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g u e s t  e d i t o r i a l

DRR—a hub that literally sorts out
applications and assigns them to the
most appropriate institute or center as
well as the study section. The people
who do this are science administrators
who use their expert knowledge and
excellent judgment to identify the right
home for each application. When
applicants tell me that they’re going to
request assignment to a certain pro-
gram director, institute or study sec-
tion, I tell them: “If you’re not sure

what you’re doing, don’t get tangled up
in all that—let the experts at CSR
DRR handle it so you can concentrate
on the science.” 

All study sections at CSR can
potentially review applications for
research funding that involve some
computing. However, there are nine
study sections that review applications
with a significant amount of biomed-
ical computing. These include main-
line modeling and analysis (MABS),
data and analysis (BDMA), health
informatics (BCHI), neurotechnology
(NT), genomics and computational
biology (GCAT), macromolecular
structure and function (MSFD), bio-
statistics (BMRD), biomedical imaging
(BMIT), and microscopy (MI). These
nine study sections really point to the
importance of computing in biomed-
ical research and that these research
areas merit special focus. 

The glue that holds a lot of this
together is BISTI, the trans-NIH
Biomedical Information Science and
Technology Initiative (BISTI) consor-
tium. BISTI, for example, coordinates a

number of initiatives in biomedical
computing and computational biology.
It is also the administrative center for
the National Centers for Biomedical
Computing, which are part of the NIH
Roadmap for Medical Research. This
program and its affiliated collaborations
have funded more than $150 million in
research in the past five years, and the
effort will continue through 2015. 

There are plenty of other opportuni-
ties for research funding across a range

of size and complexity, and you can find
them all listed on the BISTI Web site.
Last year, BISTI reissued four broad-
based program announcements to sup-
port “innovations in biomedical com-
puting.” They cover a range of areas,
from the development of enabling
technologies and non-hypothesis-based
research to specific research relating to
the needs of a disease or research area
of interest to a specific IC. Of course
investigators can also use the regular
investigator-initiated R01 mechanism
for requests for funding that have sub-
stantial components of computing. 

BISTI and other related programs
across the institutes and centers play
an important role in providing both
contacts and coordinating initia-
tives—and this creates a lot of commu-
nication within the NIH community.
When I receive an application that I
think may be more appropriate for
another institute, I will use the BISTI
Web site to find the right contact and
then discuss the best home for review.

continued on page 29

As a program manager in biomed-
ical computing and computa-
tional biology at the National

Institutes of Health, I field many ques-
tions, particularly from new investiga-
tors. They ask questions like: Where do
I find out about research funding? How
do I navigate all the information?
Whom do I contact? I want to take this
opportunity to share a few insights. 

NIH does not have a top-down
approach for biomedical computing

and computational biology, but it does
have a highly coordinated community.
Individual institutes and centers devel-
op initiatives or are assigned incoming
applications for funding in biomedical
research through the Center for
Scientific Review Division of Receipt
and Referral (CSR DRR). 

If anything comes close to centraliz-
ing biomedical computing and compu-
tational biology at NIH it’s the CSR
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GuestEditorial
BY PETER LYSTER, PhD, PROGRAM DIRECTOR IN THE CENTER

FOR BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, NIGMS

Update on Biomedical
Computation at NIH

NIH does not have a top-down approach for biomedical computing and 
computational biology, but it does have a highly coordinated community. 

Individual institutes and centers develop initiatives or are assigned 
incoming applications for funding in biomedical research through the 

Center for Scientific Review Division of Receipt and Referral (CSR DRR). 

CHANGES IN THE NIH 
GRANT APPLICATION 

AND REVIEW PROCESS:
Want to see what’s going on lately in
the effort to enhance peer review?
Go to the NIH site http://enhancing-
peer-review.nih.gov/.  
Since January 25, 2010, all applica-
tions are submitted on new forms
with shorter page limits.  The new
page limits (http://enhancing-peer-
review.nih.gov/ page_limits.html)
include a 12-page Research Strategy
for most applications.
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Scientists sometimes find themselves up to their
elbows in Styrofoam balls, pipe cleaners, and
metal rods as they try to build models of the mol-

ecules they are studying. Now, they can exchange all
that for the ease and precision of a computer. With the
alpha release of the modeling software Protein
Mechanica, researchers have a new option for con-
structing plausible models of molecules based on exper-
imental data, such as x-ray crystallography and cryo-
electron microscopy (cryo-EM), and then simulating
and visualizing their conformations. 

The model-building component is a unique aspect of
the software, says David Parker, a recent Simbios stu-
dent who developed the software as part of his PhD the-
sis. The software has been used to reproduce experi-
mental observations of a myosin V, a protein that moves
cellular cargo along actin filaments, but Parker points
out that it is new and they are still validating it.
“There’s no software that does this kind of thing, so we
are still trying to understand how to apply different
coarse-graining modeling strategies. The more
systems we work on, the better we understand
how to parameterize the models.”  

Designed for and in collaboration
with experimentalists, Protein
Mechanica uses their language
to build the model. “Protein
Mechanica will
allow anyone to sit
down and build
these models,”
Parker says. 
“You use pro-
tein chain and
residue identi-
fiers and atom 
names, so in a script of only two lines you can build a
complete mechanical model of a large molecular system.”   

With Protein Mechanica, researchers will be able to
construct models using information from a variety of
sources: crystallography, cryo-EM, secondary structure
descriptions, as well as user-defined solid shapes, such as
spheres and cylinders. This flexibility is useful since crys-
tal structures typically contain only molecular fragments,
requiring that different crystal structures be integrated or

s i m b i o s  n e w s

DETAILS
Protein Mechanica is freely available for download
from https://simtk.org/home/protmech.  

BY JOY P. KU, PhD, DIRECTOR OF DISSEMINATION FOR SIMBIOS

that missing pieces be represented by other means in
order to produce a complete model.

By working closely with experimentalist Zev Bryant,
PhD, an assistant professor of bioengineering at
Stanford University, Parker identified what is really
important, and it did not require full-blown dynamics.
Experimentalists just need a tool that can quickly show
them how different parts of a molecule interact
mechanically. They do not need or want to spend weeks

simulating the diffusion process of the molecule.
“Just the geometric constraints of the model

alone can provide insights,” says Parker. “For
instance, one part of a molecule might be unable
to move a particular way if there’s not enough
room.” So Protein Mechanica evolved into a
tool for building structures and modeling their
plausible conformations. It holds promise for
changing the way some experimentalists work.

“The software is helping us fill a major
deficiency in single molecule [experi-

mental] work,” says Bryant. Single
molecule measurements provide

clues as to how a molecule
moves, but they cannot

reveal the entire picture
of what is happening,

particularly at the
atomistic level.

Modeling can help fill in the gap, as well as aid in the
design of new molecules. Protein Mechanica is particu-
larly useful because it enables comparisons between its
predictions and experimental data at various levels of
spatial resolution. 

Bryant says his students can now quickly take any
myosin they’re working on,
build hypothetical conforma-
tions, and compare measure-
ments from the model with
measurements taken from sin-
gle molecule assays. “Protein
Mechanica is very well-suited
for that task and I think very
expandable,” he says.  !!

Simbios (http://simbios.stanford.edu) 
is the National Center for 
Biomedical Computing located 
at Stanford University.

Protein Mechanica:  
Structural Modeling for the Experimentalist

A simulation of myosin V binding to actin, as modeled with Protein Mechanica. Courtesy of David Parker.

SimbiosNews
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NewsBytes
Scientists Break 
Protein Folding 

Time Barrier
Scientists have now simulated pro-

tein folding at a timescale that begins
to be relevant to biology: the millisec-
ond. Indeed, the simulation busted
through the millisecond time barrier to
tackle the slowest folding protein yet
studied—a 1.5 millisecond fold—using
a combination of computational tools
that provide both the requisite compu-
tational power and the necessary ana-
lytical methods for making sense of a

slow, complicated folding event.
“It’s kind of like a coming out party

for a combination of technologies that
have really started to mature,” says
Vijay Pande, PhD, associate professor
of chemistry at Stanford University and
co-author of the paper. Pande expects
his team’s technologies will be useful
for simulating proteins important in
misfolding diseases such as Alzheimer’s
and Huntington’s disease. The work

was published in the Journal of the
American Chemical Society in January.

Protein-folding researchers have until
now focused on a unique group of small,
fast-folding proteins that fold in hun-
dreds of nanoseconds or microseconds.
This is great for simulating, but it is not
characteristic of most protein-folding
events. Pande’s group chose to simulate a
39-amino acid chain called NTL9,
which, like most proteins, dilly-dallies en
route to its final structure. One side of
the protein may partially fold, then
unfold as another part misfolds. The
process takes milliseconds or more.

The computational power for the
simulation came from Folding@Home,
a distributed computing project that
heaps together bits of donated comput-
er time from individual systems located
around the world. To fold NTL9, they
relied particularly on the speedy graph-
ical processing units (GPUs) within
those computers, which sped up the
simulations and made long folding tra-
jectories possible. 

To piece together the information
from the different computers, Pande
and his coworkers also devised a
Markov State Models (MSMs)
method. The approach merges myriad
variations from thousands of succes-
sive protein-folding simulations and
identifies a set of relatively stable con-
formations along the protein’s many
folding pathways. By choosing how
many states to identify, whether fif-
teen or 100,000, researchers can dial
in the degree of complexity they seek.
It’s like choosing the number of pixels
in a photograph, Pande says. A small

number of states gives a broad,
coarse picture of the confor-
mations and folding pathways
of greatest frequency, while a
larger number provides a more
complex picture that can
show specific protein move-
ments in greater detail. 

The MSM approach
allowed Pande’s group to see a
real richness of range in the
way NTL9 folds. NTL9 fol-
lows not just one or two path-
ways but many different paths
to get to the final folded state.
Pande expects to see similar
heterogeneity in the way
other proteins fold, and his
group has created a tool
called MSMBuilder to enable
other groups to conduct a
similar analysis of their own
simulations. 

Jed Pitera, PhD, a research
staff member at IBM, says
Pande’s group found a way to
build a statistically and physi-
cally accurate model of protein
folding. “It shows off the state-

of-the-art in studies of folding kinetics
and reflects a maturation of the view of
how protein folding happens,” he says.
—By Louisa Dalton 

Predicting 
Protein Complexes

The zone where two proteins inter-
act presents a possible target for drug
design. But identifying possible drugs

A Markov State Model illustrates how NTL9 progresses from a fully unfolded state (a) to a fully
folded state (n) through many different pathways. (This simple 14-state model illustrates only the
most frequented folding pathways.) The larger the arrow, the more a path is traveled. The larger
the circle, the greater a state’s stability. Courtesy of Vijay Pande. Reprinted from Voelz, V., et al.,
Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder NTL9 (1?39), Journal of
the American Chemical Society, 132(5):1526-8 (2010) with permission from the American Chemical
Society. A video is also available at http://www.youtube.com/watch?v=gFcp2Xpd29I 
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Synchronizing Cells
Without synchronized clocks—

whether embedded in our body’s
cells or programmed into our desk-
top computers—any kind of coordi-
nated activity is impossible. So after
synthetic biologists succeeded last
year in programming individual bac-
teria to keep time and blink rhyth-
mically, they wanted to find a way

to coax each bacterium away from the
beat of its own idiosyncratic drummer.
Now they've figured out how to geneti-
cally engineer a population of E. coli
that can not only blink in unison, but
also automatically synchronize itself.

“Often synchronization is achieved
by enslaving multiple clocks, or oscilla-
tors, to one ‘central command unit,’”
says Lev Tsimring, PhD, associate direc-
tor of the University of California, San
Diego’s BioCircuits Institute, who head-
ed the research team with Jeff Hasty,
PhD, associate professor of biology and
bioengineering at UCSD. But that’s put-
ting a lot of eggs in one basket: If some-
thing goes wrong with the master clock,
the whole system can collapse. 

The team’s solution was to make use
of quorum sensing, in which cells com-
municate with each other by relaying
small molecules between them.  In
their design, a genetic oscillator first
drives engineered bacteria to turn fluo-
rescent proteins on and off. Then the
cells use quorum-sensing components
to share information about the timing
of their oscillations and adjust their
cycles accordingly. 

