during the growth of a small flowering
plant of the mustard family, Arabidopsis.

The model assumes that the tip of

the stem develops at the same time that
the pattern of leaves is forming, all of
which relates to the pattern of cell divi-
sion. The results of the simulation con-
firmed that the proposed interplay of
auxin and PIN1 on the molecular level
could produce the characteristic spiral
leaf pattern found in Arabidopsis, but
also yielded some surprises. 

Though the researchers initially
assumed auxin was produced in the

By varying the parameters of the model, the researchers
produced the leaf patterns found in various plants. 

A computer simulation of the growing tip of a seedling of Arabidopsis thaliana, viewed
from above.  PIN1 proteins (red) facilitate transport of the plant hormone auxin (green),
which in high concentrations promotes budding of leaves, seen here bulging out from
the stalk.  The feedback interaction of the protein and hormone produce the character-
istic spiral pattern of leaves that form as the plant grows. Movies simulating the devel-
opment of four different leaf arrangements can be seen in the paper’s supplemental
material online at http://www.pnas.org/cgi/content/full/0510457103/DC1#M1. 
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Finding the Best
Molecule for the Job

Every pharmaceutical company
wants to find the next blockbuster drug.
Yet finding molecules with a complete
set of desired properties is tricky
because of the astronomical number of
medium-sized organic molecules. Now
researchers at Duke University have
developed a novel way to design virtual
molecules from scratch. The work was
published in the February 17, 2006,
online issue of the Journal of the
American Chemical Society.

“The biggest challenge in chemistry
is being able to design molecules for
particular purposes,” says Weitao Yang,
PhD, a professor of chemistry at Duke
University. “You can only do experi-
ments on real molecules, but virtual
techniques let you use non-real mole-
cules to explore the molecular space.”

Yang along with colleague David
Beratan, PhD, professor of chemistry,
and post-doctoral fellows Mingling
Wang, PhD, and Xiangqian Hu, PhD,
developed an innovative approach.
Rather than calculate properties of an
enormous number of possible individual
molecules, their framework approxi-
mates the properties over a continuous
landscape in which the individual mole-
cules lie. The model relies on knowledge
of how atoms can be joined based on the

energy relationships between nuclei and
electrons in atoms. This narrows down
the possible combinations and smoothes
out discrete characteristics, such as
atomic number, and thus provides a
continuous surface for optimization. 

For their proof of concept, the
researchers focused on the properties
that determine the ability of an atom’s
electron cloud to be distorted by exter-
nal electric fields. So, for example, if six

groups of atoms could be located at each
of two different sites, the model puts the
different groups of atoms in the same
spot simultaneously and then deter-
mines how well the different combina-
tions fit. This repeats at a predetermined
number of sites. Joining the best molec-
ular groups or combinations—like snap-
ping together Legos—yields a complete
molecule with the best properties.

This approach quickly yields the
molecular potential, but it doesn’t nec-
essarily map back to a molecule that can
be made. For example, the best group at
a particular site might be a combination
of 13 percent of one molecule and 87
percent of another. This is impossible, of
course, since only one molecule can
occupy a single location, so the pre-
ferred molecule would be used. 

“I think it’s very elegant how Beratan
and Yang approached the problem,” says
Ursula Rothlisberger, PhD, an associ-
ate professor of computer-aided inor-
ganic chemistry at the Swiss Federal

Institute of Technology in Lausanne,
“But as a first step, it still has many lim-
itations.” For example, it can only create
simple molecules, as Yang would agree.
He and his colleagues are now refining it
to handle more complex systems such as
designing optical materials for electron-
ic devices. They plan to extend their
work to drug design as well.

“We want to uncover many new
materials that researchers didn’t know
about before,” Yang says. “This method
explores the design space much more
efficiently.”
—Linley Erin Hall

Whole Virus Simulation
Giving new meaning to the phrase

computer virus, researchers have creat-
ed a computer simulation of an entire
biological virus comprising approxi-
mately one million atoms.

“It wasn’t clear before that one could
do a simulation of such a large living sys-
tem at an atomic level and learn some-
thing from it,” says Klaus Schulten,
PhD, professor of physics at the
University of Illinois at Urbana-
Champaign. But when he and graduate
students Anton Arkhipov and Peter
Freddolino successfully simulated the
satellite tobacco mosaic virus (STMV),
they revealed some surprising features of
the particle in the process. The work was
published in the March 2006 issue of
Structure, as a collaboration with virolo-
gists from University of California, Irvine.

Viruses must do two things: infect
cells and transport their genetic material
inside a stable container known as a cap-
sid. In the case of the STMV, the capsid
consists of 60 identical proteins produced
by the virus’s genome. Crystallographers
who had imaged the small virus believed
all 60 pieces were arranged in complete
icosahedral symmetry. The computer
simulation, however, showed this to be an
incomplete picture of the virus.

Schulten and his colleagues started
with the crystallography image of STMV
and then allowed the atoms to move
according to their physical properties. For
just over 10 nanoseconds (broken into 10
million time steps), “we let the laws of
physics take over,” says Schulten. The

Yang’s model allows researchers to find the best
molecule for a desired property. In this graph, the
bar heights represent the amount of a property
that each candidate molecule possesses. The model
finds the best molecule by evaluating different
combinations of molecular groups along the
smooth surface over the bars.  

NewsBytes

“You can only do
experiments 

on real molecules, but
virtual techniques let

you use non-real 
molecules to explore
the molecular space,”

says Weitao Yang.

NewsBytes
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result: Although the capsid remained gen-
erally spherical, some of the symmetry was
lost. “The virus developed a belt around
an equator of the sphere, and that belt
engaged in a back and forth motion,”
Schulten says. 

More important, simulation revealed
that, unlike many other viruses, the
STMV capsid is unstable without its
RNA contents and depends on the RNA
to assemble. “It seems that for this virus,
the genomic material first aggregates into
a sphere, and then recruits the 60 proteins
to be a shell around itself,” Schulten says.
“This is opposite to what one expected.” 

Schulten and his colleagues hope that
viral simulations of this type will help
researchers understand how viral capsids
shift from stable to unstable when they
are infecting a cell. It’s possible that one
might be able to interfere in an infection
at the point when the capsid breaks
apart, he suggests. “We want to use infor-
mation gained from simulations to pro-
tect people from viral infections.”

In future projects, Schulten and his
colleagues plan to simulate the poliovirus
and other viral particles that are 4 to 10
times larger than STMV. Their success
with STMV suggests that large scale
simulations provide valuable, new
information. “Had we done a partial
simulation, we wouldn’t have learned
as much,” he says. 
—Katharine Miller

Predicting the 
Structure of Important

Drug Receptors
If you want to find a Tab ‘A’ that will

fit into a Slot ‘B’, you’ll waste a lot of
time if you don’t know the shape of the
slot. For scientists trying to design new

drugs, that is sometimes the precise
problem: They seek a molecule that will
snug itself into a nook whose shape is
unknown, difficult to determine, and
capable of changing as the fit is induced. 

Now, a new computational tool prom-
ises to help rescue researchers from the
task of fitting square pegs into undefined
holes. It models the structures of the
largest family of cell surface receptor pro-
teins in the human body: G protein-cou-
pled receptors (GPCRs). These receptors
are encoded by about five percent of
human genes and are the targets of about
45 percent of all modern medications.
The 3D structures of most GPCRs are
unknown because the molecules are
extremely difficult to work with. Like all

proteins residing in cell membranes, they
tend to fall apart when plucked from the
membrane for analysis in a laboratory.
Traditional approaches such as NMR and
X-ray crystallography have only yielded a
single GPCR 3D structure.

To sidestep the difficulties of the
experimental approach, Jeffrey
Skolnick, PhD, director of the Center
for the Study of Systems Biology at the
Georgia Institute of Technology in
Atlanta, and his research team devel-
oped a structure prediction algorithm
called TASSER. It takes whatever frag-
mentary information is known about a
protein’s structure—or can be reason-
ably inferred from knowledge about
related proteins—and feeds it into a
structure assembly algorithm that com-
bines the data in different ways, search-
ing for the most energetically stable
configuration. 

“By looking closely at structures that
are similar, you should be able to enhance
drug discovery by not only designing
towards what you want, but away from
everything else,” says Skolnick, who esti-
mates that of the 907 GPCRs in the
human genome, TASSER has produced

Bovine Rhodopsin is a GPCR whose structure is known from experimental work. Here, that
known structure compares favorably with that predicted by TASSER. 

The collapse of the STMV capsid when simulated without the RNA core. The initial
structure for this simulation (a) was the intact STMV capsid immersed in a drop of salty
water (not shown). After only 5 nanoseconds of simulation, a prominent implosion of
the capsid is observed (b). For both (a) and (b), a cut through the center of the capsid
is shown. Courtesy of Klaus Schulten, Anton Arkhipov, and Peter Freddolino, University
of Illinois at Urbana-Champaign.
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820 models that are likely to be correct.
The work was published in PLoS
Computational Biology in February 2006.

Because no one has determined the
structure of these 900 proteins, an algo-
rithm that can produce accurate predic-
tive models should prove significant,
comments Harold Scheraga, PhD, emer-
itus professor of chemistry and chemical
biology at Cornell University.

Skolnick emphasizes that while he’s
confident most of the TASSER-gener-
ated models provide new insight into
the GPCRs structures, he doesn’t
expect that many of the structures have
been fully deciphered by this round of
modeling. “What we’re trying to do as
best we can, is establish the plausibility
of these [models] as hypothesis genera-
tors,” he says, which should help guide
drug development research away from
dead ends and into productive avenues,
where the tabs and slots of medication
and receptor are most likely to mesh. 
—Louis Bergeron, MS

Computation
Competitions Take Off!

