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BY RON KIKINIS, PhD AND TINA KAPUR, PhD

Open Solutions for

Biomedical Research

hat can open-source software do for biomed-

ical research? Based on our experience at the

National Alliance for Medical Image
Computing (NA-MIC), we believe that open source
software can be used very effectively to either directly
solve biomedical research problems or improve the infra-
structure that will enable others to solve it.

Research done nationwide by NA-MIC-associated
researchers provides a case in point: Neuroscientists,
clinicians, and biomedical researchers at Harvard
Medical School, Johns Hopkins University, the
University of North Carolina at Chapel Hill, and the
University of New Mexico all use NA-MIC’s open-
source software tools routinely. They analyze anatomi-
cal brain connectivity abnormalities in patients with
velo-cardio facial syndrome (VCES); perform robot
and image-guided biopsies for prostate cancer; monitor

migrate to a FOSS model, we
deploy NA-MIC resources to
aid the migration. In either case, we consistently seek
opportunities to enhance the NA-MIC platform by sup-
porting “faster, better, cheaper” computation on
increasingly complex medical images. This is possible
because NA-MIC has adopted a BSD-style open source
license for our infrastructure software, which allows
research and commercial entities unrestricted access to
build upon the NA-MIC software platform without any
“give back” requirements.

And because our open source software is free, it also
has the potential to impact a broad segment of the
research community. To realize that potential, NA-MIC

Biomedical research needs can more easily drive

tool development when the tools are open source. That's because

open source tools can be modified to suit researchers’ needs.

the progression of Lupus lesions in patients; and study
cortical thickness as a predictor for autism. The needs
of these specific biomedical problems drive the efforts
of computational scientists and software engineers in
the development of a Free and Open-Source Software
(FOSS) toolkit, the NA-MIC Kit, to enable biomed-
ical research.

At NA-MIC we've seen that biomedical research
needs can more easily drive tool development when the
tools are open source. That’s because open source tools
can be modified to suit researchers’ needs. In accor-
dance with our mandate as a National Center for
Biomedical Computing, our mode of operation in NA-
MIC has been to focus as a team on one set of biomed-
ical problems at a time (we started with schizophrenia
and expanded to include lupus, autism, prostate cancer,
and VCEFS) in order to identify gaps in the available
image analysis algorithms and software tools, and then
design solutions. To fill such gaps, we may create new
computational technology, deploying them through the
NA-MIC Kit; or when the gaps are better addressed by
helping owners of existing computational solutions

has applied significant resources to establish a dissemi-
nation program that has trained over 600 biomedical
engineers and scientists from institutions around the
country in the use of our tools. In addition to the
detailed training materials that we provide through our
Web site (http://www.namic.org), our hands-on training
sessions are particularly effective in creating “super
users” of our technology who in turn train groups in their
home institutions and serve as NA-MIC ambassadors to
the broader research community. We also have an active
and open community process in place for those who
choose to participate. This includes, wikis, teleconfer-
ences, mailing lists, and in-person events, all of which
are publicly available through our Web site.

We invite you to browse three specific end-to-end
Open Science solutions that we have developed in
NA-MIC recently for three separate biomedical
research problems 1) Automatic Regional Cortical
Thickness Assessment for Autism, 2) Segmentation for
Non-human Primate Brains, and 3) Planning Therapy
for Prostate Cancer at http://wiki.na-mic.org/Wiki/
index.php/Events: Tutorial Contest]an2009. []
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repositories are potential gold mines of untapped
knowledge, and that with the appropriate elec-
tronic infrastructure, they would serve as a source of new
information about the causes of disease, the identity of
new biomarkers, and other unappreciated statistical cor-
relations. Using the awesome power of modern data

There has long been a belief that clinical data

Clinical Data Repositories:
Less Than Meets the Eye

We should try our best to

because patients insist on the
tests, and many other spurious
reasons. These sources of bias,
importantly, are typically not recorded
anywhere in the medical record,
and so the task of statistically
untangling the data in order to

learn new things with the data,
but our expectations should be low.
More importantly, our skepticism about
whatever is discovered should be very high.

mining and machine learning methods, we would be
able to troll years of clinical data and extract gold. I am
afraid that this view is overly optimistic.

First, clinical data repositories are the historical record
of physicians and other healthcare providers ordering
tests, procedures, and documenting their inference in an
extremely biased manner. The goal is not to objectively
sample reality, but to build a story that convinces them-
selves and others that they have the right model of what
is wrong with the patient, and that their actions are rea-
sonable. This is not a bad thing—this is the exercise of
the art of medicine (which is still very much an art,
despite our attempts to codify and standardize)—but it is
not a good basis upon which to build a discovery engine.
Second, clinical records were not invented to support
research and many of the elements required for good
research are not present. All tests must be interpreted
with knowledge of the prevalence as well as the sensitiv-
ity and specificity. Thus, taken out of context, the results
of a test are very difficult to interpret with respect to their
accuracy and information
content. Physicians also
sometimes order tests for
medico-legal reasons, finan-
cial reasons, to document
the course of a disease,

DETAILS

Russ B. Altman, MD,
PhD, is principal
investigator for Simbios,
a National Center for

Biomedical Computing,

generate a clean and believ-
able dataset is incredibly diffi-
cult. Third, the practice of med-
icine and the use of medical tests,
procedures and terminology are
constantly evolving, and thus any
attempt to combine data over a signifi-
cant period of time (even as short as a few
years) is likely to be confounded by changes in
practice, the arrival of new therapeutic and diagnos-
tic capabilities, and simple “medical fashion.”

Having expressed my pessimism, I believe we still
should apply data mining algorithms to these data, and
attempt to overcome these difficult challenges. In our
initial investigations, we are likely to discover the obvi-
ous: typical patterns of test ordering associated with med-
ical practice, and the trivial correlations between differ-
ent data sources in the record. We should try our best to
learn new things with the data, but our expectations
should be low. More importantly, our skepticism about
whatever is discovered should be very high. Data mining
activities may suggest new hypotheses, and these can
then be followed up with careful analysis of clean (ideal-
ly prospective) data. But to expect a goldmine of discov-
eries, at least today, is to underestimate the difficulty in
preparing this data for serious use in discovery.

and professor of
bioengineering,
genetics and medicine
at Stanford University.
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he recent federal stim-
I ulus package is inject-
ing billions of dollars

into electronic health record
implementation. To determine
whether such records will be
useful for clinical research in
the genomic era, three ques-
tions should be answered: 1) As compared
to what? 2) To do what? 3) At what cost
in time and treasure?
With regard to the first question, we

know that even highly regarded
large cohort studies such as those
published regularly in the genome-
wide association studies literature are
highly prone to phenotypic misclassifica-
tion. We also know that carefully selected
populations exhibit different characteristics
than the population of health-care recipients as a
whole. For example, populations selected for a study may
not manifest all the risks and interactions of exposure to a par-
ticular therapeutic drug. Moreover, when human beings
extract medical records or ask questions, they inject variabili-
ty and biases, evident in a review of any of the annotations in
existing studies. In contrast, we can repeatedly run the entire
corpus of suitably de-identified clinical records through differ-
ent natural language processing methods and filters of varying
stringency, and compare patient characteristics at one hospi-
tal to those at another. We can do so comprehensively, repeat-
edly, and have available large numbers of controls for con-
founding factors. Moreover, whereas classical recruited cohort
studies usually face significant challenges in obtaining ade-
quate representation of underrepresented minorities, compre-
hensive electronic medical records typically include more
members of these groups.

With regard to the second question, there is no doubt one
has to be sober and careful regarding what kinds of questions
can be answered using data from electronic medical systems.
Nevertheless, there are numerous “low hanging fruit” that
enable electronic-health-record-based research projects to
proceed productively. For example, any methodological and
timely review of health-care system data could identify cer-
tain noteworthy high-magnitude epidemiological effects that

currently go unrecognized in our health care system—often
until it is too late. A prime case of this is the very large num-
ber of deaths attributable to Vioxx. Similarly important but
rarer events such as the pancreatitis associated with exe-
natide can be sussed out even if the exact magnitude of the
effect is in question. Such findings would then trigger further,
perhaps better-controlled, studies. In addition, when a study
would require hundreds of thousands of patients to measure a
low-magnitude effect, electronic health records provide a
unique resource, particularly when they are carefully mined
using natural language processing techniques. Indeed much
of the purely claims-based research is vulnerable to both the

Given the availability of clinical data obtained from our
very expensive and intensive health care process, we
must at least determine the extent to which electronic
health record information can further science and
improve diagnostic and treatment modalities.

coarseness and reimbursement bias of the characterization
provided by billing codes (e.g., a radiologist coding a “rule out
theumatoid arthritis” x-ray with the diagnosis of rheumatoid
arthritis even if the patient does not have such disease).

And as for the cost in time and treasure, if we can conduct
in silico observational studies in one hundredth of the time and
for one tenth, hundredth or even thousandth of the cost of a
conventional observational study, we should do so—with
appropriate adjustments for bias, variation, and multiple
hypothesis testing. We owe it to the public to at least explore
what the results might be, especially if they identify dangerous
drugs or promising new therapies. Given the availability of
clinical data obtained from our very expensive and intensive
health care process, we must at least determine the extent to
which electronic health record information can further sci-
ence and improve modes of diagnosis and treatment.

There is, of course, no
doubt that many studies are
answerable only through clas-
sically organized randomized
controlled trials or tightly
selected observational studies.
However, the promise of elec-
tronic health records was
never that they would be the
only platform on which clini-
cal research could be con-
ducted in the future but
“merely” an important com-
ponent of the research agenda
at the national and interna-
tional level. [
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BY JOY P. KU, PhD, DIRECTOR OF DISSEMINATION FOR SIMBIOS

Solving the 3-D RNA
Structure Puzzle with NAST

or proteins, structure informa-
F tion leads to an understanding of

function. The same turns out to
be true for ribozymes, ribosomal RNAs,
and some other recently discovered
RNAs. But mapping out that three-
dimensional (3-D) structure isn’t always
possible experimentally and structures
that are obtained are often

erated in a given time period.

But such a simplified system isn’t
accurately described by classical equa-
tions of physics. “We’ve lost a lot of
information and can’t use real physics
because we no longer have real atoms,”
says Magdalena Jonikas, a graduate stu-
dent in bioengineering at Stanford

the project lead for Discrete Molecular
Dynamics (DMD), which has goals
similar to NAST. “Predicting RNA
structure is a very difficult task, per-
haps more difficult than proteins.”
NAST could also be useful for cap-
turing snapshots of the RNA in
motion, says Dokholyan. “RNA mole-

incomplete. The Nucleic Acid
Simulation Tool (NAST)
helps solve the 3-D puzzle,
using what’s known about a
given RNA to generate a large
number of plausible 3-D struc-
tures in a fully automatic way.
In addition to advancing basic
biology, such structural infor-
mation could also potentially
aid in the design of new
RNAs—for example, as gene
therapy tools.

“NAST is a powerful tool
for exploring possible confor-
mations of an RNA given a

NAST generates a large number of 3-D structures that satisfy user-provided constraints.
The image above shows the known crystal structure of a yeast tRNA and three subsets of
five similar structures generated by NAST without reliance on crystal structure data.
Reprinted from Coarse-grained modeling of large RNA molecules with knowledge-based
potentials and structural filters, M. Jonikas et al., RNA, 2009, 15:189-199.

particular set of constraints,”
says Alain Laederach, PhD, a research
scientist at the Wadsworth Center in
New York and an assistant professor in
the School of Biomedical Sciences at
SUNY Albany. Laederach was one of
the original developers of NAST.
Rather than model all the atoms in
the RNA molecule, NAST uses what is
called coarse-graining—it groups atoms
together and represents them as a single
particle. This means fewer computations
are required so more results can be gen-

What You Need to Use NAST

University and the lead developer of
NAST. “So we built our own physics
about how particles interact.”