The work, which was published in
Nature in January 2010. used computa-
tional modeling of the oscillators to
quantitatively explain the experimental
observations. For example, the
researchers tweaked the computational
model parameters to artificially prevent
a certain molecule—which was thought
to be involved in both the cells’ time-
keeping and communication—from
penetrating the cell walls. Their results
showed that without the molecule, the
individual cells were indeed cut off
from each other and their environ-
ment, and their clocks remained
unsynchronized. And because there's

requires a detailed understanding of the
interface between the proteins.
Computer simulation provides a useful
tool for gaining such an understanding.
But simulating protein complexes can
be challenging, especially when the
interactions are fleeting—such as when
signaling molecules attach and detach
in a flicker. Now, a new method can
efficiently predict the structures of tran-
sient protein complexes from a combi-
nation of genomic and structural data. 

“This is an entire approach to pro-
tein-complex structures based on sever-
al different computational methods,”
says Hendrik Szurmant, PhD, coauthor
of the paper and an assistant professor
of molecular and experimental medi-
cine at the Scripps Research Institute.
The work was published in Proceedings
of the National Academy of Science in
December 2009.

To determine the structures of pro-
teins in complexes, researchers have
used both homology modeling and pure-
ly physics-based molecular dynamics
simulations. But both approaches have
proven less successful than hybrid
approaches. Szurmant and his colleagues
developed their new hybrid approach
using a two-component signaling system
in bacteria as a test case. The system
consists of a membrane-bound kinase
that passes a phosphoryl group on to its
response regulator within the cell. The
team analyzed databases of genomic
sequences for almost 9000 examples of
the two co-evolving proteins looking for
co-varying mutations. Their aim: to
identify likely points of contact between
the two players, under the theory that
one protein’s contact residue tends to
match a mutation in its partner. Then
they used those points of contact to
combine the two proteins in a molecular
dynamics simulation. 

“Our method brings the two pro-
teins close together in a computation-
ally very inexpensive way, then as a
very last step the structure is refined in
a molecular force field,” says Szurmant.
The combination of approaches mini-
mizes computation time, he says, com-
pared to methods that rely more heavi-
ly on molecular dynamics.

When the researchers tested their
methods on a complex whose struc-
ture had already been determined,
the prediction was in excellent agree-
ment with the known structure. They
also tackled a then-unresolved com-
plex from Thermotoga maritima,
TM0853/TM0468. An x-ray diffrac-
tion structure of that complex has
since been published, confirming
many aspects of the prediction. 

This technique could be used for
other types of systems, says Szurmant, so
long as enough sequence information is
available for the genomic step to pick
out statistically significant variations.
“The approach relies on variability, so if
the system is very conserved, one would
need a lot more sequence,” he says. The
team’s next step is to apply the method
to other bacterial systems, and eventual-
ly to develop an online tool to make the
approach available to other researchers.

This work shows that the combina-
tion of genomics data and molecular
dynamics modeling seems to be suffi-
cient to predict protein complex struc-
tures, says Angel Garcia, PhD, profes-
sor of physics at Rensselaer Polytechnic
Institute. Garcia points out that the
accuracy of the method is particularly
impressive. He adds, “I think almost
anyone that is working on a given com-
plex is going to try this for their own
pet system.” 
—By Beth Skwarecki 

This complex of a mem-
brane-bound sensor histi-
dine kinase (TM0853, in blue)
and its response regulator
(TM0468, in red) shows the
contact residues identified
from genomic data in orange
and blue. The catalytic residues
that exchange a phosphoryl group are
shown in yellow. Courtesy of Alexander
Schug and Hendrik Szurmant.

NewsBytesNewsBytes
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no way to confine this molecule within
cell walls experimentally, “observing”
this behavior was possible only through
computational modeling, says Tal
Danino, graduate student in the UCSD
Department of Bioengineering and lead
author of the study.

Computation is indeed a valuable

tool for understanding gene networks,
Hasty says. “We learned about time
delay in gene regulatory networks, how
signals propagate through colonies, and
how interactions come together to syn-
chronize behavior between cells.” And
with essentially only two genes at the
heart of the synchronization mecha-
nism, the system is a great demonstra-
tion of how small systems can generate
very complex behavior. “It showed that
you don’t need a lot of genes in a net-
work to get very interesting and rich

dynamics, where all kinds of spectacular
things can happen,” he says.

“The complexity of the system is
astonishing,” says Martin Fussenegger,
PhD, professor of biosystems science and
engineering at the Swiss Federal
Institute of Technology Zurich in Basel,
Switzerland, who wrote an accompany-

ing perspective on the study. Not only is
the timing mechanism radically different
from that of the central pacemaker in
the brain, which uses one-way synchro-
nization to control cellular clocks in
remote tissue, but the cells manage to
stay synchronized even while in constant
motion and dividing every 20 minutes.

The bacteria can also be programmed
to change their synchronized blinking
rate in response to environmental trig-
gers. This ability could lead to applica-
tions such as super-sensitive bacterial

sensors that would flash more quickly in
the presence of environmental contam-
inants, says James Anderson, PhD, pro-
gram director for the Center for
Bioinformatics and Computational
Biology at the National Institute of
General Medical Sciences within the
National Institutes of Health. 

But the immediate use of the work is
more basic, Anderson points out.
These researchers created computa-
tional models of the synchronization to
drive both in silico and in vitro experi-
ments of the synthetic biology, which
in turn help refine the computational
models even further. “What the syn-
thetic biologists are doing now is help-
ing us understand how the natural
traits actually work at the same time
that they’re creating synthetic ones.”
—By Regina Nuzzo, PhD

Reverse-Engineering
Transcriptional

Networks
A cell may change states several

times in its lifetime—from a stem cell
to a specialized cell, for example, or
from a normal cell to a cancerous one.
Each time this happens, a veritable
army of genes must be raised to do the
tasks needed by the new cell type. Now,
researchers have successfully used com-
putational approaches to identify the
“master regulators” that, like generals,
control the transformation of benign
brain cells into the malignancies that
cause high grade glioma, one of the
most aggressive forms of brain cancer.
The computational findings were then
confirmed experimentally. 

The work, which was published in
Nature in February 2010, demonstrates
the value that can come from reverse
engineering molecular interaction
networks for specific cell types.
Coauthor Andrea Califano, PhD,
professor of bioinformatics at Columbia
University and director of the Center
for the Multiscale Analysis of Genetic
Networks (MAGNet), hopes to apply
these methods to other questions of
cellular transformation and develop-
ment, particularly those relevant to dis-

A team at UCSD built a network of genes and proteins in E. coli that acts as a molecular
clock and can be synchronized across cells. A positive-feedback loop (a) triggers expression
of a quorum-sensing gene that produces AHL, an intercellular communication molecule. At
the same time, a negative-feedback loop (b) triggers a protein that degrades AHL and a
green fluorescent protein (c) makes the waves of activity visible. The dynamic interactions
of the positive- and negative-feedback loops produce regular pulses of AHL (d), which act
as the metronome in the molecular clock. Since all the cells simultaneously send and
receive AHL, they adjust and synchronize their clocks with each other. The result: coordi-
nated fluorescent flashes. Reprinted by permission from MacMillan Publishers, Ltd: from
Fussenegger, M, Synchronized Bacterial Clocks, Nature 463, 301-302 (2010).
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ease states such as cancer. “We can now
ask what are the genes that control an
arbitrary transformation,” he says. 

For a healthy cell to become the
beginnings of a high-grade glioma
(HGG) tumor, it needs to express a
large number of genes that otherwise
would never be activated. To find the
key genes that produce that altered
gene expression state, Califano’s team
first mapped out the regulatory logic of
the most aggressive type of HGG cells
using an information theory algorithm
called ARACNE. The method can
reconstruct regulatory networks from
gene expression profiles of particular
cell populations, even pruning out
indirect interactions to determine
which genes directly control others.
Next, the researchers looked for genes

in this network that were part of the
tumor’s signature – those that are
highly expressed in HGG cells but not
in normal brain cells. A handful of
transcription factors emerged that
together control about 80 percent of
the characteristic genes. Two in par-
ticular, STAT3 and C/EBP, appeared
to hierarchically control the others,
even though they are expressed at lev-
els so small they do not appear in the
signature. 

Further experiments, done with
brain tumor experimentalist Antonio
Iavarone, MD, verified the model,
showing that activating the two genes
simultaneously in neural cells causes
the shift to a tumor-like cell. Likewise,
silencing the genes together eliminated
the malignant phenotype. 

While the networks in this study
were built from gene expression data,
the method could also work with
other information, such as pro-
teomics or chromatin structure data.

“I see this work as being a proto-
type of the power of this type

of approach, but it’s really
just the beginning,” says

Howard Fine, MD, chief
of the Neuro-Oncology
branch at the National

Cancer Institute.
Fine is also hopeful

that the results of this
work could lead to
glioma treatments.

“They’ve identified one
small module within this

very complex signaling
network that is a can-

cer cell,” he says. “This
says to us, we might be

able to translate findings
from these kinds of approach-

es to new therapies for patients well
before we can fully understand the
complexity of the tumor cell.” 
— By Beth Skwarecki

Research
Reproducibility 
from MSWord

A particular mashup of data and
tools produces the unique results found
in each computational biology publica-
tion. Now, researchers have developed a
model system that gives readers—espe-
cially those lacking programming
skills—the tools, data, and parameters
they’d need to reproduce those results.
Dubbed a “reproducible research sys-
tem” (RRS), it lets the reader replicate
original computational research directly
from a Microsoft Word document. 

“This effort was meant to show that
the technology exists to make research
reproducible by the non-programming
user,” says Jill Mesirov, PhD, director
of computational biology and bioinfor-
matics at the Broad Institute of the
Massachusetts Institute of Technology.
The work was described in a policy
forum in Science in January 2010. 

This transcriptional network of high-grade glioma cells shows the two master regulators
in red and other significant transcription factors in orange. Together, these transcription
factors control about 80 percent of an HGG tumor’s signature. Image courtesy of
Columbia University, Califano Lab. Reprinted with permission from MacMillan Publishers,
Ltd.: Carro, M.S., et al., The transcriptional network for mesenchymal transformation of
brain tumours, Nature 463, 318-325 (21 January 2010). 

NewsBytes
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Often, to reproduce a computation-
al biology research result, one must
contact the original researcher to
request the data and tools. Even then,
the precise steps taken might be lost or
unrecoverable. People have been strug-
gling with this problem for more than
twenty years, and several reproducible

research systems already exist, but they
are not widely used and require the user
to do things that are “very much like
coding,” Mesirov says. 

The RRS concept, as proposed by
Mesirov and her colleagues, consists of
two parts: an environment for doing
the computational work that tracks the
data, analyses and results and then
packages them for redistribution; and a
publisher, such as a standard word-pro-
cessing software. 

As an example system, Mesirov and
her colleagues used GenePattern, a

genomic analysis platform that pro-
vides access to more than 100 tools for
gene expression analysis, proteomics,
SNP analysis and common data pro-
cessing tasks. In GenePattern, users’
sessions can be captured and replayed.
“The idea was to take the captured user
session in GenePattern—with all the

parameters and datasets—and embed
that in Microsoft Word,” Mesirov says.
Luckily, from a technical point of view,
the webservices architecture of
GenePattern and the XML capabilities
of Word “kind of meshed,” she says. 

With funding from Microsoft, the
GenePattern RRS was developed. A user
can link text, tables and figures to previ-
ously executed GenePattern pipelines.
And readers can open up those pipelines
from the document. 

Mesirov invites people to try the
GenePattern RRS (available online at

http://genepatternwordaddin.codeplex.
com/) and to develop similar systems
for other tools. “It’s not one-size-fits-
all,” Mesirov says. “This is not about
GenePattern or even this instantiation
of reproducible research. It’s about the
need and the fact that you want repro-
ducible research accessible to people

who don’t write code.” 
It’s an exciting development, says

Kevin Coombes, PhD, associate profes-
sor of biostatistics and applied mathe-
matics at the University of Texas M. D.
Anderson Cancer Center, where mas-
ters students are routinely trained to
use a reproducible research system
called Sweave. MSWord is already on
peoples’ computers, so the Genepattern
RRS is potentially more useful than
systems like Sweave that require some
programming. At the same time, he
says, there are sociological hurdles to

In this screenshot of an MS Word document, the user can open a GenePattern pipeline to reproduce the research. Courtesy of Jill Mesirov.



adopting reproducible research systems.
“The software to unite these things is
necessary to do reproducible research,
but not sufficient. You have to get peo-
ple to buy into it.” 
—By Katharine Miller

Decoding the Histone
To fit inside the cell nucleus, DNA

molecules wrap around tiny protein
spindles known as histones. These his-
tones carry an intriguing biochemical
code that helps decide a cell’s destiny—
whether it turns into a neuron or a lym-

phocyte, or turns cancerous, for
instance. Decoding the so-called his-
tone code is now faster and easier,
thanks to a new system that combines
innovative chromatographic techniques
with advanced computer algorithms. 