From all parts of the computational
spectrum, researchers are duking it out:
They are throwing their algorithms into
the ring to see which one will out-perform
all others on a particular task. Contests
that feature algorithms for protein struc-
ture prediction, natural language process-
ing, and computer-aided disease detection

are giving researchers a jolt of adrenalin
and moving these fields forward.

“When you have a field with a
quantitative basis and competing
approaches in which high performance
is one of the main outcomes, it seems
like a natural setting for having a com-
petition,” says Ron Summers, MD,
PhD, senior investigator and staff radi-
ologist in the department of radiology
at NIH. “It’s also beneficial to the field.
The spirit of competition encourages
hard work to solve difficult problems.”  

Protein-structure prediction has been
competitive since 1994 when the CASP

(Critical Assessment of Techniques for
Protein Structure Prediction) contest
drew 34 groups to register. Since then,
the biennial event has steadily grown in
popularity: 263 groups are registered for
the 2006 bout, including several that will
rely only on in silico tools, without help
from human instinct (See Human vs.
Machine feature story in this issue). 

This year, competitive natural language
processing (NLP) gets a boost from one of
the National Centers for Biomedical
Computation. In conjunction with the fall
meeting of the American Medical
Informatics Association, i2b2 (Informatics
for Integrating Biology and the Bedside) is
extending an open invitation to anyone
who wants to challenge their own NLP
tools using real clinical records. 

“Clinical data is not easily accessible
to a lot of people who want to work on
this type of data,” says Ozlem
Uzuner, PhD, assistant profes-
sor of information studies at the
State University of New York at
Albany. “I2b2 and its partners
have put together these data
and that’s what makes this a
unique opportunity.”  

The competition is two-
pronged. Researchers compete
to effectively remove patients’
identifying information from
clinical data. (Note: I2b2 has
already removed the real infor-

mation and replaced it with fictional
data to protect patient privacy). In
addition, they will parse hospital dis-
charge summaries to accurately extract
information on patients’ smoking sta-
tus. The work will help set the stage for
researchers to work with clinical data
without violating patient privacy.

A computer-assisted polyp detection
“bake-off” is also on the horizon. In a tra-
ditional bake-off, says Ron Summers, the
cooks are given the ingredients and they
compete to produce the best cake. In the
CAD polyp bake-off, the American
College of Radiology Imaging Network

(ACRIN) provides researchers with a
data set consisting of CT colonoscopy
scans from about 200 patients. The
researchers then run their CAD systems
using these data. About a dozen academ-
ic and commercial researchers have
expressed interest in participating. 

“Various researchers have been pro-
ducing systems and claiming outstanding
performance on very small data sets,”
says Summers. “It was competitive but
not fair. It was like everyone deciding the
terms of their own race.” Since the ulti-
mate goal is to help patients, results need
to be standardized, Summers says. “We
need to know which approaches are bet-
ter so everyone can move toward that
and improve their systems.” Hence the
CAD competition, which Summers
hopes will be underway by November.   
—Katharine Miller ■■

Virtual colonoscopy image of a 0.8 cm polyp
identified by CAD algorithm (shown in blue).
Courtesy of R.M. Summers, MD, PhD,
National Institutes of Health Clinical Center.

NewsBytes

“The spirit of competition encourages hard work
to solve difficult problems,” says Ron Summers.

DETAILS

CASP:
http://predictioncenter.gc.ucdavis.edu/

Challenges in Natural Language
Processing for Clinical Data (sponsored
by i2b2 in conjunction with AMIA):
http://www.i2b2.org/NLP/Main.php 

Virtual Colonoscopy CAD Bake-Off: 
For more information, contact 
Ron Summers: rms@nih.gov.
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Physics-based simulation  is a  powerful new
tool in the search for new therapies and sur-
gical treatments. But many of the simulation

tools now available were designed for planes, trains,
and automobiles rather than biomedicine.
Moreover, they aren’t gathered into one integrated
web site and aren’t readily available to people who
want to use them. With SimTK—an open-source,
web-based tool kit—Simbios, a National Center for
Biomedical Computing,  is trying to change all that.

“We’re building a coherent set of tools target-
ed to bio-simulation,” says Jeanette Schmidt,
PhD, executive director of Simbios. In this way,
Simbios ensures that SimTK tools are open-
source resources. “We are making these tools
available to everyone,” Schmidt says, “The NIH
deserves a lot of credit for mandating that.”

For SimTK to be effective, its tools must be
usable not only by computer scientists who
design physics-based simulation tools, but also
by biologists who want efficient, easy-to-use
downloadable applications. Progress has been
made on both of these fronts.

With the launch of www.simtk.org, the infra-
structure is now in place for people doing physics-
based simulation to use SimTK’s commercial-
grade hosting tools. When they post their proj-
ects on the site, they receive reliable back-ups;
state of the art version control; built in feature-
and bug-tracking; individualized privacy options;
and a library system to keep track of prior work.
The hosting tools were built upon
GForge and tailored to the specific
needs of the biomedical community.

“We’re striving for the highest quali-
ty, most reliable tools,” Schmidt says.
“We want SimTK to attract the best
researchers and programmers.”

For biologists, SimTK researchers are
developing applications written in the lan-
guage of biology rather than in comput-
erese. For example, applications might
refer to neuromuscular excitation or
amount of energy expenditure rather than
the linear algebra that underlies the pro-
gram. So far, Schmidt says, SimTK has
applications that scientists want, like a
tool for computing the ion atmosphere
around RNA molecules and an RNA visualization
tool that will be augmented with dynamics later
this year. But more are in the pipeline and Schmidt
expects to post applications that biologists can
download and use with a “whiz-bang” level of satis-
faction.

Within Simbios itself, SimTK applications are
being developed to simulate four diverse areas not
previously combined: neuromuscular dynamics, car-
diovascular dynamics, myosin dynamics, and RNA
folding. Some are closer to fruition than others. For
example, one team is developing tools for evaluating
the optimal surgical strategy to help patients with
cerebral palsy walk with greater ease. “We’re not yet
at the point where these tools are available for sur-
geons,” says Paul
Mitiguy, PhD, dissemi-
nation director for
Simbios. Developing
world class tools takes
several years, he says.
“The good thing is that
we are well on the way
to doing it.”  ■■

SimTK:
Striving to Host the Best 
Bio-Simulation Tool Kit

www.biomedicalcomputationreview.org

SimbiosNews
s i m b i o s  n e w s

BY KATHARINE MILLER

“We’re building 

a coherent set of 

tools targeted to 

bio-simulation,” says

Jeanette Schmidt. 

Simbios is a national center for biomedical
computation located at Stanford University.

Simtk.org functions on several levels:
Simtk.org: website, infrastructure, community

Applications: standalone, domain-specific 
application solving problems for 
particular users.

Modeling Layer: tools for expressing 
mathematical models of the physical 
world in a common framework

Computation: high-performance numerical 
methods, libraries, coded algorithms, 
management of resources needed for 
computational realization of models.
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Biomedical

expertise 

meets 

computer

automation
BY LOUISA DALTON

Human 
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Machine
Human 
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Machine



Summer 2006 BIOMEDICAL COMPUTATION REVIEW 9www.biomedicalcomputationreview.org

“You go back and forth and back and
forth,” explains Rosenthal, MD,
former director of cytopathology at

Johns Hopkins Hospital and professor of
pathology, oncology, and gynecology and
obstetrics at The Johns Hopkins
University, describing the difficulty of
examining an ambiguous Pap smear.
Deciding whether the nucleus of a cell
from a woman’s cervix is enlarged and
irregular, indicating an infection that may
lead to cervical cancer, can feel like guess-
work, she says. If the subtle changes that
reflect damaged DNA in the cell do not
manifest themselves clearly, even expert
pathologists will disagree about how to
interpret such a smear.

The subjectivity of human Pap smear
screening is one reason Rosenthal has
dedicated her career to automating the
process. She and others in the pathology
community have been successful. Today,
many pathology laboratories use a com-
puter detection system to assist their
cytotechnologists in screening Pap tests.

Pap test screening isn’t unique in mak-
ing use of computers to do a task once
done by humans. Within biomedicine
many other narrow spaces exist where
computer and human tasks now overlap.
From surgical planning to drug design,
human experts now take advantage of
varying degrees of computerized help.

These computer systems—sometimes
called expert systems—are even more
specialized than their human counter-
parts, proficient in one area of expert-

Dorothy Rosenthal tenses
over her microscope, peering
at the problematic nucleus on

the Pap smear yet again. 
“It’s abnormal,” 

she decides, and then 
hesitates. “No, it’s normal. 

It’s probably normal.”
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ise, at sea in all others. The IBM super-
computer Deep Blue, which played and
beat chess grandmaster Garry Kasparov
in 1997, is such a system.

Some have wondered whether Deep
Blue launched a computer revolution
that would extend into all spheres. Are
Pap test screening and chess-playing just
the first of many arenas in which com-
puters will one day outperform humans?

If so, it’s a slow-moving revolution, at
least in biomedicine. Although comput-
ers now rival, even surpass, human per-
formance in some biomedical special-
ties, the challenges to widespread accept-
ance and use are still great.

There’s the often sticky issue of
changing a human’s routine so that a
computer can help. What the computer
provides has to seem worth the trouble.
Plus, people desire to stay sharp at their
own specialty and want to safeguard
against machine error. As a result, intro-
ducing computer automation in bio-
medicine has been extremely challeng-
ing on many levels.