The NAST physics is based on the
structural properties of coarse-grained
representations of two ribosomal RNAs
with known structures. That informa-
tion was used to design an energy-based
function that can produce realistic 3-D
structures—helical parts of the mole-
cule are identified and turned into
helices, while non-helical portions are
modeled after an average piece
of ribosomal RNA.

Validation tests with NAST
showed the average error for a

NAST only needs information about the order
of the A, U, G, C bases that make up RNA (the
primary sequence) and the 2D map of the

RNA, which shows how the bases pair up
when the RNA folds back on itself (the second-
ary structure). Long-range tertiary interactions
between bases can also be incorporated.

NAST can be freely downloaded from
http://simtk.org/home/nast.
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prediction varied from 8-16
Angstroms, depending on the
RNA and the available experi-
mental data.

These results are encourag-
ing, says Nikolay Dokholyan,
PhD, an associate professor in
biochemistry and biophysics
at the University of North
Carolina at Chapel Hill and

cules can be quite dynamic and it
would be important to have clusters of
structures that show up during the life-
time of these RNA molecules. And in
this case, NAST would do great.”

“NAST is probably the best RNA
structure prediction system based on
molecular dynamics that’s been pub-
lished so far,” says Francois Major,
PhD, a principal investigator at the
Institute for Research in Immunology
and Cancer at the University of
Montreal and project leader of MC-
Fold and MC-Sym pipeline, an all-
atoms approach for structure predic-
tion. “If I had to use one such system
today, I would use NAST.” []

Simbios (http://simbios.stanford.edu)
is the National Center for Biomedical Computing
located at Stanford University.
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Decoding Promotion
Despite their identical genomes,
cells in the body develop distinct per-
sonalities—become neurons or liver
cells, for instance—due to differences
in gene expression. The mechanism
that regulates this process has remained
obscure, but a new study explains it
using a simple thermodynamic model.
“Much of this phenomenon can be
explained by a simple model of protein-
protein and protein-DNA interactions,”
says principal author Barak Cohen,
PhD, of the Washington University
Medical School in St. Louis. “In our sys-
tem there is no need to account for com-
plicated chemical processes.”
According to large-scale studies of
eukaryotic genomes, gene expression is
turned up and down when transcription
factors interact with a zone of noncod-
ing DNA located upstream from the
gene—the gene’s promoter. This inter-
action is complex, and can involve a
variety of transcription factors operat-

ing in concert. Indeed, a typical pro-
moter may include 20 or more sites that
can each bind any one of about 250
known transcription factors. The num-
ber of possible promoters and their
interactions is thus enormous, but data
about their behavior is limited to a few
thousand known promoters. “This
makes it real hard to tease out the rules
of gene regulation,” says Cohen.

To make the problem tractable,
Cohen and his collaborators built 2800
synthetic promoters each combining
three to five transcription binding sites
from about 20 known sites. Experiments
on yeast cells showed that varying these
mini-promoters for a gene yielded nearly
three orders of magnitude variation in its
expression. To analyze the promoter-
expression relationship, the researchers
invoked a thermodynamic model devel-
oped in earlier studies. In this model the
interactions between proteins and their
binding sites either help or hinder the
recruitment of RNA polymerase—the
molecule needed to build RNA

from the DNA—to the promot-
ers. The researchers “trained”
the model using measured gene
expression levels for a set of
about 400 promoters, and tested
it on an independent set of
another 83 promoters.

The trained thermodynamic
model explained nearly 50 per-
cent of the variation in gene
expression for the training set,
and about 44 percent of the
variation for the independent
set. In contrast, empirical mod-
els relying on genomic data
explain less than 25 percent of
the variation in gene expres-
sion, says Cohen. The system
also showed how weak binding
sites cooperate to regulate gene
expression, an effect that prior
models failed to address. When
applied to actual yeast genome
data, the system found that
Migl, a transcription factor
associated with glucose metab-

Courtesy of Barak Cohen; graphic
by Michela Hunt.
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olism, regulated several additional
genes not previously known to be regu-
lated by this protein. “This is remark-
able because Migl is one of the most
widely studied transcription factors,”
says Cohen.

In addition to shedding light on
gene regulation, the findings could also
facilitate in silico engineering of pro-
moters with completely novel expres-
sion patterns, says Cohen. Such cus-
tom-designed promoters could be a
boon for stem cell development, tissue
engineering, regeneration, and similar
areas. As a step towards this goal, the
researchers plan to extend their work
to mammalian cells, Cohen says.

“This paper is an important advance
developing quantitative models for tran-
scriptional regulation,” says Eran Segal,
PhD, of the Weizmann Institute of
Science in Israel. “It shows on a large
scale what has been demonstrated previ-
ously on smaller sets of genes in fly and
bacteria.” Paturu Kondaiah, PhD, of the
Indian Institute of Science in Bangalore
agrees with this assessment, but points
out that transcription factors behave dif-
ferently depending on their conforma-
tion, and can also recruit co-activators or
co-repressors. “The next step is to take

these effects into account,” he says.
—By Chandra Shekhar, PhD

The Brain in Transition

Patients with schizophrenia and
other psychotic disorders are known to
have adverse brain changes, such as
reduced volume—but it’s unclear what
comes first, the disease or the abnormal-
ity. Now, for the first time, researchers
have shown that the brain is actually
shrinking as psychosis unfolds. The
results appear in the January 10 issue of
Schizophrenia Research.

“We found that people who go on to
develop psychosis have a different profile
of neuroanatomical changes than those
who do not,” says Tyrone D. Cannon,
PhD, professor of psychology, psychiatry,
and biobehavioral sciences at the
University of California, Los Angeles.
The findings may have implications for
predicting and preventing psychosis.

Cannon and his colleagues took pre-
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“Qur approach allowed us to detect more subtle anatomical changes
in the brain, which is critical because we would not expect the changes
associated with onset of psychosis to be so gross as to be detectable

using standard voxel-based methods,” Tyrone Cannon says.

morbid brain MRI images of 35 indi-
viduals who had never had a psychotic
episode but were considered at “ultra-
high” risk based on early symptoms or a
strong family history. They re-scanned
their brains after an average follow-up
of 1.3 years—during which time 12
developed psychosis.

Previous studies had considered losses
in brain tissue density, a voxel-level
measure of brain volume (typical resolu-
tion on the order of 1 cubic millimeter).

Cannon’s team used a higher-resolution
measure of volumetric brain change—
the brain contraction rate. This parame-
ter is calculated by transforming MRI
scans into 65,000-point maps of the
brain’s surface and determining how fast
the surface points are contracting
between sequential scans. They found
that the prefrontal lobes of subjects who
progressed to psychosis were contracting
significantly faster—by about 0.2 mil-
limeters per year—than those of subjects

Shrinking Brains. The top panels show the average rates of surface contraction in different
regions of the brains of 12 high-risk subjects who went on to develop psychosis (converters) and
23 who did not (non-converters). Red and pink regions are contracting the fastest. The bottom
panel shows regions where the converters' brains were contracting significantly faster than non-
converters'. Yellow, red, and pink regions had the most statistically significant differences.
Reprinted from Sun, D., et al., Progressive brain structural changes mapped as psychosis develops
in ‘at risk’ individuals, Schizophr. Res. (2009) 108(1-3):85-92.
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who did not progress. “Our approach
allowed us to detect more subtle anatom-
ical changes in the brain, which is criti-
cal because we would not expect the
changes associated with onset of psy-
chosis to be so gross as to be detectable
using standard voxel-based methods,”
Cannon says.

Though the study is interesting, it is
small and lacks a healthy control
group—which makes it difficult to tell
how much of the detected changes are
due to random variation and normal
aging versus disease, comments R.
Grant Steen, PhD, associate professor
of psychiatry at the University of North
Carolina School of Medicine. Also, it
took an average of eight months to re-
scan subjects with disease after their
initial psychotic episode, so the timing
of the changes is not entirely clear and
could be related to treatment, he says.

Medication is an unlikely explanation
since its use was limited and unrelated to
brain contraction rates, Cannon replies.
Still, he agrees, “the full significance of
the findings awaits confirmation in large,
multisite, longitudinal imaging studies
that are currently underway.”

If the changes observed do turn out
to be a cause of the onset of schizo-
phrenia and associated disorders, “it
may eventually be possible to provide
treatment in high risk individuals—to
delay or prevent the onset of psy-
chosis,” Cannon concludes.

—By Kiistin Sainani, PhD

The Fate of
Inhaled Particles

New computational model simulates
how particles in the air get deposited in
the lungs during breathing

Depending on their nature, micro-
scopic particles suspended in air—

www.biomedicalcomputationreview.org



called aerosols—can cause

or treat disease when
inhaled. A key factor in both

cases is how the particles
accumulate through-

out the respiratory

system. A new study

uses fluid dynam-

ics and an

anatomically accu-

rate  human airway

model to simulate this
process, potentially paving the way
for improved disease understanding and
patient-specific drug delivery.

“It is one of the first computation-
al studies that uses anatomically cor-
rect models to predict aerosol deposi-
tion,” says principal author Kenneth
Lutchen, PhD, of Boston University,
principal author of the study pub-
lished in the February 2009 issue of
Annals of Biomedical Engineering.

Starting with the windpipe, airways
in the human respiratory system branch
out, producing about 23 levels of
branching or “generations.” The result-
ing structure includes nearly 10 million
microscopic airways, making it hard to
study aerosol deposition. According to
Lutchen, experimental methods relying
on in vivo rat studies or lung-shaped casts
have vyielded useful, but preliminary,
data. Prior computational studies have
dealt with more complex respiratory
structures, but typically used idealized
lung models instead of the actual anato-
my. Further, many of them ignore the
upper airways where most of the deposi-
tion occurs, Lutchen says.

In contrast, Lutchen and his collab-
orator Baoshun Ma, PhD, modeled

Simulation of three-dimensional deposition
locations of aerosol particles (shown in red)
with a diameter of three micrometers—typical

of pharmaceutical drugs inhaled into the lung—

in an anatomically-based human large-medi-
um airway model under steady slow inhalation

conditions. The airway model starts

from the mouth and extends through

ten generations of bifurcations, and

its predictions were consistent
with experimental results.
Courtesy of Baoshun Ma.

their lung from MRI
and CT images of
healthy men and
included the upper
airway. The limited reso-
lution of the images
restricted the model
to the first ten airway
generations. For simplicity,
the researchers assumed a steady
flow of air through rigid airways
instead of a natural breath pattern.
They then used a computational fluid
dynamics framework with a standard
turbulence model to simulate aerosol
deposition for different particle sizes and
airflow rates. Results indicated that large
particles (with a diameter of 30 microm-
eters—about the width of a human hair)
end up mostly in the mouth and upper
throat, whereas small (1 micrometer)
particles typical of pharmaceutical drugs
inhaled into the lung spread out more
evenly. Typically, the left lung absorbed
more particles—as much as 5 times
more for some parameter settings—
compared to the right lung. “These pre-
dictions are consistent with experimen-
tal data,” says Lutchen.

Inhaled aerosols have emerged as an
important method for delivering drugs
for lung-related conditions ranging
from asthma to cystic fibrosis. However,
proper dosing requires accurate,
patient-specific prediction of aerosol
deposition patterns under a variety of
conditions. Lutchen hopes that the new
approach will eventually facilitate this
task. “This model will tell you what par-
ticle sizes and inhaled volumes you need
to get the desired dose for a specific
patient,” he says.

