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NewsBytes
DNA Shows Surprising

Flexibility
For decades, scientists have believed

that DNA of short lengths (150 base
pairs or fewer) behaves as a relatively
stiff rod—able to quiver a bit, but rarely
forming a circle or tight angle without
help from outside forces. But a new
simulation, reported in the December
issue of Biophysical Journal, puts a kink
in this theory.

“We observed fairly sharp bends that
are inconsistent with classical theory.
We see DNA bending quite a bit,” says
Alexey Onufriev, PhD, assistant profes-
sor of computer science and physics at
Virginia Tech. “If this idea holds up, it
may be a paradigm shift in how we think
about protein-DNA complexes.” 

DNA’s flexibility on this length scale
has implications for DNA packaging,
gene transcription, and gene regulation.

For example, in the nucleosome (the
fundamental unit of DNA packaging),
147 base-pair segments of DNA wrap
1.65 times around a core of proteins.
DNA also twists in and out of loops to
turn certain genes off and on. Under the
old theory, scientists had to reach for ad
hoc explanations, such as helper pro-
teins, to explain how unbendable DNA
could manage these feats. 

Onufriev and doctoral student Jory
Z. Ruscio modeled a nucleosome worth
of DNA (147 base pairs) at the atomic
level. The key to their simulation was
use of the “implicit solvent” method;
rather than modeling every molecule of
water, they modeled water as a continu-
ous mass. This method saves enormous
computing power and speeds up the sim-
ulation by about 100-fold by removing
water’s viscosity—the property that
makes it so hard to move quickly in

swimming pools, Onufriev says.
“Whatever happens conformationally
happens fast,” he says. 

At the same time, water’s thermody-
namic properties are perfectly preserved.
“We cannot ask any questions like what
are the diffusion coefficients, because
those would be skewed. But we can ask
thermodynamic questions—is this con-
formation more preferable than the
other one?” Onufriev says.

This innovation plus use of Virginia
Tech’s super computer, System X,
allowed Onufriev and Ruscio to explore
DNA’s range of motion on a longer
length and time scale than any atomic-
level simulation before them.

Their simulation showed that DNA of
147 base pairs wiggles and bends much
more than traditional theory predicts—and
at a much lower energy cost than expected.
The bonds of the double helix remained
intact in all simulations, so their results are
not an artifact of the DNA simply unravel-
ing to create soft spots.

Onufriev’s results agree nicely with
two independent threads of experimen-
tal evidence that have recently emerged,
says Philip Nelson, PhD, professor of
physics at the University of
Pennsylvania. A 2004 paper showed that
DNA of 100 base pairs spontaneously
forms circles in physiological conditions;
and, using atomic force microscopy,
Nelson’s team recently showed that
DNA of this length kinks more fre-
quently than the old theory predicts. 

The emerging picture finally makes it
clear how nucleosomes, DNA regulatory
loops, and viral packaging are possible,
Nelson says. “No ad hoc mechanisms for
promoting tight bending are needed.” 

“This is one of those beautiful
moments where simulation and theory
and experiment all converge,” he says.
—By Kristin Cobb, PhD

The Geometry of
Adhesion

A single cell caught up in the flow of
blood, air, or water often depends on its
ability to latch onto passing surfaces—in
short, its ability to stick. That’s why
researchers in Germany created a model

Three different images showing the simulation of DNA’s flexibility over a length of 147 base
pairs. Courtesy of Alexey Onufriev.

We see DNA bending quite a bit, says
Alexey Onufriev. If this idea holds up, it

may be a paradigm shift in how we think
about protein-DNA complexes.
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that addresses what geometry makes
some cells stickier than others.
According to their model, reported in
Physical Review Letters in September
2006, a cell that efficiently initiates
adhesion is dotted with elevated recep-
tor patches—knobby protrusions tipped
with receptor molecules. The taller the
patches, the better.