Nevertheless, three examples—clinical
diagnosis, image interpretation and pro-
tein structure prediction—illustrate the
promise of developing computerized
expertise. Computers can complement
and augment native human capabilities
and in some cases, even replace humans
at the most mundane and repetitive
tasks freeing scientists and doctors to
pursue more interesting work.

MEDICAL DIAGNOSIS
Next to every bed at LDS Hospital in

Salt Lake City is a computer terminal
that gathers patient statistics: blood
pressure, medications, ventilator activity
and other key bits of information. The

data are collected and managed by a
hospital-wide information and decision
support system called HELP—Health
Evaluation through Logical Processing.
The system also collects data from the

hospital laboratory, the front desk, radi-
ology, and physicians themselves.

Every time new data enter the system,
the computer reevaluates patient status
and decides, for example, whether or not
to alert a doctor or recommend a med-
ication adjustment. Physicians also use

the system interactively for help with diag-
nosis, data interpretation, patient man-
agement, and clinical protocols.

Reed Gardner, PhD, one of the
designers of the system, and former

chair of the medical informatics depart-
ment at the University of Utah, says it
has been working smoothly for years.
The HELP system started operating in
1967 and is one of the pioneers of hos-
pital decision support. In some of its
specialized functions, it “provides more

consistent, uniform care to people than
physicians do,” he says. Yet Gardner
thinks he could count on one hand the
number of other hospitals with a similar
system. “It is really not as widespread as

Although computers that could perform a medical diagnosis and 
recommend treatment were among the earliest expert systems, the 

medical community has far from embraced them.

Are Pap test 
screening and 
chess-playing 
just the first of 

many arenas in 
which computers 

will one day 
outperform 

humans?
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I would imagine 40 years later,” Gardner
says. Although computers that could
perform a medical diagnosis and recom-
mend treatment were among the earliest
expert systems, the medical community
has far from embraced them.

One of the sticking points relates to
those data-gathering bed monitors at
LDS Hospital. Gardner went to a great
deal of trouble to create the terminals—
even building many of the first ones
with his own hands. He knew that if the

bedside computer wasn’t automatically
collecting data and sending the informa-
tion to HELP, a doctor or nurse would
have to type it in. That would have
required a change in workflow. When
Gardner first tested HELP, he actually
hired computer technicians to do the
data input for the doctors. 

“Physicians are intensely practical,”
says Octo Barnett, MD, a developer of
DXplain, a decision support system
primarily for diagnosis that has been
operating at Massachusetts General
Hospital for more than 18 years. “They
won’t do something that takes a lot of
time and effort to do and doesn’t have
a lot of payoff for them.”

On top of the inconvenience of data
entry, the perceived benefit of using

The computer room at LDS hospital in 1965 housed the working hardware and backup hardware for its hospital information system, HELP. HELP’s
creators include, from left, Homer R. Warner, MD, PhD; T. Allan Pryor, PhD; and Reed M. Gardner, PhD. Courtesy of LDS Hospital, Salt Lake City, Utah. 

DXplain, a decision support system primarily for diag-
nosis, was developed at the Massachusetts General
Hospital in 1986 and has been available international-
ly over the Internet for the past 10 years. Physicians
can submit symptoms (left) and the system suggests
possible diagnoses (right). Courtesy of Octo Barnett,
MD, Massachusetts General Hospital.
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such a system is low, according to Eta
Berner, EdD, professor in the health
informatics program at the University of
Alabama at Birmingham. Computerized
diagnosis, she says, solves a problem that
some don’t think needs a solution.
Berner studies diagnostic errors and
believes that many such errors go unde-
tected by physicians. If your doctor
doesn’t get a diagnosis right the first
time, she says, either you will go to
another doctor, to the hospital, or back
to your doctor who will try something
else until you get sick enough that the
correct diagnosis is obvious. None of
those scenarios conveys to the physician
that an error was made.

However, there is a growing aware-
ness that medical errors, including mis-
diagnosis, are indeed a problem. In
1999, the Institute of Medicine (IOM)
of the National Academies of Medicine
released a startling report stating that
medical errors cause an estimated
44,000 to 98,000 deaths a year in U.S.
hospitals. The types of errors include
misdiagnosis, incorrect drug dosing,
equipment failure, infections, blood
transfusion related injuries, and misin-
terpretation of a medical order.

Since then, the Institute of Medicine

has called for computerized healthcare
tools that effectively capture patient
information and offer decision and diag-
nosis support aids. 

Hospitals, nursing homes, and doc-
tor’s offices have begun to respond.
They have preferred systems that, like
HELP, primarily alert, remind, inform,
and suggest, not just diagnose. Such
activities fit into clinical practice better
partially because they augment the
staff ’s efforts, rather than replacing
them. Berner calls these systems the low-
hanging fruit: recommending the most
cost-effective antibiotic, advising the
pharmacist on drug-drug interactions,
double-checking blood types before a
transfusion, or carefully guiding and
monitoring as a patient is weaned from
a ventilator.

The doctors are generally positive if
the system works well, Gardner adds,
but they don’t like it if one of the func-
tions over-alerts, a server is down, or
data doesn’t get properly entered and
lab results get delayed.

INTERPRETING
MEDICAL IMAGES

When pathologist Keith Nance, MD,
and his coworkers at Rex Healthcare were

Liquid-based Pap tests can vary from slides that clearly indicate a precancerous state (many
abnormal cells with enlarged nuclei and irregular contours), as shown at top, to slides that are
much more ambiguous because they contain only one or two atypical, abnormal-looking cells,
as shown at bottom. Courtesy of Dorothy Rosenthal, Johns Hopkins Hospital.

“We feel that 
[the machine] 

helps us look harder
at the cases that 

are most likely 
to be abnormal,” 

Nance says 
of the Pap test 

screening system
used by Rex
Healthcare.
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told that the Pap test screening system they
just bought could detect abnormal cervical
cells better than humans could, it wasn’t
that they didn’t believe it. They simply
wanted to make sure for themselves. So for
a few years, they double-checked every-
thing the computer analyzed. Out of more
than 100,000 cases, the machine missed
only one case of the type of abnormal cell
called high-grade dysplasia, less than
0.00001 percent of occurrences.
“Now that’s good,” Nance says,
“because the human miss-rate
is considered to be five to 10
percent.” The computer was-
n’t quite as good at picking
up low-grade dysplasia; it
missed about three percent of
them. Still, humans miss
roughly five percent, Nance says.
“Basically, we proved that the machine
is better than humans.”

That’s why the machine that Rex
Healthcare purchased, the FocalPoint
slide profiler sold by TriPath Imaging, is
FDA-approved to independently sign off
25 percent of the slides it sees. It dubs
them as requiring “no further review” by
human or machine. In addition, it ranks
the remaining 75 percent from most like-
ly to be abnormal down to least likely.
Nance and his coworkers are pleased with
the machine. “We feel that it helps us
look harder at the cases that are most like-
ly to be abnormal,” he says, and rescreen
the cases that really should be rescreened.

Pap test screening is a bright success
story of computer assistance. Computer
automation of the task is well accepted and
cost-effective. It tackles a task for which
there aren’t enough people to do the work.
And because routine Pap test screening
“consists of long, tedious intervals between
interesting cases,” says Rosenthal, most
humans gladly welcome help.

Effective, automated Pap test screen-
ing is now a reality, but getting to this
point wasn’t easy. It has taken patience
and consistent funding. Back in 1979,
the National Cancer Institute sent out a
call for proposals to develop automated
Pap smear screening systems. At that
time, however, “the computers weren’t
capable of doing the kind of number-
crunching we needed them to do,”
Rosenthal says. In 1987, an exposé in
The Wall Street Journal about widespread

poor practices for Pap smear screening
led to a public outcry and an even
greater interest in automation. The U.S.
government funded many groups from
the late 1970s to the late 1980s. From
1990 to now, private money has devel-
oped the devices, Rosenthal says.

Despite the long incubation period
and the cautious mistrust displayed by
groups like Nance’s, computer automa-

tion of cervical cancer screening
survived. Machines offered by

both TriPath Imaging and
Cytyc Corporation now
increase the productivity of
the cytotechnologists and
pathologists.

A radiologist’s search for
telltale signs of breast cancer

(such as breast calcifications,
tumors, or other lesions) on a film

from an x-ray mammogram shares some

challenges with the pathologist’s search
for abnormal nuclei on Pap tests. With
such long intervals between abnormal
cases, it is easy for a human to get dis-
tracted, give up too quickly, or simply

miss something obvious. The problem is
very appropriate for a computer because
computers search “pixel by pixel, area by
area, without getting phone calls, with-
out getting tired,” says Maryellen Giger,
PhD, professor of radiology at the
University of Chicago.

Giger develops computer algorithms
and software to aid the radiologist.  For
more than 20 years, she has worked on
computer-aided detection and diagnosis
(CAD) of radiological images. 

The first computer system that could
search a mammogram for breast cancer
was FDA-approved in 1998, and Giger esti-
mates that a computer reads approximate-
ly a quarter of the screening mammograms
performed in the United States nowadays.
Unlike cervical cancer screening, however,
the physician always has the first look at a
mammogram. After the unaided radiolo-
gist searches carefully for cancer on a film,

the computer outputs the analysis of the
digitized film, designating possible can-
cers. The radiologist then rechecks the
image and either accepts or rejects the
computer’s suggestions. Most studies show

“If you let the computer do it first, there is the 
possibility that the radiologist gets lazy,” says Sandy
Napel. For the present, “it is thought best to put the

radiologist in competition with the machine.”