“This article is of
significant interest
in the field of respi-
ratory dosimetry,” says
Worth Longest, PhD, of
the Virginia Commonwealth
University in Richmond. “It
extends the state-of-the-art in the
use of computational fluid dynam-
ics to predict local and regional
respiratory particle deposition.”
To be of use in clinical applica-
tions, however, the system should be
extended to include transient effects
over a breathing cycle, effects of airway
wall motion, and a more robust turbu-
lence model, he adds.

—By Chandra Shekhar, PhD

RNA Families Set Up
House in Wikipedia

For scientists submitting to the journal
RNA Biology, the publishing guidelines
now include a new task: Submit a
Wikipedia entry. In collaboration with
the RNA database Rfam, the journal
recently launched a new section, RNA
Families, that requires a corresponding
peer-reviewed Wikipedia article along
with each article published in the section.

“It is so globally important to have
knowledge accessible to everybody,”
says Renée Schroeder, PhD, editor-in-
chief of the journal.

The new section, dedicated to
descriptions of non-coding RNA fami-
lies, debuted in the January/February/
March issue of the journal, with one
article and its corresponding Wikipedia
entry. The entries are not meant to
exactly mirror the scientific literature,
Schroeder says. “In a research article
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you have the way you acquired the
knowledge, and in Wikipedia you have
the results,” she says.

This is the first instance of such a
link between Wikipedia and a scientif-
ic journal, says Alex Bateman, PhD,
co-director of Rfam, an open-access
database of non-coding RNA families
coordinated by the Wellcome Trust
Sanger Institute in Cambridge, UK. In

2007, Bateman and his colleagues
linked the database to Wikipedia.

ly translate to the encyclopedic format,
and the site is meant to be a source of
accurate information, so “there should-
n’t be too much that hasn’t been tested
and retested,” she says.

The Rfam and RNA Biology entries
fall under the rubric of the Molecular
and Cellular Biology wikiproject,
which is working to improve all molec-
ular biology, biochemistry and cellular
biology entries. Tim Vickers, PhD,
director of the wikiproject and postdoc-

“Obviously we scientists all like to publish

papers, but if you just do that and don't reach
out and tell people why your work is important,

that's a big chunk missing,” Tom Vickers says.

Editing of the Wikipedia articles auto-
matically updates the database. In fall
2008, he brought his idea for a new
publishing paradigm to RNA Biology.

Bateman thinks this is an exciting
step for a scientific journal. “It wouldn’t
be reasonable to claim that these arti-
cles were going to change the world,”
he says. “But the important thing is
that the model is really interesting.
Hopefully this can be an experiment
that other journals can follow in other
areas of science.”

Schroeder points out that this
model won’t work for every scientific
journal. The article subjects must easi-

toral fellow at Washington University,
thinks the decision by RNA Biology is a
step in the right direction toward get-
ting more scientists involved with
updating and maintaining Wikipedia.
“Obviously we scientists all like to pub-
lish papers, but if you just do that and
don’t reach out and tell people why
your work is important, that’s a big
chunk missing,” he says. “Editing
Wikipedia and giving the general pub-
lic a good summary of the science in
your field, that’s almost as important as
publishing scientific papers.”
—By Rachel Tompa, PhD

Predicting Vaccine Efficacy

Researchers developing a new vac-
cine currently have no direct way of
predicting its efficacy short of exposing
patients to the disease. A new study
that combines gene expression data
with advanced computational analysis
provides the first evidence that the
vaccine-induced immune response can
be predicted.

“We develop vaccines but can never
say how effective they will be,” says
Bali Pulendran, PhD, a researcher at
the Emory Vaccine Center in Atlanta
who led the study, published in Nature
Immunology in November 2008. “Only
after exposure do we really know.”

To gauge a vaccine’s effectiveness,
scientists evaluate indicators of the so-
called “adaptive” immune response,
which develops over time. The titer—a
measurement of the concentration—of
long-term antibodies in the blood is one
indicator. The number of killer T cells is
another. But a more complete profile of
the early or “innate” immune system
reaction could help researchers screen
vaccine candidates or help identify
individuals whose adaptive immune sys-
tems don’t respond.

To develop such a profile of the
immune response, Pulendran and his col-
leagues monitored patients given the yel-
low fever vaccine—a vaccine that has
been given to more than 600 million peo-
ple and is considered one of the most
powerful ever developed, proving effec-
tive 80 to 90 percent of the time. In two
sets of volunteers (15 in the first group
and 10 in the second) Pulendran’s group
sought to correlate patients’ innate (early)
immune response to the vaccine with the
later T cell response. Several cytokines
and 65 genes responded to the vaccine in
significant ways, but there was no appar-
ent link between this innate signature and
the subsequent T cell reaction.

To zero in on what was evidently a
subtle connection, the researchers looked
more broadly at the gene expression sig-
natures for the first set of patients. They
found 839 genes whose expression corre-

lated with the T cell response. Using
these data and a supervised learning algo-
rithm developed by Eva Lee, PhD, at the

A figure from the first Wikipedia entry tied to an RNA Biology article, entered into Wikipedia in
November 2008. The entry and article, published in the January/February/March 2009 issue of RNA
Biology describe the SmY family of non-coding RNA molecules found in some nematode species.
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Georgia Institute of Technology, they
pulled out eight different genetic signa-
tures from data from the first group that
strongly predicted the T cell response in
the second group of volunteers. The
researchers also used that algorithm to
generate signatures predicting the titer of
long-term antibodies.

In the case of both T cells and anti-
bodies, the researchers were particularly
interested in a small number of genes that
featured in all the predictive signatures.
These genes form a core set that doctors
could potentially monitor to predict how
effective a vaccine will be in a patient.
Pulendran also hopes that by working to
replicate the innate reaction to yellow
fever, scientists may be able to make
potent vaccines against other pathogens.

“If the approach could be extended
to development of vaccines against dif-
ferent sorts of pathogens, it would be a
real advance,” says Larry Stern, PhD,
an immunologist at the University of
Massachusetts. “The key here is whether
the same signature would be induced by
other pathogens,” he says, noting that
even if the method works only for relat-
ed pathogens, such as dengue fever and
West Nile virus, that would still be a
very valuable contribution.

—By Kaspar Mossman, PhD
A Model Neuron

For patients suffering from nerve dam-
age, neural regeneration is a faint hope. It
rarely happens naturally, and attempts to
coax new growth often fail. Researchers
are trying to develop scaffolds to guide
regenerating neurons in the body. But the
best way to guide neural growth on these

A single rat neuron has a decision to make. When this cell was immature, it was
placed on an artificial substrate in between immobilized nerve growth factor
(on the left) and a surface of two micron-wide ridges (on the right). The pro-
jection that eventually turned into an axon grew along the ridged side. Zaman's
computational model of neuron growth reproduced this outcome and also iden-
tified axons’ preferred ridge size. Photo courtesy of Natalia Gomez, PhD, for-

merly at the University of Texas at Austin.

The researchers used correlation cluster analysis of expressed genes
to confirm that subjects could be sorted clearly into two categories:
"high" or "low" responders to the vaccine, based on the strength of
T cell response. Courtesy of Bali Pulendran. Reprinted from Querec
TD et al., Systems biology approach predicts immunogenicity of the
yellow fever vaccine in humans, Nature Immunology (2009)
10(1):116-125 with permission from Macmillan, publishers.

substrates remains unknown. So in wvitro
studies of neuronal behavior on these
templates are a key first step. But such
studies largely rely on trial and error
rather than engineering principles.

Now, scientists have developed a
computational model to predict the
first stage of neural development, neu-
ron polarization. Their model, pub-
lished in the February issue of Annals of
Biomedical Engineering, could yield pow-
erful predictions for better scaffold
design in neural tissue engineering.

“Our work is unique as it is the first
effort of its kind to quantitatively
model the interactions of the neuron
with the substrate,” says Muhammad
Zaman, PhD, assistant professor of bio-
medical engineering at the University
of Texas at Austin.

Directing neuron growth on an arti-
ficial substrate is no easy feat. To lead to
nerve regeneration, the neurons must
polarize in the same direction, but
immature cells send out multiple ten-
drils in all directions initially. The pro-
jection that grows the longest eventual-
ly becomes the axon, the path for send-
ing out electrical signals; the others
become dendrites, the stimulus recep-
tors for the neuron. These projections’
fates can be influenced by various exter-
nal cues, both chemical and physical.

For unknown reasons, physical fac-
tors such as ridges dominate over chem-
ical cues in vitro. That is, if an immature
neuron is faced with chemical cues on
one side and ridges on the other, it will
tend to polarize toward the ridged side,
extending its axon along one of

To model the cell’s reaction to its sur-
roundings, Zaman and his colleagues
broke neuron polarization into several
small steps, using probabilities at each
step to predict the cell’s next choice in
projection growth. They introduced
parameters based on known factors, such
as the physics of the internal forces act-
ing on the projections, how projections
behave on different substrates and how
they react to different chemical cues.

Their model accurately reproduced
known results, and also revealed that
ridge size is important to a neuron. If
the ridges are too small or too wide, the
neural projections view them as a con-
tinuous surface, and chemical cues will
win out. For the kinds of cells in
Zaman’s experiments, the best ridges
were between two and 10 microns wide.

“The cells seem to like persistence,”
Zaman says. Once a projection starts
down a ridge, it is like a car on a one-
way road. With only one direction to
travel, growth is much faster. But if the
ridge is too wide or too narrow, the cell
no longer sees the road.

“There is a lack of engineering rigor
in the whole area of tissue and regener-
ative engineering,” says Gabriel Silva,
PhD, assistant professor in bioengineer-
ing at the University of California, San
Diego. “I think the approach that these
authors have taken is exactly what’s
needed, which is a systematic, quanti-
tative, rigorous engineering-type model
that can guide the design of experi-
ments and materials.”

—By Rachel Tompa, PhD []

the grooves.
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Or a century, neuroscientists have dissected,

traced, eavesdropped on, and are now compiling

a seemingly endless cast of players in the nervous
system. As we keep gathering more and more molecular
details, how do we know when we know enough?

Reverse,
Engineering

"*Brain

By Roberta Friedman, PhD

e
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ome have decided it’s time to just
oo ahead and create a brain in sil-
ico. And to a surprising extent,
they’ve done it: Labs around the world
are populated with autonomously func-
tioning brains based on what we know
so far. These simulations match what
happens at the cellular level in the
brain when the nerve cells, or neurons,
that make up the brain pump ions and
produce electrochemical activity that
propagates across the synapse from one
neuron to another. Robots or avatars
activated by these engineered brains
are directing movement, perceiving
visual objects, and even responding to
rewards—exhibiting behaviors associ-
ated with our “thinking” brains.

Eerily, the most recent simulations
show the same oscillating thythms seen
when physicians record human brain
waves using an electroencephalogram
(commonly known as an EEG).

Computer simulations of the brain
already allow experiments impossible to
carry out with animals. “As good as mod-
ern neuroscience is—and it has been bril-
liant over the last two decades—we can’t
really sample every neuron and every
synapse as they are performing a behav-
ior,” notes consciousness researcher
Gerald Edelman, MD, PhD, director of
the Neurosciences Institute and chair of
neurobiology at the Scripps Research
Institute in San Diego, California.

Researchers are looking to develop
even more efficient simulated brains to
help produce computers that can think
while at the same time accelerating
neuroscience. Ultimately brain simula-
tions promise the ability to study the
effect of drugs and disease and aid in the
design of new therapeutic strategies.