“Once you start thinking about it, it’s
obvious.” says Christian Korn, a PhD
candidate in theoretical physics at the
Max Planck Institute of Colloids and
Interfaces and one of the authors. “You
need these protrusions.”

Cell adhesion requires two steps:
encounter and docking. Korn and
Ulrich Schwarz, PhD, a theoretical bio-
physicist and assistant professor at the
University of Heidelberg, modeled the
encounter step—to identify the cells that
are best at initiating adhesion.  

To create the model, the researchers
simulated spheres sporting receptor
patches and flowing above a flat surface
with the corresponding ligands. The
stickiness of cells was measured by how
long it took for the first receptor-ligand
encounter to occur. Korn and Schwarz
then varied the number, size, and

height of the receptor patches to dis-
cover the optimum receptor patch
geometry. Plastering the cell with as
many receptor patches as possible—akin
to fully wrapping a bouncy ball in
tape—is not the best strategy, they
found. “The cell can have only 1% of
the surface covered with receptors, and
it works almost as efficiently as if it
were 100% covered,” Korn says. In
addition, increasing the lateral size of
the patches —placing bigger bits of tape
on the ball—doesn’t make much differ-
ence. Yet increasing the height of those
receptor patches—using raised stickers
instead of tape—helps the receptor
patches find their target ligands sooner
compared to lower receptor patches on
a cell of the same size. 

The researchers point to similar geom-
etry repeated across vastly different sys-
tems in nature. Wrinkled white blood
cells, which often need to dock close to
an infection, place their receptor patches
on the tips of finger-like microvilli. Red
blood cells, in contrast, are surfboard
smooth. But when a red blood cell
becomes infected with malaria, it also
grows knobs and new receptors on its sur-
face to slow its progress toward destruc-

tion in the spleen. Even sticky pollen
grains and wandering diatoms in the
ocean, Korn says, display spiky geometry.

For experimentalists now probing
such systems, says Cheng Zhu, PhD, a
professor of biomedical engineering at
Georgia Tech, the model is interesting,
but only part of the equation. “Their
model may explain cases where
encounter is the limiting step,” he says.
“Without the complete equation, it’s
difficult to say how this might affect
data interpretation in cases where dock-
ing is limiting.”  

Korn is now extending the model to
include binding as well as encounter. He
is optimistic that his model will contin-
ue to uncover general characteristics of
sticky cells. “The big strength of theoret-
ical modeling,” he says, “is that you can
get the big picture because you focus on
a few essential aspects.”
—By Louisa Dalton

Biological Evidence for
Turing Patterns

In the 1950s, computer science pio-
neer Alan Turing suggested an elegant-
ly simple mechanism for how biological
patterns such as scales, feathers, and
hair might form. Now, more than fifty
years later, biologists have used a com-
puter model and transgenic mice to
confirm mathematical predictions of
the Turing model of pattern formation
within a specific biological system:
mouse hair development. 

“It’s the most convincing biological
(as contrasted with chemical) experi-
ment to date that claims to support the
Turing mechanism,” says Irving
Epstein, PhD, a chemistry professor at
Brandeis University. The work appeared
online in the journal Science in
November 2006. 

Turing’s 1952 proposition goes like
this: Two molecules—an activator that
enhances its own production, and an
inhibitor that slows the production of
the activator—diffuse and react. If the
inhibitor diffuses sufficiently faster than
the activator, repetitive patterns may
spontaneously emerge. 

The knobby surface of a white blood cell (top) facilitates sticking, and the smooth surface of
a healthy red blood cell (bottom) discourages it. Scanning electron micrograph courtesy of
CDC/Janice Carr.
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Evenly spaced mouse hair is just the
type of pattern that a Turing mechanism
might create. That’s one reason biologist
Thomas Schlake, PhD, at the Max
Planck Institute of Immunobiology started
searching for key molecules involved in
mouse hair follicle formation that might
fit Turing’s predicted pair. He found them
in the signaling molecule WNT and its
inhibitor DKK.