After reviewing a mammogram, a radiologist may activate a system such as R2
Technology's ImageChecker, which places asterisks at possible cancer masses and trian-
gles at calcifications indicative of cancer. The larger the mark, the greater the likelihood
of cancer. Courtesy of R2 Technology.
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that by using this system, radiologists
potentially catch more cancers, catch them
earlier, and catch them in younger women. 

The computer’s second-reader status in
mammography actually adds some time to
the radiologist’s review. And even though
the computer catches calcifications better
than most radiologists, for the moment,
radiologists have resisted the idea of allow-
ing the computer the first shot. “If you let
the computer do it first, there is the possi-
bility that the radiologist gets lazy,” says
Sandy Napel, PhD, professor of radiology
at Stanford University School of Medicine.
“The radiologist must take a very close
look at the images,” he adds, and being
told where to look might keep the radiol-
ogist from looking closely everywhere.
Even with the current system, “there is
concern that as radiologists get more
comfortable with the technology and see
how effective it is at finding lesions, they
may press the second reader button soon-
er.” For the present, Napel says, “it is
thought best to put the radiologist in
competition with the machine.”

PROTEIN
STRUCTURE PREDICTION

For years, the ongoing joke among
computational biologists was that the

protein-folding problem had again been
solved that year. The long-standing prob-
lem consists of predicting the final,
balled-up form of a protein given only its
linear, amino acid sequence.

The problem of predicting protein
structure is now a bottleneck to
progress. Plenty of amino acid sequence
data are being generated by genome
projects, but computers can’t yet use
that information to predict protein 3D
structure—a valuable piece of informa-
tion for rational drug design. Although
researchers can get to final protein
structures experimentally with x-ray
crystallography, trying to crystallize and
determine structures for all proteins
(even just the hundreds of thousands of
human proteins) will simply take too
long given current technologies. Many
scientists believe that we need a com-
putational solution.

During the 1980s, groups regularly
developed models that worked well on
one protein only to find that the model
didn’t work for every protein. Finally, in
1993, a pair of researchers got frustrated
enough to declare a competition. John
Moult, PhD, at the Center for Advanced
Research in Biotechnology at the
University of Maryland, and Krzysztof

“Biologists don’t want 
to write to the winner 
of CASP and ask him 

to spend weeks 
modeling their 

particular protein,” 
Fischer says. “They 

want to go to
the winner of CAFASP 

on the Internet and 
push a button.”

A predicted structure of an acetyltransferase generated by an automated server in
Daniel Fischer's laboratory was among the best of the entries in CAFASP. The predicted
structure (right) differs from the experimental structure (left) by just a few angstroms.
Courtesy of Daniel Fischer, University at Buffalo (The State University of New York) and
Ben Gurion University in Israel.
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Fidelis, PhD, director of the Protein
Structure Prediction Center at the
University of California, Davis, set up
the Critical Assessment of Techniques
for Protein Structure Prediction (CASP):
an open competition held every other
year where prediction groups compare
their strategies head-to-head on new pro-
teins. The experimental structures are
published at the end of each competi-
tion, clearly revealing which groups per-
formed well and which did not.

Most submissions come from research
groups that use a combination of modeling

programs, prediction algorithms, human
familiarity with protein families, and gut
instinct to come up with their predictions.

Yet increasingly, predictions are also
coming from computers alone—automat-
ed servers that, except for help in setting
the initial parameters, receive no human
input at all. Daniel Fischer, PhD, a pro-
fessor of bioinformatics at the University
at Buffalo and the Ben Gurion University
in Israel set up a parallel competition
with CASP solely for automated servers.
CAFASP (Critical Assessment of Fully
Automated Structure Prediction) runs at
the same time as CASP and uses the same
data, making it “not only a competition
of who is the best server, but also a com-
petition of humans versus machines.”

Initially, not everyone liked the
idea of automated servers competing
with the human predictors. Yet Fischer
felt strongly that the automated
servers needed their own place in the
competition because automation has
to be the ultimate goal of the field.
“Biologists don’t want to write to the
winner of CASP and ask him to spend
weeks modeling their particular pro-
tein,” he says. “They want to go to the
winner of CAFASP on the Internet
and push a button.”

The first year that CAFASP ran
alongside CASP, the server predictions
were downright lousy, Fischer says.

They’ve gotten better—so much better
that in the latest CASP/CAFASP com-
petition, “only a handful of human pre-
dictors did better than the best of the
servers” in one of the prediction cate-
gories, Fischer says. The difference
between a prediction made by an auto-
mated server and that of a human expert
who chooses which programs to run and
improves the results manually is getting
“smaller and smaller,” Fidelis says.

Still, no predictions, whether sub-
mitted by human or machine, yet reach
the quality of an experimentally deter-

mined structure. The best predictions
of both humans and computers posi-
tion the backbone at least 1 to 1.5
angstroms away from where it ought to
be. That’s good enough for some tasks,
Fischer says, such as predicting how a
protein assembles in a complex, but not
yet good enough to create a drug that
will act on the protein. “We still hope
that someone will figure out how to do
the last bit,” Fischer says.

Eventually, it is inevitable that auto-
mated servers will take over the task of
protein structure prediction, and CASP
competitors will have worked them-
selves out of a job.

Fischer is not very nostalgic about it.
He says that both computationalists and
biologists will then be freed up to work
on weightier issues. We don’t worry
about letting a calculator compute cubed
roots for us, he says. “Structure predic-
tion itself is a wonderful problem, I love
it. But it is not the big picture. The big
picture is, do you know what the protein
does? Do you know how to suggest a drug
to interact with it? I’ll be very happy if no
human ever does that again by hand, and
researchers concentrate on the more
interesting and challenging problems of
the 21st century. Protein structure predic-
tion is a 20th century problem.”

Many researchers echo, to some
degree, Fischer’s willingness to let a com-

puter take over a task so that humans
can work on other problems. Losing a
human skill because of technological
advances is something humankind has
been doing for a long time: from the loss
of hand spinning with the invention of
the spinning jenny to the loss of slide
rule proficiency with the invention of
the calculator.

Yet some, even some of those same
researchers who support computer
automation in biomedicine, also worry
about the loss of a human art. If the
computers at the pathology laboratory

were to break down for two days, asks
Napel, would we have enough cytotech-
nologists and pathologists to screen all
the Pap smears? Will we become too
dependent on computers? Napel’s con-
cern is a common one, and one reason
that the automation of biomedical
tasks is a slow-moving trend. 

Rosenthal says that Napel’s concern
is valid; we probably would not have
enough humans at hand to screen the
Pap tests if the machines broke down.
But the benefits outweigh the loss, she
says. The cytotechnologists who used to
do mass screening are focusing more on
the interesting, abnormal cases, she
adds. Novel molecular and genetic tests
are being applied to cytology samples,
including Pap tests. Salaries will go up as
cytotechnologists learn more and their
skills become more valuable. Though
they lose a task, their skill improves else-
where, and the field advances.

Chung-Jen Tan, PhD, senior man-
ager of the Deep Blue development
team at IBM, referred to a similar effect
in the world of chess shortly after the
1997 match between Deep Blue and
Kasparov.  He pointed out that there
was more to the victory than just a
game of chess. “This will benefit every-
one,” he said, “from the audience to
school children, to businesses every-
where, even to Garry Kasparov.” ■■

If the computers at the pathology laboratory were to break down 
for two days, asks Napel, would we have enough cytotechnologists

and pathologists to screen all the Pap smears?
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The Bug: This negative-stained transmission electron micrograph (TEM) depicts the ultrastructural details of an influenza virus parti-
cle. Credit: Cynthia Goldsmith, CDC Public Health Image library.  The Host: Credit: Leonardo DaVinci.  The World: Credit: JupiterImages.
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I
n 1918, the so-called Spanish flu killed more than
20 million people worldwide. Almost ninety years
later, we’re faced with the possibility of a flu pan-
demic that could spread even faster in this global-
ly-connected world. 

In preparation, researchers are racing to understand
what makes one flu bug more infectious or more dead-

ly than another; how best to prevent or treat influen-
za; and how to control a worldwide outbreak of a

deadly strain. Some of these researchers are
turning to an approach that was not available

in 1918: computational modeling. From the
molecular scale to the cellular, organismal
and epidemiological, computational biolo-
gists are teaming with experimentalists to
tackle tough questions about influenza
and other infectious diseases.

At all scales, complexity rules the
day—making influenza an appealing tar-
get for computational research. The
intricacy of viruses themselves, the many
interactive components of the human
immune system, and the complicated

networks of human interactions that lead
to disease spread, all call out for integrated

models that require powerful computation.  
“Complexity really does matter,” says Ira

Longini, Jr, PhD, a professor of biostatistics at
the University of Washington School of Public

Health with reference to his model of pandemic
flu spread in the United States, “And we have the

computational ability to handle it now.”   

Computational   
Biology
CATCHES THE

FLU

Computational   
Biology 

FLU
BY KATHARINE MILLER

www.biomedicalcomputationreview.org Summer 2006 BIOMEDICAL COMPUTATION REVIEW 17



The flu virus is an evolutionary mar-
vel. Teams of experts design an

appropriate flu vaccine annually just to
keep up with the microbe’s ability to
evade the human immune system.
Multiple strains circulate, and no one
can predict when a new strain will
emerge by mutation or recombination
with another strain so that it can jump
from another species to humans. 

Computational biolo-
gists approach

this ever-changing bug from several
angles: some simulate entire virus parti-
cles to detect their vulnerabilities; others
model viral evolution to predict future
strains; still others use bioinformatics
approaches to design better vaccines. 