HOW TO
BUILD A BRAIN 101

To build a simulated brain requires a
vast amount of detailed information
about this complex organ, starting from
its basic unit (the neuron) and building
up to the complex network of connec-
tions between them that produces per-
ception and cognition. None of this
information is available from any single
species. Much of the data on how indi-
vidual neurons behave comes from rat
studies. Observations of primates have
provided data about how neurons are
wired together across brain regions. And
cat and human research led to an under-
standing of the finer, local circuitry in
specific areas of the brain. Nevertheless,

the basics of the nervous system are simi-
lar enough across mammals that Edelman
and others have cobbled together
chimeric, rudimentary brain simulations
that show remarkable similarities to the
real item. “We can simulate the

neuronal dynamics beauti-

fully so that you can’t

tell the difference

between neu-

rons in the

Brain data used to create simulated

brains include imaging of the white

matter fibers in the brain using a technique
called diffusion tensor magnetic resonance
imaging (DTMRI). Reprinted from Izhikevich
et al., Large-scale model of mammalian thal-
amocortical systems, Proceedings of the
National Academy of Sciences (2008)
105:3593-3598.

model and real neurons,” Edelman says.

To build a simulated brain, Edelman
and others start with what’s known
about the neuron, a cell that actively
maintains a separation of charged ions
across its membrane. Specific channels
in the membrane allow certain ions in,
and these are quickly pumped back out,
or sequestered internally. But when a
certain threshold of charge is reached
the neuron fires a spike of current
toward an adjacent neuron.

Here, at the synapse—a microscopic
gap between each nerve cell—current
becomes chemistry (and here is where
drugs alter that chemistry). A spike
wave arriving at the synapse triggers
the release of neurotransmitters—to
activate the next cell—provided
enough inputs arrive in a very short
time. Sufficient impulses strengthen
the synapse. Neglected, the synaptic
strength weakens and the particular

connection is diminished. In the devel-
oping brain, synapses are ruthlessly
pruned. This is what neuroscientists
have uncovered dur-

ing decades of

listening in with electrodes a hundred
times finer than a human hair. And this
is the basic information that Edelman
and others use to construct their simu-
lated neurons.

To determine how these neurons are
connected, simulators turn to micro-
scopists and their latest technologies.
Techniques from immunology have
brought incredible resolution on the
molecular level: cells containing partic-
ular molecules can be tagged by dye-
bearing antibodies so that researchers
can distinguish them from from their

“We can simulate the
neuronal dynamics
beautifully so that you

can't tell the difference
between the model and

real neurons,” says
Gerald Edelman.
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The simulation of major brain centers and their microcircuits is able to
generate its own inherent activity—similar to what is seen in real brains.

fellows and follow their links to one
another. Scanning electron microscopy
has been able to home in on the fine
molecular scale at the synapse.

Knowing how individual neurons
function and how they’re connected will
not make a brain work. Simulators need
to know the bigger picture of brain area
networks. To understand the function of
brain regions, neuroscientists initially
used data from scalp EEG and depth elec-
trodes placed within the brains of living
patients and animals, as well as observa-
tional reports such as from accidents that
selectively damaged specific brain areas.
These days computer-analyzed imaging
can reveal additional details of the nor-
mal brain. Simulators employ all of these
lines of evidence, and still seek more.

But none of this data could produce
an engineered brain without huge
advances in computer simulation. Alan
Turing’s idea for a calculating machine
at the end of World War II laid the
groundwork. Warren McCulloch and
Walter Pitts set forth the initial proper-
ties of an electronic replica of a neuron
in 1943. In the mid 50s, IBM researchers
ran a simulation of 512 neurons.

These are the lines of investigation
picked up by Edelman who entered the
field of reverse brain engineering after
receiving a Nobel Prize in Physiology
or Medicine (for immunology research)

in 1972.

ACHIEVING AUTONOMY:
EDELMAN'’S SIMULATED
BRAIN RHYTHMS

The latest of Edelman’s simulations
incorporates the known circuitry from
the thalamus, a central command post
in the core of the brain. The thalamus

Cells in the cortex form columns. In this image the red
neurons, called pyramidal cells, are revealed to be
entwined by blue fibers from other, inhhibitory neu-
rons that slow their firing. The layers of the column
are indicated by the numerals to the left: L1, at the
surface of the brain, through L6, the deepest cortical
layer. Pyramidal cells, which receive messages along
their extensively branched fibers, and send long
fibers out to other brain areas or down to the spinal
cord, are crucial in movement control and in cogni-
tion. They have their cell bodies in layer 5 of the cor-
tex, and the main receiving fiber, the apical dendrite,
rises up to the surface, layer 1. ©BBP/EPFL
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drives the cortex (the brain’s covering
layers—also modeled) into and out of
sleep and through various levels of
alertness. When the thalamus no
longer talks to the cortex, vegetative
states result. The model also includes
circuitry of the hippocampus, a sea-
horse shaped curl of brain tissue
beneath the temples, which is crucial
for long-term memory, a region
attacked in Alzheimer’s disease.

Once enough of the brain’s macro
and microcircuitry is simulated, the in
silico model is able to generate its own
inherent activity—similar to what is
seen in real brains. “When you stimu-
late the neural model, it takes off on its
own and is constantly active,” Edelman
says. “We’ve never succeeded in doing
this before.” Moreover, oscillating
waves of synchronous neural firing not
explicitly built-in emerged sponta-
neously, the researchers reported in the
March 4, 2008, Proceedings of the

National Academy of Sciences. The
researchers also were able to induce
and reproduce spontaneous, low-level
activity at the synapses—called minia-
ture postsynaptic potentials or minis.
The results suggest that, as a real brain
develops in a fetus, minis like these
might prime neurons for action.

EAVESDROPPING ON
SIMULATED NEURONS:
THE BLUE BRAIN PROJECT

Edelman is not alone in simulating
the brain. Henry Markram, PhD, co-
Director of Ecole Polytechnique Fédérale
de Lausanne (EPFL), in Lausanne,
Switzerland, directs the data-intensive
Blue Brain project.

Edelman’s group relied on a top-
down approach based on global net-
work properties of the brain and math-
ematical formulas to reproduce known
types of neuron behavior. In a comple-
mentary approach, Blue Brain focuses
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on exact structural and molecular
details to model a particular piece of
the brain, building up from exact
details of individual neurons, Markram
says. “We are constrained by biology.
There are so many theoretical ways to
do it you would be lost forever. Biology

“We are constrained by
biology,” says Henry
Markram. “There are so
many theoretical ways
to do it you would be
lost forever. Biology has
chosen a certain way
and when you choose
that, it becomes easier,

not more difficult.’

has chosen a certain way and when you
choose that, it becomes easier, not
more difficult.”

Data for the Blue Brain project was
gathered using a key innovation: the
ability to record ion signals from many
neurons at once using what’s called a
multiple unit patch clamp technique.
By eavesdropping on the interactions
among neurons, researchers learned
what synaptic currents were being gen-
erated and where.

In addition, they gathered data on
gene activity within neurons—as an indi-
cator of which discrete ion channels are
present. In most neurons, a dozen or more
types of these pores regulate ion flow. The
Blue Brain simulation specifies
which ones are present in each
neuron. They also captured the
precise connecting points of
each neuron, by injecting dye
once they were done recording
the electrical activity. “The
details are accurate, down to the micron,”
for each contact point of each nerve fiber,
adds Phil Goodman, MD, professor of
Internal Medicine and Biomedical
Engineering at the University of Nevada,
Reno, who collaborated on Blue Brain.

“It is a simulation, in time and space, of
cells in real life.”

So far, the project has reproduced
the architecture and electrical proper-
ties of a single cortical column of a two-
week-old rat. The living cerebral cor-
tex is comprised of millions of such
columns, with each column
consisting of a vertical stack of
six layers of over 400 types of
neurons. The cortex column is
has a blueprint which is quite
similar from mouse to man and
across brain regions with only
subtle variations.

The Blue Brain researchers
can probe the simulated corti-
cal column with simulated
electrodes. As in Edelman’s
lab, once a few stimulations
are fed in, the simulation

eeps going with its own
intrinsic activity. For example,
if thalamic fibers arriving at a
deep layer of the cortical col-
umn are stimulated, the activ-
ity spreads, and finally the
most superficial layer lights up.
Markram notes that laboratory
experiments failed to make
this observation because they
failed to listen in at the super-
ficial layer. Thus, the simulation has
already generated observations that
could easily be missed in the lab, sug-
gesting how simulations can guide
brain research.

In the next six months, the Blue
Brain project plans to publish “key
insights never seen before in the neo-
cortical column,” Markram says. “By the
end of the year we will publish the entire
circuit with the blueprint. It’s like the
genome map—it’s a comprehensive
description of the neocortical column.”

“It took 15 years to get the data for
this small piece of brain,” Markram
says. “Every week the model becomes
more biological,” he adds. “It’s very

much like a real little bit of tissue.”
And now that they’ve built one cortical
column, building another is a simple
task. “We can (now) push a button and
build an unlimited amount of neurons
automatically.” The goal is to build

up the brain from this discrete piece.

There’s still a need for more data
about brain anatomy, Markram says.
Some neuroanatomists are working
toward a map to locate every single neu-
ron in the human brain. This so-called
“connectome,” says Markram, will
undoubtedly help the next generation of
brain simulation. Javier DeFelipe, PhD,
from the Cajal Institute in Madrid has
joined the project to provide Blue Brain
with data at the electron microscopic
level. “Blue Brain is hungry for data,”
Markram says.

A POCKET-SIZED
SIMULATED BRAIN:
NEUROGRID CHIPS

To simulate the human brain, to
really know how we think, is not a
research problem many can take on.
Electricity alone for a supercomputer to
simulate a million neurons eats through
$200,000 a month, restricting brain
simulations to the very few able to get
that kind of funding. “This is some-
thing we want to change,” says
Kwabena Boahen, PhD, associate pro-
fessor of bioengineering and the princi-
pal investigator for Brains in Silicon at
Stanford University. “If we can create a
tool to allow a lot of people to play at
this scale, as a community, we will
progress faster.”

To that end, Boahen and members of
his lab have developed the Neurogrid
chip with funding from the NIH
Director's Pioneer Award Program. No
bigger than a fingernail, 16 of these
chips will be assembled in an iPod-sized
device that can do what a supercomput-
er does—simulate a million neurons—at
only $40,000. The Neurogrid chips have
been received from the silicon foundry
and should allow the group to emulate a
million neurons in the cortex in real
time at a thousandth of the cost of
supercomputing. “Everybody can play
now,” says Boahen. “Not just IBM.”

“We can (now) push a button and build an unlimited
amount of neurons automatically,” Markram says.

The Neurogrid chip works the same
way the brain does, Boahen says. Its cir-
cuitry is analog because that is the way
neurons compute: They sum their inputs
continuously, not discretely. It is only
past a certain threshold that the process
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becomes digital, generating a spike of
electrical activity—all or nothing (the
spike is like a one; lack of spike, a zero).
“Instead of using transistors as
switches, I can build a capacitor and
sum currents and get the same voltage
on the capacitor that a neuron makes,”
Boahen says. With one transistor and a
capacitor, he says, you can solve a dif-
ferential equation that would take a
thousand transistors in the traditional
arrangement in a computer.
Dharmendra S. Modha, PhD, man-
ager of cognitive computing at IBM’s
Almaden Research Center in San Jose,

A Neurogrid chip (Neurocore) mounted on a test printed circuit board. Each Neurocore has
65,536 programmable neurons in 162 mm? of silicon. Sixteen Neurocores connected together
will form the first hardware system with over one million model neurons operating in real-
time, while consuming less than 10 Watts and taking up less space than a paperback book.
Courtesy of Rodrigo Alvarez and Kwabena Boahen, Brains in Silicon, Stanford University.

and a collaborator of Boahen’s, says
“Neurogrid is a genuine technical break-
through. It has the potential to trans-
form computational neuroscience.”
Modha cites the mouse cortex model
that his team has created as a prime
example. Their simulation shows the
oscillations present in living brains just
as Edelman’s do and runs “in near real

time” on a 4096 processor BlueGene/L
supercomputer with a terabyte of mem-
ory. Modha explains that even so, that
was still seven to ten times slower than
the action in the rodent brains.
Obviously, the requirements for
brain simulation outstrip the available
hardware unless alternatives such as
Neurogrid or others are achieved. “The

“If we can create a tool to allow a lot of people to play
at this scale, as a community, we will progress faster,”
says Kwabena Boahen, who, with colleagues, has
developed the Neorogrid chip.
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brain that Mother Nature has created
is enormously complex,” Modha says.
“Any attempt to emulate it is always a
radical simplification.”