“What previously took a year, we can

now do in a three-hour run, and get bet-
ter results” says Benjamin Garcia, PhD,
assistant professor of molecular biology
at Princeton University, who co-led the
effort with Christodoulos Floudas,
PhD, of the chemical engineering
department. The study appeared in the
October 2009 issue of Molecular &
Cellular Proteomics. The new system
could advance our understanding of cell
differentiation, stem cells, cancer, and
other key problems in biology.

Each histone’s tail region typically
sports several chemical modifications
such as methylations, acetylations, or

phosphorylations. Individual modifica-
tions are known to activate or silence
nearby genes, but their net effect—the
histone code—remains unknown. This
is partly because distinguishing the var-
ious histone “forms”—each carrying a
distinct pattern of modifications—in a

sample is very tricky; despite vastly dif-
ferent biological effects, they have very
similar mass and structure.

The new system tackles this with
an advanced chromatography process
that induces different histone forms in
a sample to separate out over a
remarkably short 2 to 3 hour period.
The emerging histone molecules are
then analyzed by tandem mass spec-
trometry. A typical histone sample
might yield thousands of spectra, each
carrying contributions from one to
three histone forms. To unscramble
this, a computer algorithm finds the
optimal mix of forms that best match-
es each spectrum. Combining these
results from all the spectra yields an
accurate tally of the identities and rel-
ative amounts of the forms present in
the sample, says Floudas. 

The approach successfully identi-
fied nearly 200 distinct forms in a his-
tone sample, including some never
before seen in human cells. It is sensi-
tive enough to distinguish between
modifications with nearly equal mass-
es; indeed, it even teases apart forms
that differ merely by the position of a
single modification. 

“If you want to characterize histone
modifications on a large scale, and do it
very quickly, this is the way to do it,”
says University of Wisconsin chemist
Joshua Coon, PhD. The method is an
important technical and methodologi-
cal advance, agrees Michael Washburn,
PhD, of the Stowers Institute for
Medical Research in Kansas City,
Missouri. Washburn cautions, however,
that the method will have a real impact
only if other researchers succeed in
implementing it. Due to their complex-
ity, proteomics techniques are hard to
replicate, he notes.

Next, Garcia says, his team will use
the approach to unravel the histone
code governing cellular phenomena
such as stem cell differentiation and
cancer. “We’ve shown we can measure
modified histone forms, but there’s so
much to do now,” says Garcia. “This is
really the beginning of some true bio-
logical breakthroughs.”
—By Chandra Shekhar, PhD  !!

Spectrometric heat map showing relative amounts of various modified forms measured from a
human histone sample. The vertical axis indicates the chromatographic separation time, and the
horizontal axis shows the mass/charge ratio of ionized histone forms. The relative amount of each
form is color-coded in ascending value from blue to red. Forms separate out in 2D by degree of
acetylations (0ac, 1ac, ...) and methylations (0me, 1me, ...), and then by the positions of these mod-
ifications. The new method identified more than 200 distinct histone forms from the sample, includ-
ing ones never before associated with human cells. The method is sensitive enough to distinguish
between an acetylation and a trimethylation—two modifications that differ in mass by only a few
parts per million. Reprinted from Young, N.L. et al., High throughput characterization of combina-
torial histone codes, Molecular & Cellular Proteomics, 8(10):2266 - 2284 (2009).
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guish between hypotheses in systems
where we don’t always have all the
information we need,” says Peter
Zandstra, PhD, professor of biomaterials
and bioengineering at the University of
Toronto in Canada. 

The scenario runs something like
this: As experimental results accumu-
late, stem cell researchers start develop-
ing theories about why stem cells do
what they do. Computational biologists
then develop computer or mathemati-
cal models to examine the theories in a
rigorous way, to guide further experi-
ments. “That’s in my mind where a lot

why it works,“ says Ingo Roeder, PhD,
group leader at the Institute for Medical
Informatics, Statistics and Epidemiology
at the University of Leipzig in Germany. 

Stem cells are complex creatures,
responding to external and internal cues
with an array of cellular changes, includ-
ing alterations in gene expression, DNA
methylation, alternative splicing,
microRNA (miRNA) expression, and
post-translational modification of pro-
teins.  Researchers need to understand
these intricacies before they can control
stem cells for clinical purposes. But as
researchers start to track all of these
changes in cells over time, the vast quan-
tity of accumulating data overwhelms
the human mind. Researchers can even
lose track of what hypotheses they are
testing. The only way to make sense of it
all is with computation.   

“Computation allows you to distin-

o the casual observer,
stem cells offer the
almost magical promise

of—Voila!—turn-
ing into exactly the

kind of cell needed to repair an injured
spinal cord or replace a damaged organ.
And despite the political issues that
swirl around the topic, new research
findings fuel the public’s hope that the
stem cell miracle is right around the
corner. Since 2005, scientists have got-
ten better and better at converting
adult skin cells into pluripotent stem
cells capable of becoming any cell-type
in the body. 

But beneath these exciting results
lies a far more subtle truth: Although
researchers can produce desired cell
lines in the lab, they don’t always under-
stand the underlying mechanisms. “It
works, but we don’t necessarily know
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Above: Differentiated cells (stained red)
have developed to surround the tightly
packed colony of smaller pluripotent cells
(stained green). Photo courtesy of John
Butler, Dr. Jeanne Lawrence, Dept of Cell
Biology, UMASS Medical School.

Computation Addresses Hot Topics in Stem Cell Research

MORE THAN

FATE:

T



of the power is,” Zandstra says. 
Using computational models,

researchers are gaining traction toward
understanding what makes a stem cell
a stem cell; how gene expression

drives stem cell differentiation; why
studying stem cell heterogeneity is
important; and, ultimately, how stem
cells control their fate. 

WHO AM I: 
The Stem Cell Identity Crisis

Stem cells seem to know who they
are, but it can be hard for humans to
tell them apart. Stem cells
come in two general types:
pluripotent stem cells that can
give rise to all cell types in the
body, and multipotent stem
cells (such as those in bone
marrow or the brain) that have
a smaller repertoire of options.
There are also adult cells that
have been induced to resemble
stem cells; and cancerous cells
that exhibit stem-like traits.
And there are many shades of
gray in between—stem cells in
the process of differentiating;
or adult cells in the process of
reverting into stem cells. So
when stem cell researchers
work with cell cultures, it’s not
always an easy matter to deter-
mine what kind of cells lie
before them. They need a way
to determine whether they’ve
successfully pushed stem cells
to differentiate or induced dif-
ferentiated cells to become
pluri- or multipotent. In
essence, they need a test for
stem cell status.  

Jeanne Loring, PhD, profes-
sor of developmental neurobi-
ology and director of the
Center for Regenerative
Medicine at The Scripps
Research Institute in La Jolla,
California, is taking a bioinfor-
matics approach to address this
problem. She and her col-

leagues built an enormous database
(which they call “the stem cell
matrix”) that contains data on gene
expression, microRNA expression,
DNA sequencing, and epigenetics

(DNA methylation), among other
things. Using the data from 22 samples
and a machine-learning algorithm,
they taught a computer  how to identi-
fy stem cells. When applied to 66 test
samples, the algorithm clearly separat-
ed pluripotent stem cells into a class by
themselves. “They are a different cate-
gory from all other cells—as distin-
guishable as white rocks from black

rocks,” Loring says.  
Since the work was published in

Nature in 2008, the clusters have held
up using additional data. Loring’s team
has now applied their analysis to more

than 500 samples—with data on
expression of 40,000 genes per sample
and 37,000 DNA methylation sites per
sample. “The more information we get,
the simpler the answer is,” Loring says.
“We get rid of the noise.” 

Loring’s lab plans to offer a simple
method to help scientists determine
what cell type they are looking at right
now.  “Researchers will send us a sam-
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“Computation allows you to distinguish between 
hypotheses in systems where we don’t always have 
all the information we need,” says Peter Zandstra.

Using a program called Matisse, developed by researchers in Israel, Loring and her colleagues super-
imposed gene expression data from her lab’s stem cell matrix on known protein-protein interac-
tions. This filtered the data down to the key set of interacting proteins that were commonly all up-
regulated in pluripotent stem cells—a network they dubbed the PluriNet. This figure displays the
activity of the PluriNet in three different samples of (in columns from left to right) four different cell
types: nonpluripotent stem cells, tumour-derived (cancerous) pluripotent cells, induced pluripotent
stem cells and pluripotent embryonic stem cells. The pluripotent cell lines (right two columns)
resemble one another and are quite different from the other two). Reprinted with permission from
McMillan Publishers, Ltd, Muller, FJ, et al., Regulatory networks define phenotypic classes of human
stem cell lines, Nature 455, 401-405 (18 September 2008).



ple or gene expression data, and we can
tell them which category their cells are
most like,” she says.   

THE ATTRACTOR
LANDSCAPE:
The Lay of the Land 
for Stem Cells 

For more than 40 years, cell biolo-
gists have described stem cell differen-
tiation in terms of a metaphorical ener-
gy landscape. The cell’s gene expres-
sion state—essentially the transcrip-
tome—can be stable in multiple differ-
ent combinations. When it finds a sta-
ble state, it stays there, like a marble
stuck in a valley on the landscape. The
starting “well” is the pluripotent stem
cell. Certain driving forces then push
the cell up and out of those wells and
across ridges into new low areas. Called
attractors, these low areas represent
specific differentiated states, such as
neurons or blood cells. 

Many computational researchers
still consider this depiction useful only
as a metaphor. But a few are taking it
further. “It’s actually a very mathemati-
cal thing,” says Sui Huang, PhD, asso-
ciate professor of biology at the
University of Calgary in Alberta,
Canada. Within every cell, there’s a
network of genes interacting with other
genes. These interactions generate
gene expression patterns that define
the cell’s state—i.e., whether it’s a stem
cell or has differentiated into some
other kind of cell. 

Some possible states are more likely
to be stable than others. For example, if
gene A inhibits gene B, then a pattern
where A and B are both highly
expressed is very unlikely to be stable.
So, in theory, if you understood the
wiring diagram for all gene interac-
tions, including which genes inhibit or
activate which other genes, you could
predict the likelihood that the network
permits a particular gene expression
pattern.  And, says Huang, “that prob-
ability would give you the derivation of
the landscape.”  There is a caveat,
Huang says. “From a physics point of
view, it’s not really an energy landscape
because living systems are not equilibri-
um systems, but the intuition of land-
scapes is wonderful.” 

Of course, to compute the land-
scape, Huang says, you would have to
know the details of the wiring dia-
gram—which genes activate each other
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In this gene regulatory network, two transcription factors (A and B) activate their own expres-
sion and mutually inhibit each other. A mathematical model of this network produces a land-
scape with three “attractors”—states of gene expression that are stable. One (a/b) in which
there is low expression of both A and B, would be a stem cell-like state, whereas the valleys
a or b constitute stable states in which A or B are exclusively expressed. If the stem cell’s state
is somehow destablilized, the upper valley becomes a hilltop (dotted black line) rather than a
valley, inducing the cell’s state to move toward one of the differentiated (committed) states.
If A and B expression fluctuate within the stem cell valley, then those near the lip of the val-
ley will be the first to commit because they are already prone to flow in a particular direction.
Reprinted from Cell Stem Cell, Vol 4 issue 5, Enver, T., et al., Stem Cell States, Fates, and the
Rules of Attraction, pages 387-397 (2009), with permission from Elsevier.

The cell’s gene expression state—
essentially the transcriptome—can be 

stable in multiple different combinations.
When it finds a stable state, it stays 

there, like a marble stuck in 
a valley on the landscape. 
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tories that the cell takes from a partic-
ular undifferentiated state to the differ-
entiated state. Surprisingly, it’s not nec-
essarily a straight line; the levels of
PU.1 and GATA1 fluctuate and even
loop around before the cell moves
toward the attractor.  By modeling this,
and comparing the in silico trajectories
to those determined experimentally,
the researchers better understand how
the two genes are interacting in the cell
to decide its fate.  