MODELING THE
VIRUS PARTICLE

Klaus Schulten, PhD, and col-
leagues at the University of Illinois at
Urbana-Champaign recently simulated
an entire virus particle—the satellite

tobacco mosaic virus (STMV), one
of the smallest known
viruses (see the News
Bytes section of this
issue). Allowing all of
the virus’s one million
atoms to move for 10
nanoseconds showed
surprising features of
the tiny particle—and
hinted at possible
interventions to pre-
vent infection. 

Whole-virus simula-
tions for flu—1000
times bigger than
STMV—are still a ways
off. But researchers
could simulate pieces
of the viral capsid—the
exterior casing that
holds a virus’s genetic
material—or they could
model some parts of

The Bug:
Modeling Shape-Shifting Viruses
The Bug:

The HA protein from an avian flu virus (A/Vietnam/1203/2004) with one of the molecule's three
receptor binding sites highlighted as a surface representation (purple) and a close-up of the
receptor binding domain with key residues labeled. In her computational models, Robin Bush has
found that mutations around the HA binding pocket produce flu strains with greater long-term
fitness.Courtesy: James Stevens,  PhD, assistant professor in the Department of Molecular Biology
at The Scripps Research Institute.
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the virus in atomic-level detail while leav-
ing other parts imprecise. 

PREDICTING FLU
STRAIN FITNESS

Robin Bush, PhD, associate professor
of ecology and evolutionary biology at the
University of California, Irvine, is model-
ing how specific flu virus surface proteins
evolve. For flu, evolutionary fitness is
largely determined by the virus’s ability to
evade the host’s immune system.

In a 1999 paper in Science, Bush pro-
posed a way to predict which of
the then-current lineages of
influenza A was evolutionarily
most fit—that is, likely to have
the most descendants. 

“In H3N2 [a common strain
of influenza A], we have a long
skinny family tree with many lin-
eages that quickly go extinct,” she says.
“Why is this?” To answer that question,
Bush focused on the gene for haemagglu-
tinin (HA), a flu virus surface protein that
provokes a strong immune system
response. She found that the fit strains
exhibited changes in amino acids in the
HA binding pocket—the place where anti-
bodies of the immune system latch onto
the flu virus. 

“It doesn’t take much in the way of
amino acid changes to keep an antibody
from binding again,” she says.
“Antibodies are very specific. So it’s not
surprising that changes around the bind-
ing pocket affect the fitness of the virus.” 

Bush then attempted to computation-
ally model which mutations around the
HA binding pocket would lead to long-
term fitness. In 9 of 11 simulations, she
found that mutations in any of 18 specif-
ic amino acids predicted that a strain’s
descendants would continue to infect

humans in ensuing years. But, Bush says,
she is unable to predict if or when those
expected descendants would appear. 

Bush also cautions that her work is
not likely to contribute greatly to annual
flu vaccine design. Such vaccines con-
tain three different flu viruses, and deci-
sions about which lineage of each to
include are made by experts based on
many factors. If there was no other way

to pick one strain over another, she says,
“you might pick the one that had the pre-
dicted binding pocket changes.” 

FILTERING THE
VIRAL GENOME TO
DESIGN VACCINES

Anne De Groot, MD, associate pro-
fessor of medicine at Brown University,
is tackling vaccine development head
on. She’s using bioinformatics to ration-
ally design vaccines.

Annual flu vaccines are produced by

growing viruses in eggs, killing them,
and then combining the dead viruses
with other ingredients known as adju-
vant. The process is slow, so vaccines
must be designed several months before
the flu season begins, with strains from
the prior flu season. Vaccines contain-
ing the entire contents of dead viruses—
including tens of thousands of proteins
with unknown side effects—can also be

risky. “You have to be very care-
ful about what you put in a vac-
cine,” says De Groot, pointing
to the Lyme disease vaccine that
appears to have caused arthritis
in some patients. “We’ve been
lucky with some other whole-
virus vaccines such as polio and
cholera that have not produced
deleterious effects, but all of the
proteins produced by a virus
have potential cross-reactivity.
When you create an immune
response to them, you could be

The traditional approach to epi-
tope-mapping a typical pathogen
genome could involve synthesiz-
ing 100,000 overlapping peptides.
An immunoinformatics approach
remarkably reduces that figure to
~1000, accelerating the discovery
of ~50 epitopes that comprise
over 90 percent of the immunome
in an actual infection. Courtesy of
Anne S. De Groot. 

EpiVax fishes for  antigens using epitopes as bait. 
“It’s a way of filtering genome information to find

what’s immunologically relevant,” says Anne De Groot.

Traditional approach:

~100,000 peptides to
screen in the lab.

Immunoinformatics
approaches reduce

that number to

~1000.

Assays identify 

~50 epitopes that 
constitute ~90 percent

of the immunome.
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Using computation to understand
the flu virus and its proteins only

covers half the story. The T-cell mapping
interface used by De Groot hints at the
other half: the host immune system. 

When a virus or bacterium invades
the human body, it stimulates a cascade
of immune system events to fend off the
intruder. Over the last hundred years,
experimentalists have cleverly studied
these events in contexts where only one
component changes at a time. It’s work

that has generated huge amounts of data
about more than 20 different types of
immune cells and a few thousand par-
ticipating molecules. But what’s missing,
say computational immunologists, is an
integrated view of the puzzle. 

“Computation is a way to take all
these objects and put them back togeth-
er into a form where the goal is not to
minimize variation but to keep track of
it,” says Thomas Kepler, PhD, profes-
sor of biostatistics and bioinformatics at
Duke University. 

The current poster-child of computa-

tional immunology comes from HIV
work published in 1995 by Alan
Perelson, PhD, and David Ho, MD. It
led directly to the realization that HIV
could be treated with cocktails of drugs—
an approach that has greatly reduced the
number of deaths due to AIDS. 

This research demonstrated that it’s
not too soon to take computational
immunology seriously, Kepler says.
Moreover, he adds, “the rate of accumula-
tion of new information is so fast, that if

we don’t start now, we’ll never catch up.” 
It’s a view shared by leaders at The

National Institute of Allergy and
Infectious Diseases (NIAID) who, in
2004 and 2005, funded four computa-
tional immunology projects. Three of
these are using flu as a model pathogen. 

THE IMMUNE SYSTEM
AS A BLACK BOX

Under an NIAID grant to Penelope
Morel, MD, associate professor of
immunology at the University of
Pittsburgh, researchers are modeling

creating auto-immunity or pre-setting an
immune response that you don’t want.” 

A different approach is to put the vac-
cine together one piece at a time, so you
know exactly what’s going on, De Groot
says. In addition to being safer, this
approach should allow development of a
vaccine in response to the current flu
strain (rather than last year’s) because
individual pieces (peptides) can be rap-
idly manufactured. 

EpiVax, a Rhode Island biotech com-
pany founded by De Groot in 1998, uses
computational tools to design peptide-
based vaccines. They use a process called
fishing for antigens using epitopes as
bait. “It’s a way of filtering genome infor-
mation to find what’s immunologically
relevant,” says De Groot. In the 1990s,
researchers developed algorithms that
can pick out gene motifs that are likely
to stimulate the immune system. Using
their own version of such algorithms,
known as EpiMatrix, Epivax filters a par-
ticular pathogen’s genome to pick out
snippets likely to produce immuno-stim-
ulatory peptides known as epitopes.
These peptides can then be synthesized
in a lab and mixed with blood from peo-
ple who have been previously exposed to
the particular pathogen. The epitopes
that successfully “fish out” responses in
the blood are presumably part of an anti-
gen—one of the viral or bacterial pro-
teins to which the person’s immune sys-
tem responded during the earlier infec-
tion. Such antigens and/or their epi-
topes are potential ingredients in a vac-
cine, since they produce valuable
immune responses. This approach has
led to potential vaccines for HIV and
meningitis that are now in clinical trials.

A bioinformatics approach might also
contribute to development of a universal
flu vaccine, De Groot says. Algorithms
can screen the genomes of all the various
flu strains to look for genomic sections
that are pretty short and don’t change.
“They’re kind of like the flu thumb or
index finger: they are critically important
to the function of the virus,” De Groot
says. Running these regions through
another algorithm will reveal whether
they stimulate the immune system. If they
do, then a flu vaccine containing these
proteins might induce immunity to a
group of flu strains rather than just one.

The Host:
Modeling the Immune System
The Host:

“Computation is a way to take all these
objects [the pieces of the immune system]

and put them back together into a form
where the goal is not to minimize variation
but to keep track of it,” says Thomas Kepler. 
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how respiratory infections (influenza,
tuberculosis and tularemia) affect the
local immune response in the lungs. The
group will be gathering data about how
macrophages in the lung respond to
each virus by measuring such things as
secretions (cytokines) and cell surface-
markers as they change through time.
But the goal is to take the experimental
measurements and plug them into com-
putational models. “If your model does-
n’t match the data, then you know some-
thing’s missing,” says Morel. “That exer-
cise is a highly valuable one.” 

The project’s flu modeler, Shlomo
Ta’asan, PhD, professor of mathemati-
cal sciences at Carnegie Melon
University, is taking a highly mathemati-
cal approach: He will look at the
immune system as a black box, without

making assumptions about the biology. 
“We don’t put anything into the

model except the data that come out of
the experiments,” he says. “Our algo-
rithm will spit out something that might
be intuitive for biologists, and it might
not.” He hopes to find out if math can
cut through biological intuition to gain

some new truth. After creating a model
that seems to reproduce the experimen-
tal results for macrophage responses,
Ta’asan says, “Then we want to see how
to manipulate it with various drugs.” 