Schlake and his colleagues created a
computer model describing the pair’s
Turing behavior and then asked the
model to predict what would happen if
something went wrong—if WNT or DKK
appeared in too great or too small a burst.
Experiments with transgenic mice verified
their computational predictions. Mice
that strongly overexpress DKK, suppress-
ing WNT signaling, look like they are
balding. And mice that moderately over-
express DKK form clumps of hair instead
of regularly spaced follicles.

Schlake thinks it’s likely that other
inhibitor/activator pairs (Turing called
them morphogens) form the base of
other natural patterns. 

Of course, stripping complex develop-
mental pathways down to the actions of
one Turing pair is a strong simplification
of the real world, he adds. Mouse hair fol-
licle placement doesn’t solely depend on
the behavior of two interacting mole-
cules. Leagues of other signaling mole-
cules stabilize and refine the process.

Yet it is that very power to simplify and
predict outcomes from a small number of
key variables that is the hallmark of a good
model, Epstein says. He is not surprised

that 50 years after Turing proposed his
model, biologists are just now providing
detailed molecular evidence for it.
“Turing,” he says, “was a very smart man.”
—By Louisa Dalton

The BiGG Picture
It’s hard to imagine a map depicting

the daily flow of traffic on water, wheels
and foot throughout San Diego—or any
large city—over the course of a day. “That

map can have many different functional
states which are quite different in the mid-
dle of the night and during rush hour,”
says Bernhard Palsson, PhD, professor of
bioengineering at the University of
California, San Diego. 

But it’s even harder to imagine the
map recently assembled by Palsson and
his multidisciplinary research team—a
virtual metabolic network representing
the intracellular traffic catalyzed by
more than 2,000 proteins and 3,300 bio-

Normal mice have well-spaced hair follicles (left). But a moderate suppression of WNT signaling changes the pattern to follicle clumps (right).
Courtesy of Thomas Schlake, Max Planck Institute of Immunobiology.

Overview of the BiGG global human metabolic network. Courtesy of Bernhard Palsson and
Neema Jamshidi.
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study particular cell types—cardiac
myocytes, for instance—to refine the
pathways in the global system and make
them more context-specific.

In the meantime, scientists such as Kell
are thrilled about what the BiGG network
will do for systems biology. “It is the first
step on the way to a ‘digital human’
model,” he says, “from which we can
model health, disease, the metabolism of
pharmaceutical drugs and so on.” 
—By Esther Landhuis, PhD

Teaching an Old Model
New Tricks

The hidden Markov model—a statisti-
cal model used for decades in fields as
diverse as speech recognition and clima-
tology—has received an update and a
new application. Researchers at the
University of Pennsylvania and Emory
University adapted the model for teth-
ered molecule experiments, and used it
to obtain the most accurate estimates to
date of the kinetics of DNA looping.

chemical reactions within the human
body. Construction of this first-ever
genome-scale database, dubbed a BiGG
(biochemically, genetically and genomi-
cally structured) reconstruction, was
described in the February 6, 2007, issue
of the Proceedings of the National
Academy of Sciences.

Culled from more than a half century
of published data, the computational sys-
tem will allow researchers to explore hun-
dreds of human disorders related to
metabolism—the chemical processes by
which the body breaks down food to build
and maintain itself. For example, scien-
tists can use mathematical optimization
tools to identify sets of chemical reactions
that are turned on or off together when
the body makes cholesterol, explains
Neema Jamshidi, an MD-PhD student in
the Palsson lab who was a co-author on
the paper. Knowing which reactions are
correlated in this manner could lead
researchers to alternative drug targets—
components of other biochemical path-
ways that could be blocked to achieve the
same effect as an existing cholesterol-low-
ering medication, Jamshidi says.