INDIVIDUALS 
MATTER:  
Understanding Stem 
Cell Heterogeneity 

Much of stem cell biology relies on
population statistics—for example, the
average gene expression levels of a vast

numbers of cells grown in a culture.
But stem cells exhibit a surprising
degree of individuality even within
such cultures. Gene expression varies
greatly; cells divide asymmetrically;
some cells die out while others repro-
duce themselves endlessly. Moreover,
adding certain chemical cues to stem
cells will induce some, but not others,
to differentiate.            

“Outliers matter in biology,”
Huang says. “Science has a tendency
to operate with averages—average
populations, average females, average
males, but individuals are important.
All you need is one cell behaving dif-
ferently and it has consequences for
the organism.”  

and how. And, he says, “getting that
wiring diagram is a big, big step.” 

So far, Huang and his colleagues
have modeled the landscape with a
two-gene interaction network. The
genes function as a stem cell switch
for hematopoietic (blood-forming)
stem cells: transcription factor PU.1
drives them to become white blood
cells, while GATA1 drives them to
become red blood cells. Each tran-
scription factor activates itself and
inhibits the other. 

For a network with two genes, the
third dimension is the elevation, which
equals the probability of each possible
expression pattern of PU.1 and

GATA1. This elevation is very hard to
compute even with just two genes,
Huang says. “You cannot derive a
mathematical equation to give the
shape of the landscape,” he says. “You
have to use brute force.” 

Looking at more than two genes
would require an even greater number
of dimensions. “If you have 100 genes
then your state space has 100 dimen-
sions and the elevation is the 101st
dimension,” Huang says. “That’s hard
to picture, and computing that land-
scape would be very intense.”  

But even Huang’s two-component
model provides useful insights. For
example, his team modeled the trajec-
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In this illustration of the attractor landscape for a two-gene network, (top left) the blue wells
representing hematopoietic stem cell state C as well as the attractor states A and B for ery-
throid and myeloid (red and white blood cell) cells respectively.  At the top right, the state
space for the PU.1/GATA1 system shows how the cell state is driven by the network dynam-
ics from various possible starting states (points on the grid) toward the attractors: Blue lines
move toward the myeloid state, red toward the erythroid state, and green toward the meta-
stable hematopoietic stem cell state. Adjustments to the model parameters will shift the size
of the area represented by each color. According to one theory, differentiation occurs when
the multipotent state (green) becomes unstable—essentially disappearing so that the cell
must choose between the two possible fates. As shown at bottom, Huang and his colleagues
also modeled the trajectories that the cell might take from an initial stem cell state (in the cen-
ter of the state space) to each corner, given different sets of initial conditions. These trajecto-
ries were then compared to actual trajectories observed in the lab. Reprinted from
Developmental Biology, 305:695-713 (2007), Huang, S., et al., Bifurcation dynamics in lineage-
commitment in bipotent progenitor cells, with permission from Elsevier.

“Outliers matter 
in biology,” 

says Sui Huang. 
“All you need is 

one cell behaving 
differently and it

has consequences
for the organism.”  
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Heterogeneity also means
that any given attractor is actu-
ally a cloud, rather than a
point, on the landscape, Huang
says. “So we need to have the
statistics for thousands of indi-
vidual cells to get the land-
scape,” he says. “We need to
follow individual cells.”   

To do that, researchers turn
to microfluidic devices that
can rigorously control the
environment surrounding indi-
vidual cells without washing
them away or moving them
around. In time-lapse experi-
ments, a camera can capture
gene expression levels in indi-
vidual cells while also tracking
cells as they divide, die, differ-
entiate, or remain pluripotent.
The data retrieved can help
confirm or deny predictions
from computational models. 

For example, Ingo Roeder
used a system of differential
equations to model the wide
fluctuations observed in Nanog
expression in individual mouse
embryonic stem (ES) cells. The
work (unpublished) suggests
two possible explanations:
either cells themselves fluctu-
ate between two possible stable
states (induced by random per-
turbations—essentially noise);
or the state itself is oscillating
(such that the state is never really sta-
ble). There is no theoretical way to dis-
tinguish between these two scenarios
based on average population statistics,
Roeder says. Rather, experimentalists
will need to monitor temporal changes
in Nanog in individual cells over time. 

Monitoring individual cells over
time can also generate the cells’
genealogical trees. But, says Roeder,
“There is currently no set way to com-
putationally analyze those genealogical

trees.” So Roeder decided to get a jump
on that problem before collecting data.
Using a computer model of hematopoi-
etic stem cell organization, Roeder and

his colleagues simulated an array of
possible cell genealogical trees in silico.
The cells can self-renew, die, or differ-
entiate. To be realistic, the simulations

include random noise. 
The simulations showed that

changes in the growth conditions (in
silico) altered the shape of the genealog-

ical tree. The computer can distinguish
proliferating cells from cells in a steady
state or in decline, and can recognize
asymmetry. Going forward, the goal is

to determine whether different cell sce-
narios generate unique tree “signatures”
that a computer can spot. These will
have to be validated against the real

“One of the major advantages of computer modeling is that you
can try lots of different scenarios and then narrow down the

possibilities for explaining certain behavior,” Ingo Roeder says. 

Monitoring individual stem cells shows that they are heterogeneous. Here, the same set of cells is
stained for expression of the genes Oct4 (A) and Nanog (B), both known to be important tran-
scription factors for the maintenance of the stem cell state. The DNA was also stained with a blue
stain (C) and these three images overlain on one another (D), dramatizing the heterogeneity of the
cells. In particular, Nanog expression levels (red) differ substantially within the cells. Image cour-
tesy of Austin Smith. Reprinted with permission from Roeder, I. , and Radtke, F., Stem cell biology
meets systems biology, Development 136, 3525-3530 (2009).  
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genealogies of cells. “With the experi-
mental data, we will see the trees and
use the simulations to estimate back to
learn the underlying mechanism,”
Roeder says. 

For stem cell research, the benefits of
this work may still be a ways off. But
ultimately, Roeder says, “One of the
major advantages of computer modeling
is that you can try lots of different sce-
narios and then narrow down the possi-
bilities for explaining certain behavior.” 

IT’S FATE:  
Switches and Beyond

Many computer models of stem cells
focus on the question of fate: How does
the stem cell decide whether to remain
pluripotent or differentiate into anoth-
er kind of cell? “The most useful mod-
els recognize that decisions inside the
stem cell are collective decisions of
networks of interacting biological mol-
ecules,” says David Schaffer, PhD,
professor of chemical engineering, bio-
engineering, and neuroscience at the

University of California, Berkeley. So
modelers build networks from what
they know about interactions in the
stem cell and then set the models in
motion to see what happens.  

“A model is really a statement of
hypothesis that aggregates our knowl-
edge of how the system behaves,”
Schaffer says. “You’re either right or not
right. And when you compare the
model predictions to experimental
data, if you’re not right, then you know
you’re missing something. That then
motivates experiments to determine
what you don’t understand.” 

It’s often an iterative process,
Schaffer says. “The model summarizes
what we know but also guides experi-
mentation so we can best learn more
about the system experimentally.” 

Until fairly recently, it was difficult
to construct models of stem cells
because there weren’t enough data
available. But that is changing, Schaffer
says. Now, to build a model of a net-
work inside a stem cell, one can start

with information about networks in
other systems (such as in yeast, which is
well understood), hypothesize the
interactions that might be occurring,
and then mesh that with all kinds of
data being collected from stem cell sys-
tems, including protein expression
data, miRNA expression levels, protein
post-translational modifications, pro-
tein phosphorylation, signal transduc-
tion, and, increasingly, any or all of
these types of data as a function of time. 

In a 2004 paper, Schaffer and his col-
leagues created a model to explore the
dynamic behavior of the sonic hedge-
hog (Shh) gene regulatory network—a
network known to function as a cell fate
switch in certain contexts. The model
used differential equations to track the
rates of change in concentrations of
network participants as well as the rates
of protein synthesis and degradation.
The model showed that the system
functioned as a digital all-or-nothing
switch that is not easily reversed. 

In 2009, Schaffer’s team also mod-
eled the Notch signaling pathway,
known for its involvement in cell fate
decisions during development and
adulthood. They found that the Notch
system also acts as a bistable switch, but
they identified a factor that could
change the system into an oscillator.
Thus, the Notch system can be adjusted
to exhibit different behaviors depending
on the context. The work is currently
being validated experimentally. 

But these models do not necessarily
represent the absolute truth.  As so
often happens in science, new informa-
tion can come to light, requiring
changes in the model. In a 2006 paper,
Carsten Peterson, PhD, professor of
biological physics at Lund University in
Sweden, and his colleagues modeled
three key transcription factors involved
in embryonic stem (ES) cell self-renew-
al—Nanog, Sox2, and Oct4. The model
showed that the three could—on their
own—function as a bistable switch to
maintain stem cell pluripotency.  

Now, it appears that Oct4 activation
is just an early step in the process, trig-
gering the opening up of the chromatin
region around Nanog and several newly
identified transcription factors that play
a key role in the switch. “On the very
top you have these epigenetic things
happening,” Peterson says. “That adds
another dimension to the whole model-
ing perspective.” 

Besides extending the model to

This chart shows the population dynamics of proliferating (red) and quiescent (green) cells as they move
through three different scenarios: expansion, homeostasis, and terminal differentiation (i.e., dying off
over time). Characteristic genealogies for each scenario are shown below. To the human eye, these
genealogies are clearly different. Roeder and his colleagues sought to train a computer to spot distinct
tree signatures. Reprinted with permission from John Wiley & Co., Glauche, I., et al., A novel view on
stem cell development: analysing the shape of cellular genealogies, Cell Proliferation 42, 248-263 (2009).
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include epigenetics, Peterson says, they
are also trying to include mechanical
interactions that play a role in ES cell
differentiation and migration. “It turns
out that mechanics are not negligible,”
Peterson says.  

When ES cells are inside the egg,
some start to change into endoderm—
the cells that form an outer shell
around the inner ES cells. But initially,
the cells that are changing are “like salt
and pepper,” Peterson says. “They are
all over the place.” To understand how
the endoderm develops, he added dif-
ferent adhesion properties to the two
types of cells in his model. And the
computational result matched the
experimentally observations: the endo-
derm cells move out, leaving the stem
cells inside. Friction alone, without any
influence from chemical cues, was
enough to properly separate the two
different types of cells. The next step
will be to determine whether ES and
endoderm cells actually exhibit differ-
ent adhesion qualities and what genes
cause those traits to develop. 

Peterson and his colleagues are also
modeling aspects of the hematopoietic
stem cell system and finding interest-
ing features that resemble locks. After
the straightforward PU.1/GATA1
switch has been activated (described
above), the hematopoietic system gets
more complex. “Here’s where a mathe-
matical model can help,” says
Peterson.  His model, published in
2009 in PloS Computational Biology,
suggests that downstream genetic play-
ers interact with one another and also
send feedback to the PU.1/GATA1
switch, preventing changes in previ-

ously made decisions. “There have to
be locks on the way down to make sure
it’s irreversible,” he says. And it’s cru-
cial to understand that irreversibility if
researchers want to induce hematopoi-
etic stem cells from differentiated
blood cells. 

NEIGHBORS 
MATTER:
Modeling Stem 
Cell Interactions

Many models of stem cell switches
look at the circuitry inside the switch
without considering what threw the
switch in the first place. But stem cell-
s’ fate decisions depend, at
least in part, on changes in
the environment. Zandstra
and his colleagues are model-
ing one key environmental
component—cell-cell interac-
tions—within the hematopoi-
etic system.  

The hematopoietic system is
quite remarkable. Every day,
hematopoietic stem cells in the
bone marrow produce tens of
millions of red blood cells as
well as an appropriate number
of white blood cells and
platelets—all the different cel-
lular components of blood. To
be so reliable day in and day
out, researchers believe the sys-
tem must—at least in part—be
tightly controlled by soluble
factors secreted by blood cells. Because
the process is poorly understood,
researchers have a hard time growing
hematopoietic cells in culture—a pre-
requisite to further research. 