Edelman, too, is looking for ways to
simulate the brain using less computing
power. He can currently simulate 10
million neurons and half a billion
synapses. But the human cortex has at
least 3,000 times that many neurons
and almost a million times more con-
nections. He says his group has designed
and built their own completely new
computer architecture in order to be
able to add regional microcircuit
details into their generic cortex simu-
lated so far. Their simulations to-date
have used a Beowulf cluster of 64 inter-
active processors. “Beowulf is seven
feet high and 250 to 300 pounds,”
Edelman says. The new system—
which hasn’t yet been described in a
published paper—*“is about 10 inches
by three inches and weighs a few
pounds. It can be stuffed inside a brain-
based device and is more powerful.”

Markram is also starting to feel con-
strained. “Our BlueGene supercomputer
is only just enough to launch this proj-
ect. It is enough to simulate about
50,000 fully complex neurons close to
real-time. Much more power will be
needed to go beyond this.”

SIMULATED BRAINS
IN THE REAL WORLD:
THROW IT A BONE

Simulated brains on computers may
be interesting research, but like real
brains, they are best understood by how
they respond to the real world. To test
simulated brains in real world settings,
some researchers, such as Edelman, use
robot-like devices; others use computer
avatars; and still others, with a focus on
computer vision, struggle to achieve
object recognition.

Edelman emphasizes that real world
interactions have shaped brain evolu-
tion. He has formulated a theory he
calls neural Darwinism focused on the
role of reward as a driver of brain evolu-
tion. “The brain is embodied, and the
body and brain are embedded in the
real world environment,” Edelman says.
“And that environment, enormously
rich, provides the reward that drives
real brains to make choices.”

Edelman has tested this theory
using “embodied” devices run by a
brain-based network. These brain-
based devices, called “the Darwin

series,” are fitted with cameras and
microphones that serve as their eyes
and ears, and they can sense conduc-
tance (“taste”) between their grippers.

Darwin VII ran on a brain simula-
tion that included elements of the
reward circuitry of the mammalian
brain. The knee-high device started
out randomly picking up little blocks
placed in its roaming zone. One set
had stripes, the others, spots. One pat-
tern had high conductance, the other,
low conductance. High conductance
was arbitrarily rewarded, strengthening
the appropriate connections in the

brain-based network. This eventually
led the Darwin to pick up only this one
type of block and ignore the other.

As in the brain, strengthening and
weakening of synapses determines if
neurons next in line will fire, Edelman
says. “Just like synapses act in real
brains, the next one won'’t necessarily
fire unless enough stimulation occurs.”

Experience changed the synaptic
strength. In other words, the Darwin
learns.

This reinforced behavior is exactly
equivalent to how mammals learn to
choose what to eat based on taste.

As Darwin Xl learned to navigate mazes, its hippocampus exhibited responses similar to those
seen in rats engaged in the same task. Courtesy of Jason Fleischer/The Neurosciences Institute.
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After all, taste is a random function of
the chemicals in food detected by the
olfactory system. The Darwin’s sensing
of the conductance was equivalent to
the mammal’s ability to taste food.
“The world is not a coded piece of
tape. It can’t be explicitly contained in
an algorithm,” Edelman says. A brain-
based device, with a value system,
learns by making mistakes. “Hook that
to a Turing machine and what you will
get is not artificial intelligence, but an
entirely new machine,” he says—for

threat behavior. The happy reception is
elicited by crouching with soothing
words—and petting on a touch pad.

FEEDING THE WORLD
INTO THE BRAIN AND
BACK AGAIN

The brain remodels itself in response
to perceptions through its sense organs.
Thus, simulators need to tackle these
brain accessories as well in order to
recreate cognition.

Object recognition is vital for a vir-

“The brain is embodied, and the body and brain
are embedded in the real world environment,”

Edelman says. “And that environment,
enormously rich, provides the reward that
drives real brains to make choices.”

example, an aerial drone that could
decide on its own about threats.

Though one might think the Darwin
device hovers on the brink of con-
sciousness, a lot still separates these
simulations from actual brain processes.
Phil Goodman emphasizes the role of
intention and emotion in mammalian
brain action. He embodies simulated
brain circuitry through projection of a
virtual device, an avatar, similar to
what video gamers are used to seeing
and controlling.

One of his avatars is a dog with pre-
programmed behaviors: It starts out
lying down, gives a threatening bark
while sitting up, or engages in panting
and tail-wagging while standing.
Sensors allow the simulated brain that
is steering the avatar to see and hear. So
much of communication of emotions is
subliminal that Goodman says, “if (an
avatar) is to be social, it needs to inter-
act with our own bodies.” So his model
incorporates aspects of the emotional
processing regions of the brain, the so
called limbic system.

A supercomputer runs programs that
process sensory input, producing proba-
bilities of neuronal firing, which in turn
trigger behavior. A stranger’s posture
and actions elicit the appropriate reac-
tion of the projected canine. Upright
posture with a raised arm will trigger the
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tual or a material brain-based device
such as the Darwin series or Goodman’s
avatars. Yet it has been one of the most
challenging tasks for artificial intelli-

gence. Goodman uses fairly primitive
visual processing in his model, but
Thomas Serre, PhD, a postdoc work-
ing with Tomaso Poggio, PhD, at the
Massachusetts Institute of Technology,
has recreated in a machine the ability
to perceive objects when flashed at the
threshold of human visual perception.
Remarkably, the simulation performs
as well as people (as described in a
News Byte in the Summer 2007 issue
of Biomedical Computation Review
http://biomedicalcomputationreview.or
¢/3/3/4.pdf).

Serre’s experiment was limited, how-
ever, to the brain’s response to an image
flashed for less than 150 milliseconds.
Thus, it provides just a skeleton of a
complete theory of vision, Serre says.
He’s now working on what happens
beyond the first 150 milliseconds of
visual processing—“when you move
your eyes and shift attention.”

The visual system involves a com-
plex of more than 30 brain areas prop-
agating signals from the retina through
the visual cortex to the region of motor
cortex that controls how the person (or
the simulator) responds. Living brain
also contains back projections, echoing
all the way back to the primary visual
area that receives the initial signals

Schematic of a virtual neurorobotic system. By creating an avatar of a robot, Goodman and
his colleagues avoid the complex engineering of the physical robot. The virtual robot can
still respond to environmental stimuli provided through a mouse pad, microphone and cam-
era. Reprinted from Goodman et al., Virtual Neurorobotics (VNR) to Accelerate Development
of Plausible Neuromorphic Brain Architectures, Frontiers in Neurorobotics, (2008) 2:123:128.
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from the retina. Vision researchers sus-
pect these back connections may be
the way that the visual system can pick
out a target object from complex
scenes. “By adding back projections to
the model, and allowing one shift in
attention, to one part of the image, we
are (now) able to mimic the next level
of performance of a human observer

when the image is left
just 30 ms longer on
the  screen, just
enough for people to
shift their attention
once,” Serre says.
Boahen at Stanford
heads a team working
on recreating the
basics of different parts
of the perceiving brain.
Much of the circuitry
they plan to model will
include back projec-
tions. Boahen agrees
that feedback likely
mediates attention, as
competing firing is sup-
pressed. As with other
brain simulations, his
also shows synchrony,
the living rhythms of the brain, includ-
ing gamma waves with attention.

To find out what the oscillations
mean for visual attention, team mem-
ber Sridharan Devarajan and Stanford
neurobiologist Eric Knudsen, PhD, are
working to understand the wiring in a
barn owl’s tectum, the brain area that
controls gaze. Other collaborators are

The optic tectum (OT) is a brain structure important
for gaze in birds and still present in mammalian
brains. Boahen’s collaboration is building a model of
the OT on a silicon microchip while parallel efforts by
Eric Knudsen'’s team attempt to uncover its biological
properties in living brain slices. Below left, we see a
cross-section of the bird brain through both the OT
and an area that connects with it, the isthmic nucleus
(ipc, stained green). The arrow points to a green line
marking the location of the close-up image shown at
left. The close-up shows nerve fibers in the OT
(stained purple) with cell fibers (axons) in green arriv-
ing from the ipc. Images courtesy of Dr. Alex Goddard,
postdoctoral researcher in the Knudsen laboratory.

working with Boahen to simulate the
wiring of the frontal eye fields in mon-
keys, an area that allows primates to
gauge where attention is needed. This
brain area evolved in the social setting
of primate life, allowing monkeys to
suppress a direct gaze at a superior mon-
key while still attending to what needs
to be watched—covertly. These brain
regions feed forward as well as back to
higher and more basic levels of visual
processing in the brain. Thus, simula-
tions of this area will help researchers
to understand the role of feedback cir-
cuits in perception.

COMPUTER
CONSCIOUSNESS

Where are the eavesdroppers and
engineers going with all this? Better
business machines may be IBM’s
mantra. Modha’s favorite saying is that
the mind arises from the wetware of the
brain. “The quickest and cheapest way
to engineer mind-like intelligence into
machines is to reverse engineer the
structure, function, and dynamics of
the brain” with its low power consump-
tion and compact size, Modha says.
“This is our quest.”

Some may be scared by this quest.
Others eagerly await the emergence of
machine intelligence. Eventually, brain
scientists hope to simulate the effect of
strokes, tumors, or neurological disor-
ders such as Alzheimer’s or Parkinson’s
disease to understand how they derail
brain dynamics.

Edelman states frankly his inten-
tion: to craft a conscious artifact.
“Philosophers have owned the field of
consciousness research from time
immemorial. What could be more
romantic, remarkable or valuable,”
Edelman says, “than to take on their
quest? Right now, you might say, I am
going for broke.” []

Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures 17



The o

Institutes of Health

are on a mission: To
understand and tackle

the problems of human
health. To make that
daunting problem
approachable, 15 of

the 20 institutes divwy up
human health problems
by body part (eye, teeth,
heart/lung, etc.) or disease
type (infectious diseases,
cancer, neurological disease,

mental health, etc.). >
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BRINGING THE

Fruits of (Bmputation

TO BEAR ON

Human Health:
1t5 a Tough Job

But tEaNIH

Has to Do It

By Katharine Miller



(o

hese so-called categorical institutes,

driven as they are by a desire to under-

stand their chunk of the health puzzle,

invest in computational biology
research almost incidentally. “Many institute
people might say: We want to fund good sci-
ence and if it happens to require computation
then we’ll fund computation,” says Karin
Remington, PhD, director of the Center for
Bioinformatics and Computational Biology
within the National Institute for General
Medical Sciences (NIGMS).

But because computation provides tools that
can be useful in many categories of biology and
medicine, a large portion of the computational
research portfolio (how much is actually

coordinate computational research across its
institutes. It must avoid duplication of effort
without stifling innovation, and lead the devel-
opment of common approaches, including com-
mon vocabularies and common data reposito-
ries. And, say some, there should be a far greater
investment in computational resources to deal
with the flood of high-throughput data.