The biggest challenges to Ta’asan’s
model are practical ones. One mouse
doesn’t have enough blood to cover all
the necessary tests and must be sacri-
ficed to get certain measurements. In
addition, microarray data are highly
variable and there is fuzziness in the
measurements. Ta’asan says some peo-
ple simply ignore that variability, but he
thinks it says a lot about the system and
should be accounted for mathematical-
ly. “We’re thinking about using some
fuzzy logic ideas or probabilistic
approaches,” he says. “We don’t want to
pretend it’s not a problem.”

“The model is easy 
to write out,” says

Hulin Wu, “But 
there’s no validation 

without data.”

This 1976 photograph shows an elderly female receiving a vaccination by a public health clinician during the nationwide swine flu vac-
cination campaign, which began October 1, 1976. Courtesy: Centers for Disease Control and Prevention.
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MODELING THE IMMUNE
SYSTEM USING EXPERTISE
Hulin Wu, PhD, professor of biosta-

tistics and computational biology at the
University of Rochester shares these con-
cerns. He, like Ta’asan, received an NIAID
grant and is modeling the immune system
response to flu. But Wu is taking a more
traditional approach: He develops his
models based on immunologists’ and
virologists’ current theories about flu infec-
tion. And he needs lots of data on the
kinetics of the virus and the cells with
which it interacts. For example, he needs
to know how fast the flu virus proliferates
and dies; the infection rate for various cell
types; and the rate of production of T-cells,
antibodies, CD4 and CD8 cells, and lym-
phocytes. On top of that, he needs this
data from several different locations (lung
and lymph nodes, for example) at various
time points so that he can model the host

reaction as the virus and
immune cells migrate
between compartments. 

But he’s finding
that such data just
doesn’t exist for flu.
Coming from HIV
modeling, this can be
frustrating. “HIV is a
long-term infection.
You can measure the
immune response over
many years,” he says.
“Flu lasts only one
week, and then every-
thing’s gone.” Getting
enough measurements
in a short time span is
challenging but essential. “The model is
easy to write out—to describe the inter-
actions between the virus and the
immune system in the lung, the spleen
and the lymph nodes. But there’s no val-
idation without data.”

The data-gathering problem would be
even worse in the event of a bioterrorist
event, he says. “How can we collect
enough information quickly to deal with
a new engineered virus?” That’s when an
immune system model would prove valu-
able. If there’s a model in place for an
existing flu virus, it can be quickly
adjusted to a new one, he says. 

MODELING MOLECULAR
LEVEL IMMUNE RESPONSES
Another NIAID group led by Stuart

Sealfon, MD, professor of neurology at
Mount Sinai School of Medicine in New
York City, is using computation to get a
handle on the immune system’s response
to flu at the molecular level. They are
modeling the ways that flu viruses evade
or undercut the immune system’s efforts,
specifically focused on the dendritic
cell—the transitional cell between the
innate and adaptive immune systems. 

The team starts with experimental
work: They infect dendritic cells with non-
pathogenic viruses containing specific
components of the flu virus such as NS1
(a protein that shuts down some parts of

the normal signaling in such cells). This
generates large amounts of data on gene
and protein changes. The computer
model then tracks all of these changes at
once. “It’s difficult to understand parallel
events without the benefit of computa-
tional approaches.” Sealfon says. 

One of the modeling challenges,
Sealfon says, is dealing with events that
occur on different time scales. Signaling
events take place over minutes, gene
induction occurs over hours or a few
days, and secretion and stimulation
occur throughout the infection period.
These multi-scale modeling problems
still need to be addressed, he says. But if
the challenges can be overcome, “ulti-
mately, this work can help us to develop
strategies to circumvent the virus’s
actions.” And in the event of a new
strain, the model can help identify the
evasive tactics used by the new flu bug,
which might lead to an appropriate ther-
apy or vaccine. 

Computational immunology still has a
long way to go before it will fulfill its
promise, Kepler concedes. But the field is
really opening up, as technology provides
more and more ways to measure the many
complex interactions of the immune sys-
tem. “There has already been a lot of good
work in computational immunology,” he
says, “but it will have a very different fla-
vor in the next few years.”

This is the graph of a preliminary 18-equation model of flu
virus antagonist effects on interferon production in dendrit-
ic cells. Both the graph and model were developed by Mount
Sinai researchers using BioPathwise, a signaling simulation
program developed by BioAnalytics Group LLC. Courtesy of
Stuart Sealfon.

“It’s difficult to understand
parallel events without the
benefit of computational

approaches,” says 
Stuart Sealfon. 
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The field of computational epi-
demiology is a much more mature

field than computational immunology,
Kepler says. Because epidemiologists have
always dealt with disease spread across
large populations, it’s not as big a leap to
computation on a national and global

level. And the main computational
approaches to epidemiological prob-
lems—agent-based modeling and graph
theoretical methods—are well-established.

What is new, however, is the current
United States effort to bring infectious dis-
ease modeling under one umbrella. In

2004, the National Institute of
General Medical Sciences
(NIGMS) within the NIH created
the Modeling of Infectious
Disease Agent Study (MIDAS), a
program that funds several epi-
demiologic modeling efforts, gives
them access to supercomputers,
and also coordinates them in
hopes of producing results that
will be useful to policymakers. 

MIDAS literally gets every-
body in the room—program-
mers, data collectors, database
designers, biologists, epidemiol-
ogists and statisticians—to try to
iron out all the potential areas
of disagreement. In particular,
they try to reach consensus
about what parameters should
be part of the model. Telling
policymakers that one program

On day zero in these simulated
pandemic outbreaks (R0 of 1.9),
infected individuals arrived at 14
major international airports in the
continental United States. The
number of ill people at a given
point in time is indicated by the
color scale from green (0.3 per-
cent) to red (3 percent) of the
population. More than 40 percent
of the entire U.S. population end
up getting ill with no interven-
tions (left). The use of antivirals
slows the spread (right) until the
stockpile of 20 million courses
runs out, at which point there’s a
delayed nationwide pandemic.
Courtesy: PNAS.

The World:
Modeling Flu Spread

The World:
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gets one result and another program gets
a different result simply won’t do, says
Irene Eckstrand, PhD, scientific direc-
tor for the MIDAS program. “So we try
to work all those things out in-house.”  

The end goal is for MIDAS to be able
to tell policy makers: Based on our mod-
els, a specific intervention in a specific
type of epidemic will likely have a specif-
ic effect. But, Eckstrand cautions, the
models are all stochastic—they don’t give
the exact same answer back twice.
Uncertainties are built into the models
because many parameters are probabilis-
tic. For example, the likelihood that a
person will stay home on a given date
rather than spread the disease to one or
more people can be assigned a specific
probability so that the outcome
will vary each time the model
runs. So each computer model
must be run multiple times on a
given set of parameters in order
to produce a distribution of
results that express the range of
possible outcomes as well as the
most likely outcomes. 

Although the MIDAS
approach could be applied to
any infectious disease, the
researchers decided early on—
before the current concern over avian
flu—that it would be interesting to
model pandemic influenza. “The timing
was pretty remarkable,” says Eckstrand. 

Because of this fortuity, MIDAS models
published in Science and Nature in August
2005 and in Proceedings of the National
Academy of Sciences (PNAS) and Nature in
April 2006 were front page news. 

MIDAS grantee Ira Longini co-
authored two of these high-profile
papers. His August 2005 paper in
Science looked at ways to stop an out-
break of flu in an imaginary population
of 500,000 people in Southeast Asia. He
and his colleagues found that an out-
break could be contained if a sufficient
stockpile of antiviral drugs could be
delivered rapidly enough—within three
weeks of the first human-to-human
transmissions. In practice such an

approach would be difficult to imple-
ment in Southeast Asia but the model
will help policymakers plan for an effec-
tive response. 

MODELING FLU ACROSS
THE UNITED STATES

Longini’s April, 2006 model in
PNAS focused closer to home: What
interventions would help contain a flu
pandemic in the United States? Instead
of an imaginary population, this model
was built on census tract data for 281
million people and relied on extensive
knowledge about peoples’ travel and
activity patterns. “We’re all pretty pre-
dictable, really,” he says. “We all get up,
go to work, go shopping, and get togeth-

er with our neighbors.” So Longini’s
model breaks down social contacts into
12-hour time periods (day and night) in
seven different contexts (“mixing
groups”). In some contexts, close contact
occurs (home, work, schools); in others,
it’s more occasional (shopping malls). 

The key variable for Longini’s model is
a number called R0, which represents how
transmissible a strain will be. Specifically:
R0 is the number of people, on average,
that a typical infectious person infects dur-
ing the infectious period in a fully suscep-
tible population. If that number is bigger
than one, then the disease will spread.
Less than one and it will disappear. 

No one really knows what the R0 for
a new pandemic flu strain would be. It’s
thought that newly emerging strains that
haven’t had a chance to adapt to
humans might have a low R0 and there-

fore may die out. But no one has
observed an emerging infectious disease
before it becomes well adapted. “We
kind of missed HIV and SARS,”
Longini says. But now, with better sur-
veillance, virology and field epidemiolo-
gy, “Flu might be the first emerging dis-
ease where we really have an opportuni-
ty to watch what happens.”

In Longini’s computer model of the
United States, he’s assuming a well-adapt-
ed virus, so he starts with a pretty high R0
of 1.6 to 3.0 (the R0 for Smallpox is 5; for
the 1918 flu, about 2). But R0 is only the
starting point for the model. As different
intervention strategies are tried, the R
value changes. “These models aren’t
meant to be predictive tools,” he says.

“They are meant to evaluate
strategies for intervention.” 