In a 2009 paper, Zandstra’s team
made an initial foray into modeling
how cell-to-cell interactions control
hematopoietic self-renewal and differ-
entiation. “We’ve built theoretical
models of feedback systems where stem
cells give rise to progeny through a
series of fate decisions,” he says. At this
point, he says, “We’re starting to under-
stand the structure and connectivity of
the cell-to-cell networks and what
determines whether the stem cell pop-
ulation proliferates or differentiates.” 

In addition, Zandstra’s team devel-
oped a way to test the model in a cell
culture system by removing different

cell types along the way—cutting out
various feedback loops. “This has
been very fruitful,” he says. “By
understanding the intercellular net-
works and controlling them, we can

“We’re starting to 
understand the structure 
and connectivity of the 

cell-to-cell networks and
what determines whether 
the stem cell population 

proliferates or differentiates,”
Zandstra says.

In this schematic of the Notch1-RBP-Jk-
Hes1 signaling network (left), each
arrow represents a term or event in the
differential equation model including
transcription, translation, mRNA and
protein degradation, nuclear import, TF
binding, receptor-ligand binding and
receptor processing. At right, a
schematic of the positive and negative
feedback loops of the Notch1-RBP-Jk-
Hes1 network. (-|) represents repres-
sion and (-.) represents activation of
target genes. Reprinted from Agrawal,
S., et al., Computational Models of the
Notch Network Elucidate Mechanisms
of Context-dependent Signaling, PLoS
Computational Biology, May 2009. 
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those with the greatest impact.
By understanding how stem
cells make decisions, we gain
the ability to control those
decisions. “You can’t get the
clinical outcomes without the
increased control,” he says. 

Schaffer agrees. “I really
view my job as measure,
model, manipulate,” he says.
“Once you have good models
of how cells are maintained as
well as transition or differenti-
ate, you can start to think
about how the various parts of
the network are druggable.”  !!

grow these cells far better
than you could before.” 

The underlying principles
in Zandstra’s model should be
applicable to stem cell systems
beyond blood. 

PREPARING 
FOR THE CLINIC 

Although computational
modelling of stem cells might
not directly lead to therapies
that treat Parkinson’s disease
or Alzheimer’s, Zandstra says,
the models help weed through
potential solutions to find
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Someday soon, pharmaceutical companies will be converting
stem cells into liver cells they can use for testing drug toxicity,
says Loring. “It’s the wave of the future.  There’s no better way to
test a drug on liver than to grow liver cells in a dish and dump the
drug on them.”  This approach could help drug companies better
understand variations in the way people react to drugs. But
there’s a problem looming, Loring says:  Almost all of the preclini-
cal work with embryonic stem (ES) cells uses Caucasian cell lines. 

In a 2009 paper published in Nature Methods, Loring and
her colleagues used a
Bayesian analysis of ES
cell genotypes to deter-
mine the ethnic back-
ground of existing ES
cell lines. What they
found—the dominance
of Caucasian cell lines—
springs from the cells’
source in in vitro fertil-
ization (IVF) clinics.
“Embryonic stem cells
made from embryos dis-
carded at IVF clinics are
almost all Caucasian
and East Asian,” Loring
says. There are almost
no African stem cells,
she says. “So our soap-
box is that if the phar-
maceutical industry is
going to start using
pluripotent stem cells, it
needs to incorporate
diversity.”  

“This is more important than anything I’ve ever done,”
Loring says.  If all the preclinical work is done on Caucasian
cell lines, then the pharmaceutical companies might release
drugs that are toxic to some people and don’t work on oth-
ers. Loring hopes her paper puts some pressure on pharma-
ceutical companies. “They need early assays for toxicity that
capture the diversity of people.” The Nature Methods paper
took a first step in that direction, publishing the creation of
an induced stem cell line from skin cells of a Yoruba
(Nigerian) individual. 

STEM CELL DIVERSITY AND DRUG TESTING

“Once you have good models
of how cells are maintained

as well as transition or 
differentiate, you can start to
think about how the various

parts of the network are
druggable,” Schaffer says. 

This map
shows the
geographic
location of the
source institution
(geographic origin) and
the ethnic origin for 52
pluripotent embryonic
stem cell lines. Reprinted
with permission from
McMillan Publishers,
Ltd., Laurent, LC, et al.,
Restricted ethnic diversity in human pluripotent
stem cell lines (both embryonic and induced),
Nature Methods 7, 6-7 (2010).
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The cell is like our financial 
system: Even if you have a diagram of all
the complex interactions going on, you
still cannot intuit how the whole system
will react when perturbed. Indeed, 
the cell’s unpredictable responses to 
manipulation sometimes resemble 
the unanticipated magnitude of system
failure seen in the 2008 financial crisis,
says Gary An, MD, associate professor 
of surgery at Northwestern University
Feinberg School of Medicine.  >

By Kristin Sainani, PhD

THE CELL
IN2010:
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With hundreds of trillions of atoms,
thousands of proteins, and a host of
tiny organs, motors, and highways that
often interact in non-linear ways, the
cell is a rich target for computational
modeling. But modelers and cell biolo-
gists haven’t traditionally worked
together. “In the past I think a lot of
really interesting mathematical model-
ing was going on, but I’m not sure how
closely tied it was to the biologists’ con-
sciousness,” says Steven Altschuler,
PhD, associate professor of pharmacol-
ogy at Southwestern Medical School.  

This is slowly changing. “Now is a
time when both sides are realizing it’s
a good thing to get together. And I
think a lot of progress is happening,”
Altschuler says. 

Greater integration stands to benefit
both cell biology and biomedical mod-
eling alike.

Cell biologists need modeling to
understand how genes, proteins, and
pathways work together to make the
cell go. “To me, it’s no longer possible
to even imagine thinking about these
problems properly without using mod-
els as a crutch,” says Ed Munro, PhD,
assistant professor of molecular genetics
and cell biology at the University of
Washington. “There are simply too
many moving parts and too many inter-
actions for your brain to synthesize.” 

Even with relatively simple models,
Munro says his intuition about what
will come out of a simulation is wrong
much of the time. “I’m often complete-
ly surprised,” he says. “That tells me
that if we’re limited to assembling ver-
bal explanations for the things we
study, then we’re in trouble.”

At the same time, modelers need cell
biologists. Traditionally, modelers have
focused on either the molecular level
(genes and proteins) or the macro level
(tissues and organisms). But some are
arguing that when it comes to multi-
scale modeling, it makes the most sense
to start in the middle—at the cell level.
After all, molecular interactions coa-
lesce at the level of the cell, and tissues
are just a bunch of cells acting together.

“When we’re thinking about multi-
scale systems in biology, many people
either start at the very smallish level or
they start at the tissue level; I think
very few people have thought of the
cell as the main point. But the cell is
the basic unit of life,” says Jenny
Southgate, PhD, professor of molecular
carcinogenesis at the University of

York in the United Kingdom. 
What follows are examples of how

cell-centered models are adding funda-
mental insights into our understanding
of cell behaviors—including how cells
divide, eat, sense, move, cooperate,
travel, and battle injury—as well as
helping modelers bridge from the
molecular to the tissue and organism
levels. These models range in scale
from single-cell to multi-cell, but all
have implications for the basic life sci-
ences as well as for diseases, such as
cancer, heart disease, and sepsis. 

BEYOND BIOCHEMISTRY
Modelers have traditionally treated

the cell as a bag of chemicals, focusing
on signaling networks, such as positive
and negative feedback loops. These
models have led to important insights.
But the biochemistry isn’t happening
in a vacuum; reactions unfold within,
and are influenced by, the cell’s hetero-
geneous physical environment. To truly
understand cell behavior, you have to
account for the physics and geometry. 

“People normally think about bio-
chemical networks and pathways. That’s
what systems biology is about. But, in
addition to that, there’s polymer physics,
membrane transport, electrophysiology,
electrical events, cell mechanics, and
the forces in adhesion,” says Leslie M.
Loew, PhD, professor of cell biology and
of computer science and engineering at
the University of Connecticut Health
Center, and one of the creators of
Virtual Cell, a well-known cell model-
ing program (www.vcell.org).

“When people say that they want to
model the cell, they’re mostly talking
about what’s happening in time; very few
modelers try to think about what’s hap-
pening in space. And not only space, but
also mechanical processes, like forces
and movements,” says Alex Mogilner,
PhD, professor of neurobiology, physiol-
ogy and behavior and of mathematics at
the University of California, Davis.

But incorporating space and
mechanics is challenging, Mogilner says.
Several software programs can model
simple diffusion in a relatively nice
geometry, but that doesn’t capture the
reality of the cell. “The inside of the cell
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“When we’re 
thinking about

multi-scale systems
in biology, many

people either start
at the very 

smallish level 
or they start at 
the tissue level; 
I think very few

people have
thought of 

the cell as the 
main point. 
But the cell 
is the basic 

unit of life,” says 
Jenny Southgate.

MODELING 
THE CELL: 



conceptual models that describe the
cell in caricature, Mogilner says.
Though it may seem that more detail
would always be better, in fact there is
a tradeoff between complexity and
insight. All-inclusive models have a

direct correspondence with experiment
and tend to be more accessible to biol-
ogists and physicians, but they may add
little to overall understanding.

“You can take biology, which is a big
black box, and turn it into an accurate

is cluttered with all sorts of debris—
cytoskeleton, organelles, and other stuff.
In addition to diffusion, there’s also
directed transport by molecular motors.
Plus, diffusion may happen in the bulk
of the cytoplasm or in the plane of the
membrane. It’s very difficult,” Mogilner
says. Virtual Cell has developed the abil-
ity to model diffusion along a membrane
and in complex geometries. These capa-
bilities are state of the art.

Spatial modelers make other simpli-
fications as well, such as modeling in
two dimensions or treating cells as per-
fect circles. But some are trying to
bridge to 3-D or account for versatile
and changing cell shapes. Virtual Cell
allows continuum models in 3-D; and
another cell modeling program, MCell
(www.mcell.psc.edu), can do discrete
stochastic simulations in 3-D.

As modelers account for more and
more of the cell’s physical realities, it
seems that, by necessity, models will get
more complex and detailed. This isn’t
always the case, however. Models can
range from all-inclusive models that
attempt to perfectly mimic the cell to

Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures 19

Modeling in Space. Programs like Virtual Cell allow researchers to
model the spatial realities of the cell, such as diffusion on a mem-
brane. This Virtual Cell simulation shows lipid signaling and diffusion
on a protrusion of membrane on a neural cell (called a “spiny den-

drite”). Courtesy of Sherry-Ann Brown, University of Connecticut
Health Center; published in: Brown, S., F. Morgan, J. Watras, and L. M.
Loew. 2008. Analysis of phosphatidylinositol-4,5-bisphosphate sig-
naling in cerebellar Purkinje spines. Biophysical Journal 95:1795-1812.

“When people say that they want to
model the cell, they’re mostly talking
about what’s happening in time; very

few modelers try to think about
what’s happening in space. 

And not only space, but also
mechanical processes, like forces and

movements,” says Alex Mogilner.
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use some kind of error-correction
mechanism. 

They simulated a number of plausi-
ble mechanisms but “so far, what we are
finding is almost nothing can explain

totally fast and accurate assembly,”
Mogilner says. Their model provides
constraints for researchers exploring
alternative error-correction mecha-
nisms, he says. 

Once microtubules have accurately
captured the chromosomes, they line
them up evenly at the equator of the
nucleus. What’s unclear is how the
microtubules, which start at highly var-
ied lengths, manage to even themselves
out. “The question is: how do you har-
ness the wildness of the microtubules,
which would otherwise be inclined to
grow and shorten very randomly and
willy-nilly?” says David Odde, PhD,
professor of biomedical engineering at
the University of Minnesota.

In a 2008 paper in Cell, Odde and
his colleagues used a Monte Carlo sim-
ulation to predict that an unidentified
molecular motor must regulate micro-
tubule length. Simulations showed
that deleting this protein would cause

microtubules to grow too long
and uneven, and overexpress-
ing it would cause micro-
tubules to grow too short and
to cluster near the poles of the
nucleus. His graduate student,
Melissa Gardner, then identi-
fied the protein experimental-
ly: kinesin-5, a motor protein
not previously recognized as a
player in microtubule assembly. 