Douglas Kell, PhD, director of the
Manchester Interdisciplinary Biocentre at
the University of Manchester, describes
another application of the BiGG database
in a systems biology review published in the
December 2006 issue of Drug Discovery
Today. By computing metabolite levels
under various conditions over time, he
says, the network could be used to infer pat-
terns of disease progression, providing
clues as to whether a drug might reverse the
degenerative process. 

To give the biomedical community a
shot at these lofty goals, a team of six
UCSD researchers that included Palsson
and Jamshidi spent 18 painstaking
months gathering data to assemble the
BiGG network. They combed through
more than 1,500 primary literature arti-
cles, reviews and biochemical textbooks.

“What we have now is a global net-
work,” Jamshidi says. “If we found any
evidence that a certain reaction occurs
in a kidney cell, heart cell, whatever, we
threw it in there.” In the future, he says,
the team will work with experts who

Their results appeared online in
Biophysical Journal on February 2, 2007.  

“Before now, no one has ever been
able to measure the kinetics of DNA
loop formation and breakdown in a real-
istically sized system,” comments Philip
Nelson, PhD, professor of physics at the
University of Pennsylvania. DNA forms
loops to turn certain genes off; accurate
measurement of the rates of looping and
unlooping are needed to build realistic
models of this switching mechanism. 

Researchers cannot directly see a strand
of DNA in action, so they use a trick pio-
neered by Laura Finzi, PhD, (now at
Emory University) and Jeff Gelles, PhD,
(Brandeis University): they tether one end
to a microscope slide and attach a visible
bead to the other end. Single-particle track-
ing of the bead’s motion is used to infer the
DNA’s state—when DNA is looped, the
bead is pulled closer to the microscope slide
and its radius of movement is more limited.
Previously, researchers analyzed the data by
averaging the motion of the bead within
certain windows of time—called “binning

Distance of a visible bead from its attachment point as a function of time. Sudden changes in
this distance, reflecting loop formation in its DNA tether, are partially obscured by the bead's
Brownian motion (diffusion). The diffusive hidden Markov model gives the most likely
sequence of loop formation/breakage events. Courtesy of Philip Nelson. Reprinted with per-
mission from: Beausang JF et al. DNA looping kinetics analyzed using diffusive hidden Markov
model. Biophysical Journal, published online February 2, 2007 (Figure 1).

To a physicist, it’s really beautiful to see
the same ideas reappearing in very

different contexts, says Philip Nelson.
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the data.” But this method is imperfect
because the results are heavily influenced by
the choice of bin size. So, Nelson’s team
turned to hidden Markov models. 

“Hidden Markov models have a long
and illustrious history in the study of sin-
gle ion channels, but recently they have
also increasingly been the method of
choice when analyzing single-molecule
biophysics experiments,” Nelson says.
Hidden Markov models help scientists
make inferences about some unobserv-
able data (e.g., DNA states) based on a set
of observable and noisy data (e.g., bead
movements). The algorithm estimates the
unknown rates by finding the values that
make the observed pattern of data the
most likely.

“For a physicist, it’s really beautiful to
see the same ideas getting recycled in very
different contexts,” Nelson says. “But we
had a technical challenge, we couldn’t just
take it off the shelf and use it because the
classic set up wasn’t quite applicable.”
Hidden Markov modeling assumes that the
noise in the observable data is purely ran-
dom. However, in tethered particle analysis,
this assumption is violated: the position of
the bead in one moment depends on the
position of the bead the instant before. So,
Nelson’s team made a new model—called a
diffusive hidden Markov model—that
accounts for this dependency.

The resulting estimates of the rates of
looping formation and breakdown were
robust; their rate estimates did not
change when they re-analyzed the data
after removing every other datapoint.