In the end, when these challenges are met,
it will have been worth the effort, says
Gallahan. “If you can give researchers a bioin-
formatics tool that will allow them to replace
an animal model or allow them to assay some-
thing in multi-dimensional research rather
then on just one parameter, then that’s going
to help everybody.”

e have to do a better job of connecting the
RO1 investigator—the bread and butter
investigator of the NIH in general—with
these computational approaches,” says Dan Gallahan.

unclear) is funded by the non-categorical insti-
tutes and centers. These include the National
Library of Medicine (NLM), the National
Human Genome Research Institute (NHGRI),
NIGMS, and the National Institute of
Biomedical Imaging and Bioengineering
(NIBIB), and the National Center for Research
Resources (NCRR).

How can the NIH ensure that its investment
in computational resources across all the insti-
tutes—categorical and non-categorical—really
serves the NIH mission? “We have to do a bet-
ter job of connecting the RO1 investigator—the
bread and butter investigator of the NIH in gen-
eral—with these computational approaches,”
says Dan Gallahan, PhD, deputy director for
the Division of Cancer Biology and a program
officer at the National Cancer Institute (NCI).

Here, we’ve interviewed a small group of
NIH staff people who are immersed in computa-
tional research: They’re all part of the computa-
tional choir, if you will. Their perspective pro-
vides, we hope, an interesting peek into the way
the NIH as an institution thinks about how to
bring the fruits of computation home to the cat-
egorical sciences.

It will be a tough job, they say, requiring that
computational biologists reach across institute
boundaries as well as discipline boundaries. For
its part, the NIH must facilitate such inter-dis-
ciplinary cooperation and find better ways to
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BRIDGE THE
CULTURE GAP

Right now, computational and biomedical
research travel largely on uncoordinated paral-
lel tracks. On the one hand, many biomedical
scientists don’t understand the ways that com-
putation could potentially help their research,
so they don’t know what to ask of computa-
tional scientists. On the other hand, computa-
tional scientists aren’t exactly sitting around
waiting for the biomedical researchers to brain-
storm good questions. They have their own
research aims.

“People might make an algorithmic advance
that will eventually have some impact in bio-
medical research but it’s not a coordinated
effort,” Remington says. The two fields speak
different languages, “so it’s really tough to trans-
late state of the art developments in computer
science and math into things that will be useful
in biomedical research.”

So the question for the NIH is how to leap
over this sociological barrier. Of course there
are a few people who do both computation and
biomedical research. The National Centers for
Biomedical Computing (NCBCs) are rich with
people who do both, Remington says.
“Immersed in NCBC-land, you get a different
perspective. But NCBC-land is a very biased
and blessed community. It’s a good model to

www.biomedicalcomputationreview.org



follow, but it’s not the way that most of our com-  cross-disciplines like biomathematics to increase

munity works.” the pool of people who can cut across the divide,
Ideally, says Remington, the NCBCs could  proposes Ackerman.
serve as a prototype for the kind of environ- Cross-training is not just about exposing

mathematicians and computer
scientists to biology. It also
goes the other way—clinicians

and biologists need to under-

( ( hat we Wad nt to stand and be comfortable with
. the technical side. Toward

do IS make [the that end, the NIH has estab-

lished a program that exposes

NC BCS] more Of medical residents and clinical

physicians to biomedical engi-

the standard operating procedure,  neering research for a year or

two. “It keeps it real, to have

that the experimentalists will be clinicians interacting closely
with the biomedical imaging

i and bioengineering research

able to communicate what they e s Zohera. Colan,

PhD, a program director with

need to the math and ComDUter NIBIB. While not exclusively

. computational, Cohen points
science people and really forge out, “It involves computation

in that a lot of our grantees are

relationships and communication doing computational work.”

There’s also another bridge

structures to advance things that needs to be crossed, says
Jennie Larkin, PhD, a pro-

|n a more Coord I nated Wayl " gram officer with the National

Heart, Lung and Blood
Ka rl N Re m | N gto N SayS . Institute (NHLBI): the bridge

to the open source movement.
If tools are freely available,
researchers funded by categori-
cal institutes will be more like-
ment that the NIH wants to build, where peo-  ly to make use of them. Thus, says Larkin, “the
ple are talking together in a common language. = NIH needs better clarity about how to support
“What we want to do is make it more of the people who are trying to develop and support
standard operating procedure, that the experi-  freely available open-access computing tools
mentalists will be able to communicate what and resources.” Since this sort of open-source
they need to the math and computer science
people and really forge relationships and com-
munication structures to advance things in a
more coordinated way,” Remington says. “We

could really accelerate progress in our basic i .

biology research efforts if we could drive the arin RemlngtOn Wou’d
computer algorithm development to fit the ’ 0 )

needs of these science areas more directly.” ve to aSk blomedlca’

Another way to bridge the culture gap is to "
train the next generation of scientists in mul- typ es. ,f cOm p ut er
tiple disciplines. Right now, it’s hard to find Cy C ’ es an d ’
people with the mathematical skills necessary alqor ,
to support NLM’s computational projects, : g th ms wer en ’t dan
says Michael Ackerman, PhD, assistant ISS ue an d yo u cou ,d do an

director for High Performance Computing

and Communications at the NLM. yOU Waﬂted tO do What

“Mathematicians end up in the area of bio- ,

computation sideways—for all the right rea- WOu d

sons; but I'm not sure if we have a program you Want tO kﬂOW7 "
that sponsors biomathematics,” he says.

The NIH could initiate training programs in

ything
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model is accepted in other areas of computer
science and self-sustaining (albeit through dif-
ferent mechanisms), Larkin says it’s time for the
NIH to think through ways to achieve the same.

LEARN FROM SUCCESSES

To date, successful efforts to bring computa-
tion to the categorical sciences have flowed
mostly from the many large centers that have
received and continue to receive NIH support,
say the NIH staffers interviewed.

“These Center programs are a good
approach,” Gallahan says. “I would extend that
to make it more diverse and have more of them.”

Michael Marron, PhD, director of the
Division of Biomedical Technology at the
NCRR, agrees: There’s a need for much greater
investment in infrastructure and enabling tech-
nologies, and large centers are a great way to
achieve that.

Marron points to the Biomedical Technology
Research Resources (BTRRs) as a long-standing
example. For fifty years, the NCRR has invest-
ed in these centers, a subset of which is devoted
exclusively to Informatics Resources. The
“Resources,” as they’re commonly dubbed,
develop and disseminate a wide range of soft-
ware for the biomedical community, includ-
ing—to mention just a few—software for
molecular dynamics (such as the widely-used
AMBER and CHARMM), visualization (such
as the popular VMD), and genetic epidemiolo-
gy (SAGE). And new centers are still being cre-
ated, including one established at UCSD in
2008 to develop computational ways to analyze
mass spectrometry data.

hese Center
programs are

(

probably @ good

approach," Gallahan says.
#| would extend that 10
make it more diverse and
have more of them.”

Significantly, Marron says, the BTRRs are
evaluated and renewed based on whether their
products are disseminated and adopted for bio-
medical research. “The important thing is to get
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the science done,” Marron says. Many of the
Resources offer help-desks as well as software
training—not only for students, but for senior
biomedical researchers as well. And their prin-
cipal investigators attend a broad range of con-
ferences—including categorical science confer-
ences—to spread the word about their tools.

When the NIH Roadmap came out, many at
NCRR saw that as an affirmation of what
they’d been doing for a long time. “The
National Centers for Biomedical Computing
(NCBC:s) are very similar to the [BTRRs] that
we’ve funded for years and that’s of course by
design—because it’s a model that works,”
Marron says. “The NCBC grants complement
the BTRRs. And together, they represent the
most coordinated NIH activity for support of
computation in medicine.”

The NCBCs promote collaborations between
computational researchers and biologists by
focusing the computational research around spe-
cific driving biological problems (DBPs). The
NCBC program is a national network that’s
envisioned as having “both hubs and spokes,”
says Cohen. People from outside the NCBC
communities can draw on the resources created
at these hub centers, expanding the community.

To further that aim, the NIH established a
program to fund collaborating RO1s—individual
investigator-driven research projects that would
collaborate with the NCBCs to develop tools
with a specific biomedical focus. As a result, the
NCBCs have succeeded in connecting up with a
variety of collaborating RO1s, many of which are
funded by categorical institutes. “This is a great

model for the future,” Cohen says.

At the NCI, a similar program—the
Collaborative Research in Integrative
Cancer Biology and the Tumor
Microenvironments Program—was mod-
eled on the NCBC collaborative ROls.
It’s just starting now, and mandates that

individual computational biology inves-
tigators within the Integrative Cancer
Biology Program and the Tumor

Microenvironment Network program

collaborate with people who are not in

those groups—ensuring that the pro-
gram expands to new people and com-
munities. “That again is an example
of an active program trying to bring
the rest of the community in,”
Gallahan says. “That’s exactly what

it’s designed to do.”
The NIH is also learning to struc-
ture program announcements to
bring together computational and biomedical
researchers.  For example, a program for
Collaborative Research in Computational
Neuroscience (CRCNS, for which the National
Science Foundation serves as lead, with NIH par-
ticipation) mandates participation by key person-



NI Challenge Grants:

Stimulating Biomedical Computation

he federal government’s recently passed stimulus package—the Computation and the
American Recovery and Reinvestment Act (ARRA)—provides NIH Challenge Grant
$10.4 billion to the National Institutes of Health, all dollars that High Priority Topics
must be spent in 2009-2010. The goal: to stimulate the U.S. economy
through support of scientific research. And, if recently announced T

Challenge Grants are any indication, ARRA will also stimulate computa-
tional research in biomedicine.

On March 5, the NIH announced that at least $200 million of the
ARRA funds will go to a new program called the NIH Challenge Grants
in Health and Science Research. According to the announcement, the
idea is to give a two-year “jumpstart” to specific scientific and health
research challenges in biomedical and behavioral research.

The announcement identified 15 “challenge areas” that encom-
passed 878 “challenge topics,” 207 of which are deemed “high
priority.” One of the 15 broad challenge areas is entirely computa-
tional. Called “Informational Technology for Processing Health
Care Data,” it covers four
percent of the topics. But

many of the other topics— NIH Chall.enge
under other broad chal- Grant Topics by
lenge areas—are highly Broad Challenge Area

computational as well, as
shown by the charts on
this page. “It’s a step in
the right direction,” says
NCRR’s Michael Marron.

In the two charts shown here,
Biomedical Computation Review
(BCR) conducted our own review
of the Challenge Grant RFA. The
chart at right shows all 878 topics
categorized by broad challenge
area. The chart above shows the
207 “high priority” topics catego-
rized by the extent to which they
are fully computational, partially
computational (i.e., the solution
will involve both computational
and non-computational approach-
es), or potentially computational
(i.e., the topic addresses a problem
that could be addressed by com-
putational approaches if someone
with that expertise applies).
Courtesy of David Paik, PhD,
assistant professor of Radiology at
Stanford University and executive
editor for BCR.




nel from both computation and neuroscience. INCREASE FUNDING
Likewise the Physiome program announcement FOR COMPUTATION
required leadership representation from both Despite all the great work being done by
the modeling and biomedicine communities.  the various centers, Marron says, there simply
The Bioengineering Research Partnership  isn’t enough money devoted to this area. “We
(BRP) program establishes interdisciplinary  ¢ould easily fund two to three times what we

partnerships between people from both biomed- o and still not be exhausting high quality
icine and engineering, with the aim that they  areas,” he says.

create a deliverable for the biomedical research The NIH, Marron says, is really behind in
community within a ten-year time frame. And  spending on computation and informatics com-
each of the 34 Clinical Translational Science  pared to the National Science Foundation, the
Awards, which are geared toward remaking the  Department of Energy, and many pharmaceuti-
clinical research enterprise, includes a bioinfor-  ¢a] companies. According to Marron’s best
matics focus. guess, less than two to four percent of the NIH

The Biomedical Information‘ Resour(j_e budget goes to computation and bioinformatics
Network (BIRN) and the Cancer Biology Grid grants. “It’s peanuts,” he says. He thinks the

(caBIG) serve up a different model of connect-  jnyestment should be closer to 25 percent.

ing computation and biomedicine—by provid-  “There are many challenging computational
ing biologists and physicians with platforms that  areas where we could see rapid advances if we
allow them to share data and tools. could capture the computational tools to do it.”