The model shows that
kinesin’s mode of action is
really simple, Odde says. The
longer a microtubule becomes,
the more places kinesin—
which promotes disassem-
bly—can attach to. “It evens
the game out. It just keeps
penalizing the ones that keep
getting out ahead of the oth-
ers,” Odde says. 

The finding has implica-

simulation, which in itself has become
a big black box,” Altschuler says. In
contrast, he says, conceptual models
“give you a glimpse into something
really fundamental.”

HOW A CELL DIVIDES: 
HARNESSING THE WILDNESS

OF MICROTUBULES
When a cell divides, it assembles an

intricate piece of machinery called a
“mitotic spindle” that physically sepa-
rates the chromosomes. Chromosomes
are pulled apart by filamentous rods,
called microtubules, anchored on
either side of the nucleus, at the cen-
trosomes. One of the fundamental
questions of mitosis is how this spindle
assembles. Mathematical modeling has
been instrumental in answering this
question because it is difficult to exper-
imentally follow and perturb individual
microtubules, Mogilner says. 

Microtubules are dynamic polymers
that can rapidly shed or add proteins to
their unanchored end. It’s known that
microtubules find the chromosomes
through a “search-and-capture”
process: they randomly grow and shrink
from the centrosomes until, by
chance, they encounter a chro-
mosome and hook it. 

In an influential paper four
years ago, Mogilner and his
colleagues showed that the
process cannot be completely

random. They built a comprehensive
model of spindle assembly, including
hundreds of microtubules (represented
as rods that grow and shrink in differ-
ent directions) and tens of chromo-

somes (represented as randomly orient-
ed cylinders dispersed throughout a
spherical nucleus). Their simulations
showed that a purely random search-
and-capture would not be fast enough
to assemble the spindle in the 15 to 20
minutes it takes the cell. Instead, a
“biased” search-and-capture was
required—molecular motors direct
microtubules to grow in areas where
they are more likely to bump into chro-
mosomes. 

In a follow-up paper in PNAS in
2009, Mogilner’s team ran simulations
that probed not only the speed of
biased search-and-capture, but also its
accuracy. The result: there were errors
in a whopping 70 percent of micro-
tubule-chromosome attachments (for
example, when a chromosome is cap-
tured by only one microtubule or by
two microtubules from the same pole).
In real life, cell division is highly accu-
rate. So this revealed that the cell must

Search and Capture. Visualization
of a computer simulation of
microtubules (growing in blue,
shortening in red, captured in
green) searching for chromo-
somes during mitotic spindle
assembly. Courtesy of: Raja Paul
and Alex Mogilner, University of
California, Davis. Reprinted from
Paul, R., et al., Computer simula-
tions predict that chromosome
movements and rotations acceler-
ate mitotic spindle assembly with-
out compromising accuracy, PNAS
106(37) 15708-15713 (2009). 

Conceptual models “give you a glimpse into something 
really fundamental,” Steven Altschuler says.
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tions in cancer, as it means that anti-
kinesin drugs—which are already in
clinical trials—could help control
tumor growth by disrupting a critical
step in mitosis. 

HOW A CELL EATS:
PROTRUDING HANDS

AND FINGERS
Single-cell organisms obtain nutri-

ents via a process called cell eating, or
phagocytosis. Using its cytoskeleton—
dynamic filaments including actin and
microtubules—the cell wraps itself
around a particle until it’s fully
engulfed. Cells of the immune system
use the same process to destroy bacte-
ria and yeast and to clean up debris.
“Without the phagocytosis of yeast,
you would be fermented within a day
or so,” says Micah Dembo, PhD, pro-
fessor of biomedical engineering at
Boston University.

“Though the components of cell
eating have been well worked out,
mechanistic explanations are lacking,”
Dembo says. “We want to know: what
are the forces that the cell is producing?
How is the cell pushing? How hard is it
pushing? Where is it pushing? Is it
pulling? How does it orchestrate its lit-
tle hands and fingers to do something
like phagocytosis?” 

Dembo has built a model of phago-
cytosis for neutrophils (a type of white
blood cell) in collaboration with
Volkmar Heinrich, PhD, an associate
professor of biomedical engineering at
the University of California, Davis,
and Marc Herant, PhD, a research
assistant professor of biomedical engi-
neering at Boston University. Rather
than model the cytoskeleton compo-
nents as individual proteins or rods,
“we believe at its basis, the cytoskele-
ton is just kind of a gooey glop,”
Dembo says. “It’s got intermediate fila-
ments in there; it’s got actin in there;
it’s got microtubules in there; it’s got
water; it’s got endoplasmic reticulum;
it’s got big chunks like granules and
lysosomes; and the nucleus is a big rock
in there. We think of it as a sludge,
which, to a good approximation, can
be regarded as a creeping fluid.” They
use a system of partial differential
equations to keep track of the forces
exerted by and on this viscous fluid as
it moves within the cell. 

In a paper in the Journal of Cell
Science in 2006, Dembo’s team reported
that neutrophils use two key interfacial

forces to eat a bead: a protrusive force
and an intrusive force. The cytoskele-
ton and the cell membrane repulse
each other (the protrusive force), caus-
ing a gap to open between them; as
cytoskeleton polymerizes in the gap,
this causes fingers of cytoplasm to jet

out around the bead. At the same time
the cytoskeleton and cell membrane
attract each other (the intrusive force),
causing cytoskeleton to build up near
the membrane; as this excess cytoskele-
ton depolymerizes, this sucks the bead
into the cell. 

Virtual Cell Eating. A. Experimental
images and corresponding computer
simulation of a neutrophil engulfing a
bead. B. A close-up of the simulation:
the arrows show the flow of the
“sludgy” cytoskeleton from the point of
view of the bead (top) and of the cell
(bottom). Adapted with permission from:
Marc Herant, Volkmar Heinrich and Micah
Dembo. Mechanics of neutrophil phagocy-
tosis: experiments and quantitative mod-
els. Journal of Cell Science 119: 1903-1913
(Figures 3 and 5, http://jcs.biologists.org/
cgi/content/abstract/118/9/1789).

“We want to know: 
What are the forces that 

the cell is producing? 
How is the cell pushing? 
How hard is it pushing? 

Where is it pushing? Is it pulling? 
How does it orchestrate 

its little hands and fingers to do 
something like phagocytosis?” 

Micah Dembo says.
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Surprisingly, when the same neu-
trophil eats a yeast particle, it loses its
ability to generate the intrusive force.
“It has to slowly wrap its fingers around
the yeast without any sucking in

motion,” Dembo says. “So the cell is
trying to make a big enough hand, and
it will eventually manage to do that.
But in the meantime the yeast is getting
pushed away [by the protrusive force] as

the cell is trying to grab it.” The
researchers don’t really know why this
happens, but perhaps the yeast particle
has a defense mechanism that blocks
the intrusive force.

“I love this kind of thing because
until you model it and think about it,
you never realize how clever the cell is
and all the problems that the poor cell
is facing to do these things,” Dembo

says. “Without the modeling, you
would just be looking at pictures of
cells eating things.” 

HOW A CELL SENSES:
FEELING THE ENVIRONMENT

The cell’s environment plays a criti-
cal role in directing cell behavior. In a
landmark 2006 paper in Cell,
researchers showed that the mechani-
cal properties of the environment
alone—just its elasticity, nothing bio-
chemical—can influence cell fate: for
example, a stem cell grown on a very
stiff substrate becomes a bone cell
whereas the same stem cell grown on a
soft tissue becomes a brain cell. Follow-
up experiments showed that substrate
stiffness also directly affects cell shape,
motility, growth, and malignancy. “The
fundamental question is: how do they
sense the stiffness?” Odde says. 

Cells bind to and interact with their
environments (typically, the extracellu-
lar matrix) through proteins called
integrin receptors. These receptors clus-
ter in the cell membrane to form “adhe-
sion complexes” that link the cell’s
actin cytoskeleton to the matrix and
play a key role in cell movement and
cell-to-matrix communication.

In a December 2009 paper in PLoS
Computational Biology, Daniel A.
Hammer, PhD, professor of bioengi-
neering and of chemical engineering,
and his colleagues, revealed a “simple
calculation that shows why substrate
elasticity affects the biology so strong-
ly.” They modeled the cell membrane
and the substrate as lattices of springs
and the integrins as individual springs
that can diffuse along the cell mem-
brane, cluster with each other, bind to
the substrate, and pull on the mem-
brane and substrate. 

In simulations, they found that as
you make the substrate stiffer and
stiffer, it drives receptor clustering. “If
the receptors remain distributed, then
they have to pull up the substrate at
many locations, and that’s energetically
very unfavorable on stiff surfaces,”
Hammer says. “What they’d rather do is
get together in a cluster and then pull
up the surface just in small regions.”

The extent of clustering is directly
correlated with cell activation. “I think
the effect of substrate mechanics on cell
biology is nothing more than this phys-
ical chemistry of driving clustering in
these receptor patches,” Hammer says. 

The work has important implica-

“Until you model it and think about it,
you never realize how clever the cell is 

and all the problems that the poor cell is 
facing to do these things,” Dembo says.

Surrounded! This shows a 3D simulation of a neutrophil engulfing a bead and the corresponding
experimental images. Courtesy of: Marc Herant, Boston University; Volkmar Heinrich, University
of California, Davis; and Micah Dembo, Boston University.
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tions for cancer, because tumors are
stiffer than normal tissues; and this
stiffness promotes malignancy and
growth. For example, breast tumors get
stiffer and stiffer as they progress. “It
used to be thought that this was an
effect of breast cancer, but now people
are starting to think that it might be
one of the causative determinants of
breast cancer,” Hammer says. 

In a 2008 paper in Science, Odde and
his colleagues similarly used modeling
to explore how the cell senses stiffness
as it moves across a substrate. They
modeled actin filaments as individual
rods, and integrins and substrate mole-
cules as individual springs. They found
that more springy substrates can stretch
and move with actin as the cell
moves, so the clusters of inte-
grin—which act like motor
clutches—remain engaged
longer. But less springy sub-
strates have little give, and
thus the clutches slip and dis-
engage more frequently. 

“So, cells, through that
motor clutch system, actually
have the innate ability to sense
stiffness. How they actually
read it out for these decisions
that they make is now the next
problem. And we’re moving on
to that and trying to apply it to
brain cancer cells and how
they migrate,” Odde says. 

HOW A CELL MOVES:
CRAWLING ON SUBSTRATES

Cells move by crawling along sub-
strates, propelled by actin filaments—
which add proteins to one end and shed
them from the other (called “tread-
milling”). Actin polymerizes at the lead-
ing edge of the cell, pushing forward a
protrusion of cytoplasm, which grabs
hold of the substrate via clusters of inte-
grins. Then the back of the cell detaches
from the substrate and is pulled forward
by the contraction of the actin cytoskele-
ton. Though the general principles are
well understood, specific details are lack-
ing; for example, it’s unclear what deter-
mines a moving cell’s shape and speed. 

Mogilner’s team devised a simple

model to explain movement in fish kera-
tocytes, fan-like cells that are among the
fastest moving animal cells. “It turned out
that a very simple mechanistic model,
with very few equations, describes every-
thing,” Mogilner says. As actin polymer-
izes at the leading edge, it pushes on the
cell membrane, causing tension all along
the membrane (which does not stretch).
This force, in turn, pushes back on the
growing actin filaments. Actin density is
highest in the middle of the leading edge,
so the force per filament is lowest here,
and actin grows rapidly. Actin density is
lowest at the sides, so the force per fila-
ment is high here, which restricts poly-
merization. The work was published in
Nature in 2008.

The model predicted that the high-
er the ratio of actin in the center to
actin in the sides, the more canoe-
shaped the cell would be and the faster
the cell would move. These predictions
were borne out by experiment.

“The equations are very enlighten-
ing because they connect the biochem-
istry (the kinetics of actin cytoskele-
ton) with the geometry (the shape) and
with the physics (the forces and move-
ments),” Mogilner says. “So I think this
is a very cool thing.”