For a flu pandemic with an
R0 of 1.6, Longini and his col-
leagues found that any of several
individual strategies such as
antiviral drugs, child-first vacci-
nations or school closures could
be fairly effective in reducing
the incidence of flu below ten
percent (the rate for a typical
annual flu season). If the R0 is
higher than 1.9, however, only

vigorous application of multiple strate-
gies would reduce the outbreak’s impact. 

Longini has been working directly
with the government on intervention
scenarios. For example, he can compare
the impact of stockpiling 10 million ver-
sus 100 million courses of Tamiflu. And
he can say closing schools is more effec-
tive than other social distancing meas-
ures while travel restrictions appear to
have little impact (findings confirmed by
the other MIDAS model for the United
States published in Nature). But he’s
quick to point out that the model can-
not predict what will actually happen.
“We can say one strategy might be better
than another or one might be totally
ineffective and another has a good
chance of being effective. So we can
make those sorts of statements, and
that’s about as far as we can go.” 

“These models aren’t meant 
to be predictive tools,” Longini

says. “They are meant to 
evaluate strategies for 

intervention.” 
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GETTING DOWN
IN THE WEEDS

Despite the unifying influence of
MIDAS, its grantees still have their own
particular approaches to modeling epi-
demics, says Eckstrand. “There’s an
interesting discussion about how much
detail you need to know in order to
build higher level estimates,” she says.
Stephen Eubank, PhD, is a MIDAS
grantee who works with “down in the
weeds” information, Eckstrand says. 

Eubank, project director of the
Network Dynamics and Simulation
Science Laboratory at the Virginia
Bioinformatics Institute, believes mod-
els need detail in order to best address
policymakers’ needs. To evaluate the rel-
ative effectiveness of strategies such as
telecommuting, limiting meeting sizes or
setting quotas on the number of people
in a grocery store, a model must contain
sufficient details about what individuals
are actually doing and where. Eubank’s
model consists of individual agents that
each represent a single person assigned a
set of activities at reasonable locations
given where they live. “So we don’t have
a knob in our model that says ‘reduce
contact rates by thirty percent,’” he says.
“Instead we have knobs that say, keep
some people home from work; or don’t
let more than ten people in this room.”

Right now, Eubank’s models can
only be applied to one city at a time. “It’s
hard to support both the amount of
detail that we’re talking about in our
model and the scale of the whole coun-
try. It becomes a question of computer

resources.” For a city of a million or so,
each engaged in five to ten activities, a
simulation covering 60 days can take an
hour or two on 30 CPUs. But expand-
ing such detailed models nationwide
would require very large clusters of com-
puters and large quantities of data.
Eubank’s hope is to develop grid-based
platforms. “It’s unlikely that any one per-
son or organization would want
to model this much detail for
the whole United States,” he
says. “But at the local level,
there are good arguments for
why an urban area should have
such a model of itself.” It would
be useful not only in the event
of an epidemic, but for other
kinds of urban planning.

If cities participate in
Eubank’s plan, they could then
tie their models together in a
grid to create a nationwide,
detailed model. “So we’d have
this loose federation of urban
or regional models interacting
across the grid, each main-
tained by someone with a vested interest
in having a good model of their area.” 

OPTIMIZING INTERVENTIONS
Catherine Dibble, PhD, assistant

professor in the department of geogra-
phy at the University of Maryland,
College Park, also offers a different per-
spective within MIDAS. As a collabora-
tor on the MIDAS grant headed up by
Donald Burke, PhD, at Johns Hopkins
University, she has developed tools for

doing two things many others haven’t
done: risk analysis and optimization.
“Most pandemic modelers decide the
interventions and settings by hand and
run them through the simulations,” she
says. “We do that too, but we can also
optimize interventions and evaluate
their risks.” 

So, while Longini and other MIDAS

modelers (such as Neil Ferguson, PhD
and Mark Lipsitch, PhD; see www.epi-
models.org) recommend which local
interventions and combinations of inter-
ventions could be most effective, Dibble
has the capacity to evaluate the optimal
geographic deployment of those recom-
mended interventions and associated
scarce resources such as Tamiflu and vac-
cine supplies. 

In addition, Dibble’s risk analysis
tools can evaluate the optimal strategies

An aerial view of Portland, Oregon, in a simulated epidemic performed by Eubank and colleagues. In each image, red dots represent a loca-
tion with at least one infected person present at a set time on a given day. On the left is the baseline spread after 60 days. At right is what
happens if 75% of households make the decision to stay home during those 60 days. These simulations are not meant to represent what would
happen at a particular address, but to indicate the general consequences of such extreme behavioral modification. Courtesy: Stephen Eubank.

Telling policymakers that 
one program gets one result
and another program gets a 
different result simply won’t 

do, says Irene Eckstrand, 
“So we try to work all those

things out in-house.”   
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to see how well they deal with events that
don’t go as planned. As Dibble explains,
“some interventions might give a good
outcome under some conditions, but,
compared to other possible interven-
tions, might be more sensitive to chance
events that could work against them.” 

But optimization and risk analysis
would require huge amounts of comput-
er resources if applied to the fully
detailed national models, Dibble says.
“Effective optimization requires a model
that represents key aspects of geographic
structure and travel behavior, yet is sim-
ple enough to run hundreds of thou-
sands of times to fully explore alternative
geographic deployments and to explore
uncertainties, sensitivities and risks.” 

Dibble’s model is designed to evalu-
ate the effect of travel restrictions
between transportation hubs in the

event of pandemic flu. She created a net-
work with healthy individual agents
(green) distributed at each transporta-
tion hub all across the continental
United States. Each population center
can be visualized as a tower with its
height determined by its relative popula-
tion. “Then we drop one or more infect-
ed individuals into the landscape,” says
Dibble. “They are pink.” 

As time goes by, different people make
different travel decisions (modeled using
actual airline routes and travel data) and
the infected agents start “sneezing” on
people (infecting them) at a rate consis-
tent with a particular R0 and whichever
interventions may be imposed.
Sometimes the epidemic fizzles out—the
equivalent of the infected person going
home and not giving the disease to any-
one. When it doesn’t fizzle out, pink

(infectious), red (sick), gray
(dead), and white (recovered)
people appear on the landscape,
with travel decisions leading to
diffusion among cities. “We
focus on evaluating the relative
pandemic risks across cities:
Which cities in the United
States are likely to be hit soonest
or more often,” she explains. 

In the event of a pandemic,
her model can suggest how to
allocate the available (and limit-
ed) resources effectively, Dibble
says. Spreading interventions
uniformly over the population
might seem fair, but it might
not control the pandemic as
effectively as targeting the
resources to particular cities. 

Convincing policymakers to
focus resources geographically
could be a big challenge, she says.

“If these models can be useful at all, peo-
ple need to be comfortable with them and
understand how a particular intervention
can help.” That kind of public awareness,
she says, will be key. According to her,
“Communication may turn out to be
more important than any particular
model, vaccine or resource.” 

BRINGING BUG, 
HOST AND

WORLD TOGETHER
As with many modeling endeavors,

the question arises: What if the models
could be integrated across the scales? Will
we eventually model an evolving flu virus
interacting with the host immune system
in such a way as to predict, with reason-
able reliability, its effect on a population?
If so, that day is not near. But even now,
efforts by MIDAS researchers might help
stem the spread of a flu pandemic, poten-
tially saving millions of lives. Even if the
models don’t help, and a pandemic ram-
pages uncontrollably, the work will help
prepare us for the next time, and the one
after that. “Pandemic flu is a big threat,”
says Longini, “but it’s also a really impor-
tant scientific opportunity.”  ■■

Catherine Dibble’s approach to flu
modeling is similar to her earlier work
with SARS (published in 2003). In this
simulated landscape of SARS spread,
each tower represents a population
center. Colors represent the health sta-
tus of individuals at each center: 
green = healthy
pink = infectious
red = symptomatic
gray = deceased
white = recovered (now immune). 

“If these models can be useful at all,” 
Catherine Dibble says, “people need to be 

comfortable with them and understand how 
a particular intervention can help.”
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One of the tasks faced by every sci-
entific programmer sooner or
later is the need to compute the

derivative f�(x) from code for the origi-
nal function f(x). This need arises in
design and minimization problems, for
example. In practice f is often an enor-

mous, messy, “legacy” numerical compu-
tation, and x is a vector of many argu-
ments. We all know the standard finite
difference trick: 

f�(x) � (f(x+h)–f(x)) / h 
which converges exactly on f� in the
limit h→0 ... except that can only hap-
pen in a calculus text-
book! In practice,
roundoff error ruins
the accuracy of the dif-
ference f(x+h)–f(x) as
the arguments get clos-
er together. So we try
to balance roundoff
error caused by h being
too small against “trun-
cation” error from h
too large. Optimal bal-
ance is usually found
near h=√� where � is
the precision with
which f can be calculated, although
exceptions abound. On a good day, this
yields seven correct digits of f� when f has
sixteen. Most of us think of that as
“about half the accuracy” but a more

sober perspective is that we lost nine
orders of magnitude! 

We can improve this somewhat by
calculating more terms in the Taylor
expansion of f�; for example,
(f(x+h)–f(x–h))/2h (central difference)
gives a few more digits at twice the

expense. We’re still down six orders of
magnitude (assuming we picked h well).
William Press expressed it best:

It is disappointing, certainly, that no sim-
ple finite-difference formula ... gives accu-
racy comparable to the machine accuracy.—
Numerical Recipes in C++ (2003)

But maybe we all did too much sci-
ence and not enough math. I recently
stumbled on a paper1 reporting an amaz-
ing result from complex analysis: 

f�(x) � Im[f(x+hi)] / h
This says to perturb f along the imagi-
nary axis, and then take the imaginary
part of the result. Otherwise it looks
deceptively like the usual finite differ-
ence formula. But look again—this one
contains no subtraction and hence no
roundoff error. So we could hope to
make h smaller to reduce the truncation
error as well. Here is the amazing part:
you can make h as small as you like, and
as long as h<√� you’ll get the derivative
to machine accuracy. Of course you do

have to modify f to accept a complex
argument. That’s easy in languages like
C++ and FORTRAN with built-in com-

plex numbers, and some automated
tools have also been developed. 