The BIRN involved categorical sciences from Specifically, Marron favors much more fund-

the get-go, says Michael Huerta, PhD1 director  ing for the development of enabling activities
of the National Database for Autism Research |ike software and infrastructure. He'd like to see

and associate director at the National Institute of  ore efforts like BIRN, that create processes,
Mental. Health (NIMH). NCRR 1aur.1ched the  protocols, sharing agreements and middleware,
BIRN in 2001 to develop a national infrastruc-  “3]] the stuff that makes formation of a virtual
ture for biomedical research using neuroscience  rganization barrier-free.”

as a test-bed. When NCRR was just starting to And the NCBCs, he says, are a good start.
put BIRN together, Huerta says, the institute’s  “We would like to fund more and I think there
leadership engaged people in the categorical  ¢hould be more.”

institutes to find out what the biomedical In addition, Marron believes the NIH should
: “«
research community needed. “BIRN has grown  jpyest more to ensure the effective use of mas-
but alwgys.wuh the gategc?rlcgl institutes kat sive amounts of data, Marron says. “The vast
posted, invited to meetings, invited to the review  amount of data collected today will never be
of grant applications and so forth,” Huerta says.  yiewed by humans, so you have to have tools to
“That proactive effort has transformed BIRN g this,” he says. And that raises huge questions
from a good idea to an infrastructure that is  of quality control, “How do you know what

increasingly important to neuroscience.” you're even looking at?” he asks. “You need to
BIRN confederates data and tools so that  have that built into your software tools so it’s

users can access them from across the network ¢ just garbage-in/garbage-out.

regardless of where they are stored or housed. Marron would like to see the NIH invest in
“And it does so in an invisible way,” Huerta  pew ways to build databases; discover data; visu-
says. “You don’t necessarily know where you're  jlize data; and analyze data. “We haven’t begun
getting things from.” Nowadays, with the BIRN ¢4 firm up tools for that. We're almost still at the
platform reaching production mode, NCRR is  |evel of spreadsheets.” Just finding usable data is
very interested in expanding BIRN to other  pearly impossible. “We should be supporting the
domains, Huerta adds. “I'm sure they’'d be  development of machine-readable registries of
delighted if folks doing diabetes or heart/lung  data, so your machine can find it,” he says. And

research would start to increasingly use BIRN.”  hen there’s the problem of combining data of
) A ) ! _
The NCT's caBIG platform is similar, with a  varjous sorts (gene expression, proteomics and

set of standardized rules and a common vocab-  tissue mapping, for example) to come up with
ulary for applications, tools, and data shared  meaningful analyses. “It’s clear that getting a
through its infrastructure. Both BIRN and  handle on the etiology of disease is a multi-
caBIG were launched within specific research  dimensional problem,” he says.

communities (neuroscience and cancer, And more computer scientists need to be
respectively) but have potentially broader  engaged with the NIH, Marron says. “If we sup-
applicability—and may eventually link up to port 100 to 200 computer scientist awards at the
one another. “As time has gone on, these two  NIH, I'd be surprised. We should be supporting
platforms are getting closer to each other,”  thousands, from natural language, to database
Huerta says, “so that before too long, I think in  and networking experts,” he says, all with a
the next generation, you'll be able to work  devotion to improving biomedical research, of

” .
across them. course. Plus, there’s a need for computation
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associated with new experimental tools, such as
analyzing fluid dynamics for advanced ultracen-
trifugation techniques; or applying radar-imag-
ing techniques to high frequency MRI.

Marron also points to a lack of computer
expertise in the biomedical research community
at large compared to, say, the physics or astron-
omy communities. Clinicians and clinical insti-
tutions are particularly skittish about things like
choosing a computer system or accidentally
leaking out private data, which can cause them
a huge amount of grief, he says. “All of this is
more of an argument for why one needs to
invest in Centers like the NCBCs—to provide
centers of expertise so that everyone doesn’t
need to develop them on their own.”

AVOID DUPLICATION
WHILE LETTING A THOUSAND
FLOWERS BLOOM

In general, the NIH avoids funding redun-
dant research, say the interviewed program offi-
cers. Even for computation, which is widely dis-
persed, the grant review process weeds out pro-
posals that duplicate existing grants. And com-
munication and coordination efforts ensure that
where funded research has enough in common,
NIH program officers will bring researchers
together to make alliances or to work together.

On the other hand, it can be hard to avoid
duplication for computational pieces that are
not the main focus of a grant, says Remington.
“I hesitate to even think how much money
NIH invests in software engineers on ROl
grants to reproduce the same sorts of basic data-
base dissemination Web site tools over and
over again when really we could have one cen-
tral repository and do that sort of thing easily as
a service for the research community.” These
infrastructure problems may eventually be a
thing of the past as more people migrate to
common platforms like BIRN or caBIG, Huerta
says. But other kinds of duplicated effort remain

that are tougher to tackle, such as redundancy
in algorithms.

A few years ago, when the NLM asked peo-
ple to rewrite their algorithms in a standard for-
mat to be archived and maintained by NLM,
they got a surprising number of different algo-
rithms that did the same thing, Ackerman says.
Redundancy arises because people think they
can do better than what already exists. “So
you're stuck with the redundancy to find out
whether it can be done better,” he says. And it’s
nearly impossible to discover why a person
chooses one algorithm over another. “Is it better
for one type of data than another? That’s a nut
we've never cracked.”

The same problem exists at the NCI,
Gallahan says. For example, a number of groups
have independently developed microarray
analysis programs. “The NCI Center for
Bioinformatics and its director, Ken Buetow,
really have had to come to grips with what to
do with all of these programs that we’re sup-
porting,” he says. It’s a daunting task partly
because scientists by their nature want to
explore things in their own ways and are wed-
ded to their application and their own research
area. “So that can spawn redundancy with an ‘I
can do that better’ sort of attitude,” he says.
“You have a lot of people pursuing different
avenues, all with the best intentions.”

Larkin discovered the same phenomenon
when she asked her NHLBI systems biology
grantees whether they’d be interested in some
way to facilitate sharing of code, software or
models. Could they leapfrog off others’ work in
order to go farther and faster! The response was
mixed. In addition to intellectual property con-
cerns, the researchers had another problem:
Sometimes solutions are over-specified so that
in fact it’s meaningless to share code. “Just
because it works perfectly for one researcher
doesn’t mean it will be helpful to anyone else,”
she says. “There also may be more than one

( e were surprised at the number of different
algorithms that do the same thing,” Ackerman
says. “And then the question, which we’ve

never gotten an answer to—why did you you choose Max’s
algorithm rather than Joe’s algorithm? Is it better for one type
of data than another? That's a nut we’ve never cracked.”
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effort,” Larkin says.

times you end up wit
|—a radial instead of a
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good solution to a problem. Sometimes it’s a real
loss to reinvent the wheel because it’s a wasted
effort. But other times you end up with a better
wheel—a radial instead of a Conestoga wagon
wheel, for example.”

One of the best ways to reduce duplication,
Larkin says, is for the NIH to develop efficient
ways to share software and other computational
tools—which remain

ometimes it's a real loss
to reinvent the wheel

because It's a wasted
ngut other

h a better

C onestoga wagon wheel,
for example.”

hard to find even when
they are posted to the web. The NIH already
supports a variety of such efforts.

The Biositemaps project launched by the
NCBCs has been discussed in this magazine
before (see Winter 2008/09 Issue of BCR). “It
might be a real lightweight, decentralized solu-
tion,” Larkin says. Many of the categorical insti-
tutes also have their own solutions. caBIG con-
nects resources for NCI researchers. In the neu-
roscience arena there’s the Neuroimaging
Informatics Tools and Resources Clearinghouse
(NITRC), designed to facilitate the dissemina-
tion and adoption of neuroimaging informatics
tools and resources; and the Neuroinformatics
Framework (NIF) provides a concept-based
query language for locating all types of neuro-
science resources—including computational
ones. And heart researchers can turn to the
Cardiovascular Research Grid, while PhysioNet
houses analysis tools for looking at medical time
series data. There are also repositories for vari-
ous categories of tools—for example, Simtk.org
for physics-based models and simulations; or the
ITK/VTK repository for visualization tools.

“So there are many sorts of solutions due to
different cultures in different areas,” Larkin says.
And like other duplicative efforts, we don’t yet
know which ones are the best ones. “I’d be loath
to restrict the solution set now,” Larkin says,
“because we might guess wrong.”
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STRATEGIZE TRANS-NIH

Bioinformatics and biocomputation cut
across all of the institutes’ research programs.
This makes coordination among the institutes
somewhat challenging. Over the years, a variety
of informal coordinating groups have managed
different trans-NIH programs involving compu-
tation. The Biomedical Information Science
and Technology Initiative Consortium (BISTT)
is perhaps the best-known and longest-lived.
Launched in 2000, it brought together program
officers from across all the institutes. And it
developed the NCBC program.

“The NCBC:s are our best example of how to
do things together, but it’s a teeny-tiny exam-
ple,” Remington says. “It needs to be taken up a
notch...to achieve synergy in an area like com-
putation that cuts across so many fields.”

What’s missing, as Remington sees it, is a
data-driven, comprehensive strategy for coor-
dinating computation across the NIH. To
Remington, the problem has two compo-
nents: The lack of information about the
trans-NIH investment in computation; and

the lack of a coordinating group vested with
power to act strategically.
“We have precious little understanding of
what our real investment is across the insti-
tutes,” Remington says. In February 2009, the
NIH launched a database (called Research
Condition and Disease Categorization) that,
for the first time, allows trans-NIH portfolio
analysis. This will help the NIH deliver manda-
tory reports to Congress about its investment in
specific disease areas. “It stands to be a really
big improvement in our relationship with the
public,” Remington comments. But it’s not
likely to help identify the trans-NIH invest-
ment in computation because, Remington says,
it’s built largely on a biomedical vocabulary.
“So to do an analysis on computational net-
works, the word networks will come into play
but it won’t turn up as computer networks. It
will give networks of genes or hospital net-
works,” she says. “The system is ill-tuned
towards anything related to computation.”

Another portfolio-analysis tool called the
Electronic Scientific Portfolio Assistant, or
eSPA, which has been evolving within the
National Institute of Allergy and Infectious
Diseases, allows users to dynamically probe and
poke things to see how money is being spent. In
May of 2008, it was opened up to a pilot pro-
gram involving 17 Institutes and Centers.
According to Huerta, “NIH really is investing
in giving us the informatics capabilities that we
need to know what’s happening.” And though
he hasn’t tried eSPA yet, Huerta has been told
it’s quite powerful. “In the future, this will
empower program officers to know what’s going
on beyond their own portfolio and beyond what
they happen to hear about.”

www.biomedicalcomputationreview.org



Huerta and Remington both hope eSPA
will prove useful for a trans-NIH computation-
al portfolio analysis. “That’s the piece that has
been missing from this BISTI consortium,”

(o

best example of

how to do things
together, but it's a teeny-tiny
example,” Remington says. “It
needs to be taken up a notch...

to achieve synergy in an
area like computation that
cuts across so many fields.”

Remington says. “As functional as it has been
over the years, it has really been unable to look
across institutes in a real data-driven way, to
analyze across the NIH where our investments
are going.”