“I think their approach seems very
novel and sound, and it’s clear that by
doing this they can obtain more accurate
information about DNA looping kinet-
ics,” says Taekjip Ha, PhD, associate pro-
fessor of physics at the University of
Illinois at Urbana-Champaign. Ha has
done work using hidden Markov model-
ing for single-molecule fluorescence stud-
ies not involving tethered molecules. 
—By Kristin Cobb, PhD 

Parsing PubMed
Text-mining tools such as iHOP

(Information Hyperlinked Over
Proteins) are doing for biological litera-

ture what hyperlinks and search engines
do for the Internet: organizing intercon-
nected information in a fast, intuitive,
searchable manner. And in January
2007, the service started to provide 
daily updates—extending the informa-
tion network by about 2,000 new papers
every day. 

With genes and proteins acting as
hyperlinks between sentences and
abstracts, a large part of the PubMed
knowledge base becomes a giant, navi-
gable information network, says Robert
Hoffmann, PhD, a postdoctoral fellow
at Sloan-Kettering Institute who started
the iHOP project while a researcher at
the Protein Design Group at the
National Center for Biotechnology
(CNB) in Madrid, Spain. “The new ver-
sion provides current information on
even more genes and chemical com-
pounds, covering 1,500 organisms rang-
ing from human and chimpanzee to
yeast and HIV,” Hoffman says. He and
his colleagues also extended iHOP’s
results to include drug interactions,
and they've provided new ways to inter-
act with the data—such as displaying
“breaking news” found in papers from
the past two years.

Freely available online since 2004,
iHOP parses millions of PubMed docu-
ments and selectively grabs information
specific to 80,000 different biological
molecules. The program displays a list of
relevant sentences snagged from the
parsed documents, effectively summariz-
ing the interactions and functions of a
given protein or gene. The user can also

browse statistical overviews of interac-
tion partners and associated drugs, col-
lect interesting sentences into a logbook,
and create graphical representations of
the results. 

The computational machinery
behind iHOP has continually evolved
since the program’s introduction,
Hoffman says. 

The most important enhancement this
year—daily updating—was also the most
technically demanding, requiring the
daily processing of about 2,000 new pub-
lications. “It is a huge challenge to parse
the literature on an ongoing basis, with
thousands of new papers per week,” says
Chris Sander, PhD, of the
Computational Biology Center at
Memorial Sloan Kettering Cancer Center.
“Robert and our team can now do this as
the result of new software running on a
multiprocessor machine that is better suit-
ed to processing large-scale text data.”

The problem, Hoffmann says, is that
most parallel computing pipelines
(known as Message Passing Interface
frameworks) are designed for repeated
number crunching, not the sort of mem-
ory-intensive, semantic database process-
ing that text mining requires. So
Hoffmann developed his own computa-
tional pipeline capable of annotating mil-
lions of documents within a few hours on
an 80-node cluster, making daily iHOP
updates a reality. “We’re now in a good
position to make the next move toward
annotations of full text sources, as well as
the algorithmic exploration of gene net-
works,” Hoffmann says.

Text-mining tools such as iHOP are
great for focusing on pertinent key frag-
ments in the literature, says Russ
Altman, MD, PhD, chair of the
Department of Bioengineering at
Stanford University. ”There is so much
published that it’s hard to keep track of
all the relevant information, especially in
journals that end up having unexpectedly
relevant material,” Altman says. “iHOP is
an example of an approach that helps
biologists filter lots of literature.”

iHOP is freely accessible at
http://www.ihop-net.org/.
—By Regina Nuzzo, PhD ■■

It is a huge
challenge to parse
the literature on an
ongoing basis, with
thousands of new
papers per week
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Biocomputation
Startups:

Where Does Value Lie?

When discussing biocomputation startups, there’s one thing peo-
ple agree on: These days, they don’t generate much excitement
among venture capitalists.

“In the 1990s, there were a series of bioinformatics companies
founded that did not succeed,” says Fred Dotzler, managing
partner of DeNovo Ventures, a healthcare investment firm.
“Now money for these types of companies is thinner.”   

Why the pessimism?  Simply this: There are a limited number
of potential biopharma (biotech and pharmaceutical industry)
customers for bioinformatics platforms, and many of those
already have a suite of informatics products. Anything an out-
sider develops will have to be extremely promising and techni-
cally compatible with installed systems for these companies to
make the change. 