Like Mogilner’s model, most models
of cell movement are two dimensional.
This is a problem, because 3-D is not
simply an extension of 2-D, says
Muhammad Zaman, PhD, assistant pro-
fessor of biomedical engineering at
Boston University. In 2-D models, the
cell interacts with the substrate only on
one side. But when a cell moves in the
body, it interacts with the extracellular
matrix on all sides. “In reality a cell does
not have a top or a bottom or a ventral
or a dorsal surface; reactions happen all

Sensing Stiffness. LEFT: This computer simulation provides one possible explanation for how
cells sense the mechanical stiffness of their environment. As myosin motors pull on actin
bundles, molecular clutches (modeled as springs) engage and disengage with the substrate
(also modeled as a spring). Stiff substrates have little give, and thus the clutches frequently
slip and disengage; soft substrates can stretch and move with actin, so the clutches remain
engaged longer. RIGHT: The motor-clutch model was tested against a series of experiments;
for example, cell traction can be measured by labeling neurons (green) and soft substrates
with fluorescent beads (red). Chan CE and Odde DJ, Traction Dynamics of Filopodia on
Compliant Substrates, Science; 322: 1687-1691 (2008). Reprinted with permission from AAAS.

Cells on the Go. Computer simulations of motile fish keratocyte cells. The color represents actin density
(red/hot=high; blue/cold=low) and the arrows represent the flow field. The cell on the left is more canoe-
shaped and moves faster due to the pattern of actin flow, whereas the cell on the right is rounder and
moves slower. Courtesy of Raja Paul and Alex Mogilner, University of California, Davis.
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prediction appeared in PNAS in 2006. 
Their work may have practical

implications for cancer. For example,
there is a relationship between the col-
lagen density in a woman’s breasts and
her chance of developing invasive
breast cancer. It may be that, at opti-
mal collagen densities, rapid cell
movement increases the potential for
invasion and metastasis. 

BRIDGING TO TISSUES
AND ORGANISMS

The aforementioned models
focus on the behaviors of single
cells. But cells rarely act alone.
To truly understand cell biology
and to bridge to tissue and
organism biology, multi-cell
models are needed. 

Though several approach-
es for multi-cell modeling are
available, agent-based mod-
eling is gaining momentum.

Unlike traditional continuum
models, which treat groups of cells

as homogenous masses, agent-based
models treat cells as individual
autonomous entities. Besides capturing
the heterogeneity of cells and their inter-
actions, agent-based models facilitate
collaboration between biologists and
modelers. 

“The cell really is an autonomous
unit. It lends itself very well to agent-
based modeling, where you have the
one-to-one relationships between the
computational model and the actual
cell,” says Southgate, a biologist who
works closely with modelers. “For cell
biologists, that’s important, because you

over the surface,” Zaman says. Thus the
relevance of 2-D models for biological
processes in vivo “is very limited if not
completely inaccurate,” he says. “More
often than not, we find that the 2-D par-
adigms break down completely.”

Unfortunately, most experiments are
conducted in 2-D—on glass
or plastic plates—which
creates a severe bot-
tleneck for would-
be 3-D modelers.

“Modeling and experiments go hand in
hand. It’s very hard to publish or think
about 3-D if you don’t have any real
data to compare it to,” Zaman says. To
counter this problem, Zaman’s team
measures cells moving through 3-D gels
derived from in vivo sources.

Using these data, they built the first
3-D model of cell migration, a compre-
hensive, multi-scale model. At the low-
est level, they zoom in on individual
snippets of proteins in the cell and
matrix, solving Newton’s force equa-
tions for these snippets. “So you’re look-
ing for the right conformations that will
bind, that will attach, that will stretch,
things like that,” Zaman says. Then
they zoom out, feeding relevant infor-
mation from the lower level into higher
level models that solve similar force
equations for proteins, protein com-
plexes, or whole cells (with continuum
rather than stochastic equations). Grid
computing provides the computational

power to run such large simulations.
In a 2005 paper in Biophysical

Journal, Zaman’s team explored how
altering the 3-D environment affects
cell velocity. Others had predicted that
if you increase ligand density in the
matrix—that is, give integrins more
points where they can attach—this will
give the cell a better grip and allow

swifter motion. But, surprisingly,
they showed that there is an

optimal ligand density,

after which speed decreases. At this
point, the back of the cell experiences
difficulty detaching, creating drag.
“That was counterintuitive, but we
showed that experimentally indeed it
was the case. And the match was not
only qualitatively accurate, but also
quantitatively accurate,” Zaman says.
The validation of their computational

“The cell really is an autonomous unit.
It lends itself very well to agent-based

modeling, where you have the 
one-to-one relationships between 

the computational model and 
the actual cell,” says Southgate.

3D Obstacle Course. 
Computer rendition of a 3D extracellular matrix.
The red fibers are collagen fibers that surround the cell; the cell must navigate through
these during migration and invasion. Courtesy of Muhammad Zaman, Boston University. 

MODELING 
MANY CELLS: 
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can immediately see the relationship
between the modeling and the cell.”

Rod Smallwood, PhD, professor of
computational systems biology at the
University of Sheffield in the United
Kingdom, agrees. “Because you can talk
about a computational object as if it was
a physical object, this seems to make
the discussions with cell biologists a lot
easier. It seems much more intuitive to
be able to talk about cells as if you have
physical objects interacting with each
other rather than to talk about sets of
differential equations,” he says. 

Agent-based cell models also fill an
important and largely untapped niche
in multi-scale modeling: the middle-
out model. The models can easily
embed molecular-level modules, such
as signaling networks—allowing them
to scale down; at the same time, the
collective behavior of cells falls right
out of the simulations—allowing the
models to scale up. 

HOW CELLS COOPERATE:
GROWING INTO TISSUES
Cell cooperation plays a key role in

promoting tissue growth during devel-
opment and inhibiting it later in life.
Cells bind to and interact with each
other through surface receptors called
cadherins. Mutations in the cadherins

have been linked to cancer.
Southgate’s team studies cell-

to-cell interactions in human
bladder epithelial tissue aided by
agent-based modeling. In their
model, rules govern whether
each cell bonds to other cells,
grows, divides, migrates in two
dimensions, or dies. For exam-
ple, each cell’s probability of
binding to its neighbor is pro-
portional to the local calcium
concentration. The local signal-
ing milieu is determined by a
series of mathematical models
linked to the agent-based model.
“We often adopt other people’s
pathway models, deriving rules
that we then incorporate into
the agent-based models,”
Southgate explains. 

In a 2010 paper in the
Journal of Theoretical Biology,
Southgate’s team introduced
anti-social cells—cells lacking
functional cadherin—into their
models to see how they would
influence normal cells and
affect population behavior. In
some situations, just a few anti-
social cells could influence the
growth of the entire popula-
tion. The model illustrates one
way that cancerous cells can
disrupt the growth behavior of
normal tissue. 

Cell cooperation is also
important in wound healing.
To heal a wound, cells migrate
into the rift and multiply to fill
the gap. The process is gov-
erned by both cell-to-cell and
environment-to-cell signaling. 

Smallwood and his col-
leagues are working out the
details using 3-D, multi-scale,
agent-based models. The
agents are cells that can bond, migrate,
divide, or differentiate. External mod-
ules determine cell signaling and
resolve the forces between cells. “So
there are models of particular cell sig-
naling pathways that others have creat-
ed that you can download. The func-
tions that control cell transitions can
be culled from these external models,”

Smallwood says. “Things move in time
steps and at the end of each time step,
the forces are resolved and the position
and size of the cell is updated.” To make
the calculation computationally
tractable, they model the behavior of
10,000 cells—just a fraction of the mil-
lion cells involved in wound healing,
but enough to capture the fundamental

Anti-Social Cells. These bladder epithelial cells are labeled with a fluorescent antibody to
E-cadherin (green), with nuclei stained blue. The top panel shows the normal pattern of E-
cadherin concentrated to junctions between cells, whereas cells in the bottom panel have
been genetically modified to disrupt E-cadherin and create anti-social cells.  Courtesy of
Jenny Southgate, University of York.

Incomplete Repair. An agent-based simulation that
shows why wounds greater than 2 centimeters
across cannot heal spontaneously. Different colors
represent different cell types: blue cells are ker-
atinocyte stem cells; they change to light green as
they migrate and proliferate and then to dark green
as they differentiate. When the wound (red) is too
big, the cells differentiate and stop moving before
they can fill the gap. From: Tao Sun, Salem Adra, Rod
Smallwood, Mike Holcombe, Sheila MacNeil.
Exploring hypotheses of the actions of TGF-β1 in
epidermal wound healing using a 3D computational
multiscale model of the human epidermis. PLoS ONE
4(12): e8515. doi:10.1371/journal.pone.0008515.
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putational models. You can actually
follow an individual monocyte and say
‘hey, where did you come from?’” 

HOW CELLS
BATTLE INJURY: 

TESTING DRUGS IN SILICO
A major insult to the body, such as

an overwhelming infection or injury,
can cause a condition called sepsis:
The immune system goes into over-
drive, leading to collateral damage of
otherwise normal tissue, subsequent
organ failure, and death. In the 1990s,
researchers reasoned that since certain
cytokines incite immune cells, admin-
istering anti-cytokine drugs would
cure sepsis. But they were wrong. “It
turns out that none of the drugs
worked, and some of them actually
hurt people,” says Gary An, who is a
trauma surgeon and ICU doctor at
Northwestern University Feinberg
School of Medicine.

Frustrated by these failures and the
lack of effective treatments for his sep-

biology, Smallwood says.
In a paper in press with PLoS

Computational Biology, Smallwood’s
team used simulations to explain, for
the first time, why wounds wider than
two centimeters cannot heal sponta-
neously. The reason: cell-to-cell sig-
naling drives the cells to first start
migrating and then to differentiate;
once they differentiate, they can no
longer move. If the distance the cells
have to migrate is too great, they dif-
ferentiate before they have filled the
gap. “If you can’t move on any more,
you’re not going to heal. So that’s quite
interesting. You can actually see the
critical reason why the wound doesn’t
heal,” Smallwood says. 

This suggests that it might be possi-
ble to get large wounds to heal if you
could override the cells’ differentiation
rules, he says. 

HOW CELLS TRAVEL:
TRAFFICKING IN

THE BLOODSTREAM
When the body is injured or invad-

ed, immune cells travel through the
bloodstream to the site of injury. They
exit the bloodstream through a precise
set of steps: first, they roll along blood
vessel cells, then they halt to a stop,
and, finally, they slide through the
blood vessel wall. The process is
orchestrated through adhesion mole-
cules on both the vessel cells and
immune cells (selectins and inte-
grins), as well as signaling molecules
called cytokines. A fundamental ques-
tion is how cells decide where to stop
in circulation. 

Shayn Peirce-Cottler, PhD, assistant
professor of biomedical engineering at
the University of Virginia, studies
immune cell trafficking with agent-based
computational models. Cells drift,
adhere, roll, stop, or enter tissues based
on concentrations of simulated
cytokines and adhesion receptors. The
cells are embedded within a simulated
microvascular network—complete with
pressure, flow velocities, and wall shear
stresses—that shuttles cells around the
body. It’s a complex system. The
researchers have to keep track of the
cells in time and space, monitoring the
state of hundreds of chemokines and cell
surface receptors as well as the cells’
behaviors, Pierce-Cottler says. The mod-
els are two dimensional, since moving to
3-D would make them computationally
intractable at this point, she says.

Peirce-Cottler’s team is exploring
the build up of plaques in the arteries
(arteriosclerosis). Because inflamma-
tion is a major contributor to arte-
riosclerosis, it turns out that the traf-
ficking of immune cells (particularly
monocytes) to plaques plays a critical
role in their initiation, progression,
and eventual rupture. Peirce-Cottler
and others believe that microvessels—
the small blood vessels that feed into
large vessels—may be an important
conduit of monocytes to plaques. They
are using simulations to tease out the
relative contribution of monocytes
from the microcirculation versus the
macrocirculation. 

“That’s hard to quantify experimen-
tally, because you need to have a system
where you’re tracking individual cells
in vivo and watching to see, when a
monocyte shows up in a plaque, where
does it come from. And technically
speaking, we just don’t have the tools
to be able to do that,” Peirce-Cottler
says. “That’s the great thing about com-

Traffic in the Bloodstream. Agent-based models in conjunction with in vivo experimental
models are used to study the recruitment of circulating cells in the microvasculature of
ischemic muscle. The left panel shows a confocal micrograph image of the macrovessels (yel-
low) and microvessels (blue and red) in mouse muscle; immune cells (monocytes) are stained
in green. The right side is a screenshot from an agent-based model of this same system.
Courtesy of Shayn Peirce-Cottler, University of Virginia.
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sis patients, An turned to computation-
al modeling “as a means of addressing
the bottleneck in translational
research.” It was clear that sepsis exhib-
ited complex behaviors that could not
be predicted through reductionism and
linear thinking alone, he says.
However, his path to computational

research had a significant hurdle. 
“I was not a computer science or a

math guy at all; I hadn’t taken anything
in those areas since high school. So the
computational bar was kind of high,”
he says. Fortunately, he discovered an
agent-based modeling toolkit called
StarLogo that was designed for teach-
ing kids, and thus was very intuitive. 