NIH also lacks a coordination effort vested
with actual authority, says Remington. “BISTT is
really more ad hoc than I think is called for
given the need.” BISTI relies on voluntary par-
ticipation by program officers at multiple insti-
tutes, and some institutes participate more than
others. “It doesn’t have the same sort of strate-

( s functional as [BISTI] has been over the

he NCBCs are our

gic-planning capability as would be best-suited,
[ think, for moving us forward in this area,”
Remington says.

Gallahan agrees. While trans-NIH programs
like BISTI help communicate what’s
going on among the various insti-
tutes, “they don’t have the same sort
of gravitas of resources and public
awareness as things that come from
the Office of the Director, like the
Roadmap, or even some specific pro-
grams at the NCI,” he says.
Admittedly, he says, NCI is less
dependent on BISTI, partly because
its internal resources and overall
scope allow it to frequently act inde-
pendently. “There might be some
benefit to more of a top-down
review of computation with some
power behind it. But where do you
define the point of asking?
Sometimes it’s at the Health and
Human Services Department level,
the NIH level, or we might think it’s
at the NCI level.”

To Remington, the next logical
progression from BISTI is to have a
consortium, perhaps based in the
Office of the Director, that strate-
gizes carefully about where NIH
investments are going and tries to
leverage things that are clearly
trans-NIH. “A group that leverages no-brainers
for us to do together instead of funding over and
over again the same thing, institute by insti-
tute,” she says. Of course each institute will
have its own strategic plans and its own things
they need to do. “But in a cross-cutting area like
informatics and computation,” she says, “we
could really leverage that effort better if we
came together to develop a strategic plan that’s
coordinated, that’s not institute by institute.”

The Roadmap was eye-opening for many at
the NIH, Remington says. “The Institutes start-

years, it has really been unable to look

across institutes in a real data-driven way,

to analyze across NIH where our investments are

going,” says Remington.
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ed to realize how much potential savings there
could be in sharing intellectual capital and
resources. ... And bioinformatics and biocompu-
tation are really a sweet spot of that potential.”

DEVELOP COMMON
APPROACHES

To Huerta, one of the things that’s hindering
the success of biocomputation is the lack of
common approaches—common data formats,
common vocabularies, common ontologies and
common long-term data reposito-

he Institutes st
cealize how M

savings there C
| capital and

And b\O\ﬂ'\:Or
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ries. The NIH needs to take the lead on this
because individual communities won’t do it on
their own, Huerta says. “They’re interested in
the research. They're interested in what genes
are involved in autism or what peptides are
involved in myocardial infarction. They are not
driven by ‘what should we call the peptide,” or
‘what data format should we use?”

It’s particularly problematic for communi-
ties that are organized around a particular data
type that might cross institute boundaries—
for example, signaling data, which is relevant
to NIMH, NHLBI, NCI and others. “How
does NIH encourage the development and use
of common approaches by such research com-
munities!?” he wonders. “They are not going to
organize around these things, and there really
isn’t a way to do this right now. So I see this
as a major need that NIH has. [ call it com-
munity-based solutions for community-wide
needs because the solutions are going to come
from the community to serve the needs of the
community.”

Getting communities to rally around com-
mon approaches requires a different mechanism
than a typical research grant. “Really what folks
need is organizational and operational support.
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We could serve as a way to organize around
these issues where they wouldn’t be self-orga-
nized,” Huerta says. “That’s kind of on the hori-
zon of what NIH needs to start paying attention
to. And in fact we're doing some of that. We
haven’t gotten there yet.”

The NIH also has to address the fact that
common approaches are dynamic and require
ongoing support to be updated, Huerta says.
Cohen agrees, emphasizing the particular need
for long-term data management.

“NIH has to answer some ques-
tions about how to support
large datasets and make them
available after a grant ends,”

Cohen says. Perhaps with the

development of common

approaches, this will become

an easier problem to handle.

Taking it to the next

level, says Gallahan, com-

mon approaches in the com-

putational area will also

help researchers explore

commonality among dis-

eases, which will in turn

help guide ways to inter-

fere with disease. Gallahan

points to a paper pub-

lished last year by Albert-

Laszlo Barabasi, [covered

in the Fall 2007 News

Bytes section of this mag-

azine] that was able to find this sort of inter-

connection among diseases. Thus, Gallahan

says, “Modeling might be able to do scientifically
what we’re unable to do administratively.”

COMPUTATION
IS THE FUTURE

Ask Gallahan why computation matters to
the NCI, and he’ll tell you that it’s the future.
“Much as molecular biology opened the world
at that scale to manipulation, I think computa-
tional biology is going to bridge many of the
challenges we have in dealing with biological
complexity.”

The effort to cure cancer is particularly on
point. Over the last 15 years, Gallahan says,
they haven’t seen as many advances as the
institute would like. “And I think that’s part-
ly because it is such a complex disease,” he
says. The greatest advances have tended to be
very targeted therapies that affect a limited
(albeit important) population. And after treat-
ment with these therapies, sometimes the
tumors reappear, having gained resistance to
the drug. The lesson: The problem of cancer
requires a better understanding of the disease’s
complexity. “And in order to understand and
integrate that, we’re going to need these com-
putational approaches.” []

www.biomedicalcomputationreview.org



Under TheHood

BY BIN DONG

The Implicit Representation

Figure 1. Topological
changes induced by
merging two bubbles.

of Biological Shapes and Forms

maging, geometric modeling, representation and com-

puting of shapes and forms are important components of

modern computational biology. These processes apply

across wide spectra of scales, genotypes and phenotypes, from

microarray imaging for genomics, to neuroimaging of human

brains. One of the most fundamental image processing prob-

lems is the representation of shapes and forms. There are two

popular ways of representing biological shapes: parameteriza-

tion-based (explicit) representation and implicit representa-

tion. Parameterization-based representation codes important

shape information into geometric variables (such as the ver-

tices of a triangle in a triangular mesh, and how the vertices

relate to one another—i.e., whether they are connected by

an edge) and topological variables (such as whether there are

holes in the shape or not, e.g. the difference between a ball

and a donut). In contrast, implicit representations are fre-

quently described via level set functions and their siblings. A

level set function is usually defined to take negative values

inside the shape and positive values outside, and hence its

zero level set (i.e., the set of points on which the function

takes zero values) describes the shape. Both types of repre-
sentations have their own advantages and disadvantages.

The major advantage of using triangular

meshes to represent biological shapes is the

efficiency of data storage and algorithmic

development. We can represent and process

(@) a high-resolution high-accuracy shape

without using excessive physical memory.

However, one drawback of using a triangu-

lated surface is its inflexibility in terms of

(b) topological changes (e.g., merging of two

bubbles). This is rather critical for some

cases. Topological changes affect many

shape-processing procedures, e.g., shape

(c) restoration and segmentation. Whenever

topological alterations occur, the original

triangular mesh becomes degenerate and

demands retriangulation or surface correc-

d) tion. Take shape restoration, for example:

Topological changes may happen so often

that it demands constant shape retriangula-

tion, which makes processing algorithms

computationally inefficient.

DETAILS

Bin Dong is a graduate student in the department of
Mathematics at the University of California, Los Angeles
(UCLA). He is an investigator in the Center for

Computational Biology and the Laboratory of Neuro
Imaging at UCLA. His work focuses on the application
of variational methods and partial differential equations
in medical image processing.

As for implicit representations of
shapes, taking level set functions as an
example, the major advantage is their flexibility in terms of
topological changes. Whenever shape-processing introduces
topological changes, implicit representations are more flexi-
ble and convenient than parameterization-based representa-
tions. Let us look at the simple example in Fig. 1, where we
are animating the merging of two bubbles
in 2-D. From (a) to (d) in Fig. 1, the
two bubbles are growing at a con-
stant speed with their centers
fixed. Topological change hap-
pens at (c), where the two bub-
bles touch and then merge into
one bubble. It is very easy to
implement this motion when the bub-
bles are represented by a level set func-
tion. All we need to do is solve a cer-
tain differential equation. If the
bubbles are parameterized, how-
ever, we would need to constant-
ly check if merging is about to
happen, and when it does, repa-
rameterize the shape. This makes
the computational implementa-
tion rather complicated.

In addition to topological flex-
ibility, implicit representations
are more natural in representing biological shapes for practi-
cal purposes, because the shapes extracted from modern imag-
ing data, e.g., MRI, CT and ultrasound images, are intrinsi-
cally implicitly represented in the first place. Also, since level
set functions are usually defined on standard Euclidean grids,
most level-set based algorithms are very easy to implement.
However, in contrast to the parameterization-based represen-
tations, implicit representations are usually not very efficient
in storing the data. Indeed, surface data, which is essentially
2-D, is implicitly saved as a 3-D function. The problem
becomes more severe when we are dealing with high-resolu-
tion shapes. In general, efficient storage and manipulation of
high-resolution implicit shapes is challenging when we need
to keep all the existing features of the representation.

One example where the level set representation may be
more appropriate is cortical surface restoration, where topo-
logical changes are unavoidable. In Fig. 2, we show how non-
local means (NLM) [1], where the cortex is represented by a
level set function, can automatically remove the many small
isolated bubbles that arise from segmentation errors.

REFERENCES:
[1]. Bin Dong, Jian Ye, Stanley Osher, Ivo Dinov. Level-set-
based nonlocal surface restoration. In Multiscale Modeling and
Simulation, 7(2), 589-598, 2008. []

Figure 2.
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top: original, noisy cortex data;
below: NLM processed cortex.
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SeeingScience

BY KATHARINE MILLER

Building RNA 3-D Structure

function—including its role in disease. However,

the structure of most RNAs is unknown because
their extreme flexibility and high charge make them dif-
ficult to crystallize. In addition, prediction of RNA
structure based only on its nucleotide sequence remains
elusive for all but the smallest molecules.

Aiming to bridge the gap between successful sequence-
based structure prediction codes that predict the structure
of small RNAs and unsuccessful attempts to predict larger
ones, Samuel Flores, PhD, a postdoc in bioengineering at
Stanford University, and his colleagues have developed a
rigid body dynamics software program called RNABuilder.
Because the software relies only on readily available infor-
mation such as base-pairing
contacts (which are often known
even when the full 3-D structure of
the molecule is unknown), it provides
experimentalists with a long-awaited tool
to quickly model possible structures based on
limited experimental information. The predicted
structures and folding pathways provide insight to
guide further experiments.

The structure of RNA is an important key to its

code library. Simbody’s Contact subsystem is used to
economically account for steric and Coulomb repulsion.
Selected bonds are rigidified to reduce the number of
bodies for greater economy. For tRNA and the P4/P6
domain of the Tetrahymena ribozyme, the program has
been shown to recover the correct topology, base-pairing
contacts, and overall structure using only the base-pair-
ing information that was available before the three-
dimensional structure was known. [

DETAILS: RNABuilder is an RNA modeling program
based on Simbios’ Simbody code for multi-body
mechanics, which is freely available as part of the
SimTK toolkit (http://simtk.org/home/simtkcore). A
workshop on using RNABuilder and NAST (see Simbios
News column in this issue) will be held at Stanford
University on June 19, 2009. For more information,
contact Blanca Pineda, bpineda@stanford.edu.

RNABuilder mimics how
RNA is made in nature—
enforcing base-pairing starting
at the 5’ end and finishing with
the 3’ end. It uses Simbody,
SimTK’s Multibody Dynamics

Above, moving from left to right, RNABuilder simulates the fold-
ing of transfer RNA by pulling paired bases together in the order
they may form under biological conditions. Initially, the 5’ end
emerges from the polymerase and begins to base pair according
to the known secondary structure (inset). Progressively, the all-
atom 3-D structure of the tRNA forms.