This result is so surprising you have to
see it to believe it. The inset shows a com-
plete C++ program that differentiates
f(x)=sin(3x)log(x) by finite, central, and
complex step differencing (in yellow), and
analytically to check the answer. Here is

the output, with correct digits highlighted: 
Complex step matched to sixteen deci-
mal places, full machine precision. I
chose 10 –20 as the complex step size, but
10 –100 works just as well!

Simbios Center faculty member
Michael Levitt recently reported a break-
through in coarse grained molecular
modeling of myosin. He replaced a
numerical difference calculation of a
large matrix with the complex step
method, and can now closely match all-
atom normal modes with a simplified
model. Perhaps more importantly, he
now has a reason to gloat about being a
FORTRAN programmer!

There is much more to learn about
this fascinating idea, including some
practical issues to consider, a deep rela-
tionship with automatic differentiation
theory, and historical roots in work
done in the 1960s by Simbios Scientific
Advisor Cleve Moler. For more infor-
mation, see the referenced paper. Then
give it a try yourself and let us know
what happens. ■■

DETAILS

Michael Sherman is Chief Software
Architect for the Simbios Center.

FOOTNOTES

1 Martins, J. R., Sturdza, P., and Alonso,
J. J. 2003. The complex-step derivative
approximation. ACM Trans. Math.
Softw. 29(3) (2003).

Under TheHood
BY MICHAEL SHERMAN

Complex Step Derivatives:
How Did I Miss This?

u n d e r  t h e  h o o d

This result is so surprising you have to see it to believe it.
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BY LOUISA DALTON

The folks at Howard Hughes Medical Institute who
dreamed up Janelia Farm say it is as much a social
innovation as a scientific one. “We are creating a

different culture here,” says Gerald Rubin, PhD, direc-
tor of HHMI’s first freestanding research institute
under construction in Loudoun County, Virginia.
“Most professors don’t do lab work anymore. They
spend time on committees, write grant proposals, and
teach. We want to be on the much
more adventuresome end of things.”

Researchers at Janelia Farm, Rubin
says, will above all do research with their
own hands. They will have small, easy-to-
manage laboratories and no teaching,
grant-writing, or administrative responsi-
bilities. They will work on a campus
designed to promote run-ins with other
researchers, especially those from vastly
different backgrounds. And they will self-
assemble into novel, cross-disciplinary
collaborations to work on long-term,
unwieldy scientific problems difficult to
tackle in a single laboratory.

That’s the idea behind the social
experiment of “The Farm.” Built on a
689-acre tract of land 30 miles outside of
Washington, D.C., Janelia Farm is due to
start operating this summer and will have
its grand opening in early October 2006.

When Sean Eddy, PhD, associate
professor and a computational biologist
at Washington University School of
Medicine in St. Louis, heard Rubin
speak in 2001 about the creation of
Janelia Farm, he wanted in. “Gerry said,
‘We don’t know what we are going to do
yet.’ I said, ‘I don’t care. Keep me post-
ed. The culture by itself is an attractive
thing for me. Hopefully scientifically, it’ll be a good fit.’”

HHMI eventually settled on two broad initial goals for
Janelia Farm: first, develop computational tools for image
analysis and second, identify how neuronal circuits
process information. HHMI deliberately chose ambitious
goals that are best suited to a 50-year multidisciplinary col-
laboration rather than goals that could be addressed with
a five-year federal grant.

Eddy was chosen as one of the Janelia Farm group
leaders, even though he specializes in computational
genome sequence analysis rather than neuroscience or
image analysis. He’s thrilled with the challenge of work-
ing his way over to neurobiology. He lists some of the
research ideas he has been throwing around in rank

order from most to least sane. Perhaps he’ll take software
he has already developed for identifying mRNA second-
ary structures and apply it to the study of neuronal
mRNA localization. Or, in collaboration with others, he
might use computational techniques to build synthetic
promoters for specific neurons in the fly, the worm, and
the mouse. For that, he’d want to work with other group
leaders such as Julie Simpson, PhD, who just finished a
postdoctoral fellowship at the University of Wisconsin-
Madison and has been mapping the brain of the fruit fly;
Karel Svoboda, PhD, a neuroscientist at Cold Spring
Harbor who has found a way of monitoring individual
synapses in the mouse brain; and Rubin, who led the
effort to sequence the fruit fly genome. One of Eddy’s

JANELIA FARM:
Cultivating Scientists

f e a t u r e d  l a b
FeaturedLab

Top: Gerald M. Rubin, PhD, HHMI vice president and director of the Janelia Farm Research
Campus. Above: Janelia Farm buildings are designed to foster impromptu conversations.
Photos by Paul Fetters.
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more crazy ideas, he says, is to try to simulate the behav-
ior of the C. elegans worm from its wiring diagram. He’s
organizing one of the first onsite scientific meetings at
Janelia Farm to discuss this challenge.

Although only eight of what will eventually be 24
Janelia Farm group leaders have been picked so far, Eddy’s
already collaborating with most of them. That’s exactly

what Rubin hoped would happen. Whatever their current
expertise, all of the group leaders are extremely creative
thinkers. Most have heavily quantitative backgrounds in
areas such as computer science, physics, or mathematics.
And most make a habit of inventing things—phys-
ical tools, gene lines, or analysis techniques.

Even the director of information technology
at Janelia Farm, Marshall Peterson, who
worked as vice president of IT at Celera
Genomics, will invent tools to help the
researchers as they need them. Peterson says
that the goal for IT at Janelia Farm “is to build
a very flexible shared computing environment
that we can scale and adapt as needed when
people come to us with computational chal-
lenges.” He is starting off with 1200 CPUs and
150 terabytes of storage and leaving room for
whatever else they might need. “The trick is to
not paint yourself into a corner,” he says.

Other tools at Janelia Farm include equip-
ment for electron microscopy, light microscopy,
genomic sequencing, instrument fabrication,
transgenic animal studies, and more. Peterson
emphasizes, however, that at Janelia Farm, “it’s
not all about tools. It is about people getting
together, talking, interacting, exploring, giving
full reign to their imaginations.” Almost more

important than the 1200 CPUs and the 10,000 mouse-
cage vivarium, Peterson says, are the large round tables in
the dining room, the housing for visiting scientists, and
the pub, where “productive collisions” between
researchers are sure to occur.

Eddy is counting on at least one of those productive
collisions happening to him. “From osmosis, from hang-

ing out with all of these neurobiologists,” he says, “I’m
hoping to eventually have a smart idea.” If Janelia Farm
works the way it has been designed to work, Eddy and his
colleagues will have many.  ■■

JANELIA FARM QUICK FACTS

WHAT: Howard Hughes Medical Institute’s first 
freestanding research institute

WHERE: Ashburn, Virginia—roughly 30 miles northwest 
of Washington D.C. 

STAFF: Will have up to 300 resident research staff (including
group leaders, postdocs, and graduate students) and 80 sup-
port staff, plus up to 100 visiting scientists

FACILITY: $500 million research campus (including a 900-feet-
long laboratory building, conference facilities and hotel, and
visiting scientist housing) designed by Rafael Viñoly to fos-
ter collaborative science and adapt to changing needs

FUNDING SOURCE: Howard Hughes Medical Institute

HISTORICAL MODELS: Medical Research Council Laboratory
of Molecular Biology (MRC LMB) in Cambridge, England, and
AT&T’s Bell Laboratories in New Jersey

SCIENTIFIC CONFERENCES: Will host at least twelve per year

WEB PAGE: http://www.hhmi.org/janelia/

Researchers at Janelia Farm will self-assemble into novel, 
cross-disciplinary collaborations to work on long-term, unwieldy 

scientific problems difficult to tackle in a single laboratory.

HHMI’s new research
campus is located on a
689-acre tract in north-
ern Virginia. Photo by
Paul Fetters.
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Each of these two smiling friends is actually a
giant molecular DNA complex, 100 nanometers
across and 5 megadaltons in mass. They are creat-
ed by self-assembly, in a single reaction step, in
which a 7000 base long single strand of DNA is
folded by about 250 short DNA strands, each
about the length of a PCR primer. Roughly 50 bil-

lion smileys are made in a single drop of water at once. The hexagon is
about 250 nanometers across and is composed of 6 origami triangles linked
together. Courtesy: Paul Rothemund and Nick Papadakis.

s e e i n g  s c i e n c e
SeeingScience

Designing nanostructures of DNA just got easier.
Paul Rothemund, PhD, a senior research fellow
at Caltech has found a way to coax a long strand

of DNA into a pre-determined geometric shape by mix-
ing it together with some well-designed
“staples” (oligonucleotides). After
designing the shape and the staples
on a computer, Rothemund
has produced smiley faces,
a map of the western
hemisphere, stars, and a
wide range of geomet-
ric shapes with good
to excellent yields:
between 60 and 90
percent of the time,
the intended shape

comes out perfectly. The work,
which could have ramifications for the

design of nanodevices, was published in the March 16,
2006 issue of Nature; more shapes can be seen at 
http://www.dna.caltech.edu/~pwkr/.

Making DNA Smile