“The results of a cell biology paper
are: I take this cell; I stimulate it with
this particular compound that performs
this particular function; I then see how

the cell responds. Those sorts of behav-
iors can be converted to rules and com-
puter code for agent-based modeling
relatively straightforwardly.”

He built agent-based models of
sepsis and used them to run in silico
drug trials based on actual clinical
studies. The agents are the immune

and blood vessel cells at the blood-to-
vessel interface. The cells change
states based on cell-to-cell interac-
tions, the presence of mediators such
as cytokines, and the influence of
drugs. When enough of the blood ves-
sel cells are injured, then the simulat-
ed person dies. 

In a paper in Critical Care Medicine
in 2004, he simulated what would hap-
pen if you treated populations of in sili-
co patients with various anti-cytokine
drugs. He showed that mortality rates

were 30 to 40 percent, no better than
standard treatment. He also tested dif-
ferent combinations of the drugs
(which some had hypothesized were
needed to override redundancies in the
immune system), as well as various
doses and durations of treatment, but
nothing worked.

“By running the computational
models, you identify that the disease
state itself is very, very stable and resist-
ant to change,” he says. “When you
simulate the intervention, you get this
sort of pebble in the stream effect
where you might see a little bit of a
result initially, but the flow of the sys-
tem is such that it basically swallows up
your intervention and it doesn’t have
any effect.”

“System-level computational mod-
els are invaluable in identifying these
types of unexpected behaviors, and will
play a critical role in addressing the
challenges of developing effective ther-
apeutic interventions,” An says.

BRINGING MODELING
AND CELL BIOLOGY

TOGETHER
Despite these recent successes in

pairing cell biology and computation-
al modeling, the two fields remain
only loosely integrated. Breaking
down these barriers will take long-
term collaborations, Zaman says. For
example, his lab comprises half exper-
imentalists and half modelers. Yet, he
says, “I still see it in many of my stu-
dents that it takes a long time before
they can speak a common language.” 

“We need a more integrated envi-
ronment, not only for the computa-
tions to be more powerful, but also for
the experiments to be more probing
and much more quantitative,” Zaman
says. “I think the burden of responsibil-
ity is on both sides.” !!

“System-level computational models 
are invaluable in identifying these types 
of unexpected behaviors, and will play a
critical role in addressing the challenges 

of developing effective therapeutic 
interventions,” Gary An says

Sepsis Explosion. (Lower opposite page and below) These serial screenshots from a 2-D
agent-based simulation of inflammation and sepsis follow the progression from infec-
tion, to initial immune response, to cell death and the start of healing. Upon infection
with bacteria (gray areas), the healthy blood vessel cells (red) become damaged (dark
red) or die (black). Gradually, inflammatory cells (white neutrophils) gather near the bac-
teria and become activated (yellow or other colors). The inflammatory cells gradually
clear the bacteria, allowing healing to occur. Courtesy of Gary An.
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OpenCL is a cross-platform language for doing
general purpose computation on graphics pro-
cessing units (GPUs) and other massively paral-

lel architectures. One of its most interesting features is
the fact that the compiler is built into the runtime. This
means that while a program is running, it can program-
matically generate the source code for new computa-

tional kernels, compile them, and execute them at full
speed on the GPU.

Because of this feature, OpenCL provides a unique
opportunity to build both flexibility and high perform-
ance into a piece of software. We use this ability in
OpenMM, a library for running molecular simulations
on high performance architectures, including those that
support OpenCL. Users can specify arbitrary mathemat-
ical expressions for calculating the interaction energy
between particles in their simulation and have them
transformed on the fly into OpenCL kernels that can be
run on a GPU. To get optimal performance, this trans-
formation must be done carefully.

Consider the following expression which describes a
Lennard-Jones nonbonded interaction between two
particles:

where r is the distance between the two particles and ε
and σ are parameters of the force field describing the

interaction. The simplest approach to transforming this
expression into source code is a one-to-one translation
of mathematical operations to OpenCL instructions:

energy = 4*epsilon*(pow(sigma/r, 12)-

pow(sigma/r, 6));

This is clearly an inefficient way to perform the
computation. The first thing we notice is that the
ratio sigma/r is being calculated twice. We should
identify common subexpressions, compute them only
once, and assign them to temporary variables so they
can be reused. In fact, the easiest way of doing this is
to create a new temporary variable for every subex-
pression. For each piece of the expression we trans-
late, we first check whether an identical one has
already been processed, and if so, simply use the exist-
ing temporary variable. This produces the following
OpenCL source code:

float temp1 = sigma/r;

float temp2 = pow(temp1, 12);

float temp3 = pow(temp1, 6);

float temp4 = temp2-temp3;

float temp5 = epsilon*temp4;

energy = 4*temp5;

This may look much wordier and harder to under-
stand, but that isn’t important. We’re generating it to be

read by a compiler, not a human!
The next problem we notice is the

use of the pow() function, which is a
slow way to calculate small integer
powers. Building up the power through
repeated multiplication is much faster.
The trick is to decompose the power
into a sum of powers of 2, such as
12=8+4, then compute the powers of 2
by repeatedly squaring a multiplier:

BY PETER EASTMAN, PhD

u n d e r  t h e  h o o d
Under TheHood

Efficiently Evaluating 
Mathematical Expressions 

with OpenCL Code

DETAILS

Peter Eastman, PhD, is a software engineer at Simbios
(http://simbios.stanford.edu) and a key developer of OpenMM
(http://simtk.org/home/openmm).  He recently wrote a small C++
library for parsing and analyzing mathematical expressions called
Lepton (http://simtk.org/ home/lepton) that has been incorporated
into OpenMM.

Users can specify arbitrary mathematical expressions for calculating the 

interaction energy between particles in their simulation and have them 

transformed on the fly into OpenCL kernels that can be run on a GPU.
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rational approach to predicting gene
function in Arabidopsis thaliana, a plant
widely studied by plant geneticists.
Dubbed AraNet, the work was pub-
lished in the February 2009 issue of
Nature Biotechnology. Marcotte and Lee
are currently using the same approach
to study gene function in humans. 

“The idea is that we’re making func-
tional links between genes based on
their behavior in a lot of different
assays,” Rhee says, including microarray
analyses, protein-protein interactions
and inferences from animal orthologs
culminating in 24 different data sets. 

The researchers started by analyzing
pairs of genes with known function in
order to set a baseline score for infer-
ring related function. They then
looked at about 27000 Arabidopsis
genes—most of which are uncharacter-
ized—to identify possible gene-gene
associations among them. “By then
asking ‘what are the functions of the
neighboring genes?’ we can try to infer
the functions of the uncharacterized
genes,” Rhee says. When her team
experimentally tested the predictions
for three uncharacterized genes, two
out of the three had functions that
were predicted by the network.  

Rhee is interested in using infer-
ences from AraNet to narrow down the
candidate genes involved in complex
traits. Although she’ll be doing this
work in plants, Rhee says the approach
will be applicable to all organisms.
She’s also curious about uncharacter-
ized genes that are connected only to
other uncharacterized genes.  “Perhaps
we can use the network to characterize
some undiscovered processes.” 

Ideally, Rhee says, researchers will
combine AraNet’s predicted functions
with their own knowhow to try to
design the best sorts of experiments to
conduct. It’s like rational drug design,
she says: “You’re using all the avail-
able information to be as systematic as
possible in designing your experi-
ments. This is a good application of
systems biology.”  !!

Every application that gets exchanged
like this goes through CSR DRR. 

While there is no central institute
or office for biomedical computing and
computational biology at NIH, there is
a very vibrant and organic entity.

Now you’re probably wondering
about the outcomes of all these
activities. In the last six years, the
four broad-based BISTI announce-
ments funded a total of 297 research
grants in the amount of $355 mil-
lion. In addition, the Continued
Development and Maintenance of
Software announcement funded 106
research grants in the amount of
$160 million. In that same period,
5560 unique grant applications were
reviewed in the informatics study
sections (MABS, BDMA, BCHI, NT,
GCAT, MSFD, BMRD, BMIT, MI
and Continued Development and
Maintenance special study section),
and of these 1330 (24 percent) were
funded. 

For early stage investigators who
want to add to these numbers by sub-
mitting successful grant applications, I
offer the following advice: 

• Team up with experienced men-
tors who can help you through the sci-
ence and logistics of the NIH process. 

• Talk to NIH program staff about
your ideas. You can identify the appro-
priate contacts from the BISTI funding
page/funding contacts link, http://www.
bisti.nih.gov/funding/index.asp.

• Visit the BISTI Web site, which
offers many useful resources, includ-
ing a list of ongoing government pro-
grams, initiatives and public-private
partnerships dealing with multiscale
modeling, ontologies and data man-
agement, mathematical biology, sys-
tems biology, and numerous other bio-
medical informatics or computational
biology efforts. 

• Whether a new or seasoned NIH
investigator, always focus your applica-
tions on the science because, after all,
biomedical and health-related research
is the NIH mission. !!

float temp2;

{

float multiplier = temp1;

multiplier *= multiplier;

multiplier *= multiplier;

temp2 = multiplier;

multiplier *= multipier;

temp2 *= multiplier;

}

We are using only four multiplica-
tions to calculate a 12th power, which
is much faster than the pow() function.
Similarly, we can calculate the 6th
power with three multiplications. But
we can do even better by combining
both of them into a single evaluation:

float temp2;

float temp3;

{

float multiplier = temp1;

multiplier *= multiplier;

temp3 = multiplier;

multiplier *= multiplier;

temp2 = multiplier;

temp3 *= multiplier;

multiplier *= multipier;

temp2 *= multiplier;

}

We are now calculating both powers
at once with only five multiplications!

The final important optimization is to
translate all expressions at once as a sin-
gle unit. The above example shows only
the expression for the energy, but in
OpenMM we need to calculate the
derivative of the energy as well. The two
expressions share many subexpressions.
For example, the derivative includes
(σ/ε )11 and (σ/ε)5, so by translating both
expressions together, we can compute
four different powers at the same time.

In practice, we find these techniques
work extraordinarily well for generat-
ing optimized OpenCL code to evalu-
ate mathematical expressions. Our pre-
liminary benchmarks with OpenMM
show that the automatically generated
GPU kernels are only a few percent
slower than hand-tuned versions. At
the same time, the user gains enormous
flexibility to select the precise interac-
tions they want in their simulations. !!

Seeing Science
cont’d from page 30

Guest Editorial
cont’d from page 1
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BY KATHARINE MILLER

There comes a tipping point in
systems-biology studies of gene
function where knowing some

genes’ functions can, using a compu-
tational approach, help hone in on
the functions of other genes. That
point has already been reached for
yeast and C. elegans but is just now
being reached for systems where func-
tional information is more sparse—
such as in plants and humans. 

“There are still a lot of plant genes
with unknown functions,” says Sue
Rhee, PhD, in the plant biology
department at the Carnegie Institution
for Science. “We need more sophisti-
cated ways to characterize what these
genes are doing.”  

So she and her colleagues, including
Edward Marcotte, PhD, at the
University of Texas, Austin, and Insuk
Lee, PhD, at Yonsei University, South
Korea, modified the C. elegans and
yeast algorithm for use in systems with
less complete data. This produced a

s e e i n g  s c i e n c e
SeeingScience

This functional network of Arabidopsis genes shows the top 10% of the functional
links identified by AraNet. Each line represents the connection between two genes
and is colored to reflect the likelihood score for a relationship between the paired
genes’ functions: Red means a high score, blue is low. For example, the red area in
the middle top of the figure represents the ribosomal complex, while the large blue
cluster to the right represents the phosphatases, which have a weak relationship to
one another although they share enough biological behavior to be linked. Image
courtesy of Sue Rhee, Edward Marcotte and Insuk Lee.  

A Tipping Point for
Function Prediction

continued on page 29