Nevertheless, many in the field are still trying to make a go of
it by selling software platforms, tools, and services to 
biopharma. The pharmaceutical industry, they say, desperately
needs to change how it does business. Estimates vary, but many
say it costs more than a billion dollars to bring a new drug to
market. Moreover, the failure rate of new drugs is extremely
high, and drug safety problems are often discovered after mil-
lions have already been spent. Biocomputation, the argument
goes, offers one possible way to discover new drug targets, deter-
mine drug toxicity sooner, and efficiently hasten the develop-
ment of safe and effective drugs. 
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According to Colin Hill, CEO and co-
founder of a systems biology company
called Gene Network Sciences (GNS),
“At the end of the day I have to be bullish
for this field, whether academic or com-
mercial, because I don’t see a way out of
the pharmaceutical crisis without a better
ability to discover drug mechanisms and
ultimately predict efficacy and toxicity 
better than the industry does now.”
Companies such as GNS, Entelos and
Ingenuity, discussed below, are betting
their hopes on their ability to help the
industry move forward more efficiently.  

Other startup entrepreneurs, howev-
er, see greater promise in designing bio-
computational products that are essen-
tial to clinical care and repeatedly need-
ed. “I’ve always felt that given a chance to
sell razor blades or a razor, I’d far rather
sell razor blades,” says Glenda
Anderson, founder and chief technology
officer at Pathwork Diagnostics. 

A bioinformatics software platform
is like a razor, she says, it’s needed, but
doesn’t need replacing very often.
Pathwork Diagnostics, by contrast, has
created a razor blade—something that
costs little to produce and is repeatedly
needed. It’s a bioinformatics tool 
that analyzes gene expression data to
determine the likely source of cancer-
ous tumors of unknown primary. They

will charge for each biopsy result they
analyze. 

Anderson predicts this startup model is
the wave of the future: “Biocomputational
startups probably will start to look more
like medical product startups with a heavy
biocomputational component,” she says.
She points to XDx as another company fol-
lowing this model. And 23AndMe (also
discussed below) is a new company that
hopes to market genetic information to the
consumer—another razor blade. 

The challenge for people looking to
start new biocomputation companies,
Anderson says, is figuring out which
research ideas are commercially viable.
“There’s a real void here that I find quite
exciting,” she says. “Some of the best
ideas in this field might be fantastic sci-
ence, but might not translate into prod-
ucts that could fuel a successful startup.
That’s our opportunity and challenge.”

SELLING TO BIOPHARMA?
LINK TO A DRUG OR GO

WITHOUT VC
According to Hill, a surge of funding

for biocomputation startups in 2000
gave entrepreneurs the mistaken impres-
sion that a business could succeed just
by generating data and related tools.
GNS itself was funded in that wave. 

“If you just want to
make a lot of money,
go to Wall Street. Or
create the next You-

Tube,” says Colin Hill.
“The ultimate test in
our field is affecting

disease in a living
human…. it’s much
more difficult than

just developing
technology.”  

Protein Mechanics Intelligenetics Molecular

Applications Group Molecular Mining  Physiome

Rosetta Inpharmatics Molecular Designs 

GeneSpring Entelos Gene Network Systems

Ingenuity 23AndMe Pathwork Diagnostics 

Colin Hill
CEO, president, chairman and co-founder of Gene Network Sciences (GNS)
Colin Hill had been doing research in theoretical physics and chaos theory
in non-living systems for some time when he was drawn into applying
those ideas to biological systems. He saw that the mathematical modeling
of a complex many-component system wasn’t really happening in the
drug development world. “If one could master the source code of a living
system,” he says, “that would give us a huge capability to discover the
underlying biological mechanisms of drug efficacy and toxicity.” GNS was
born of Hill’s convictions. 
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the stage of pharmaceutical drug discov-
ery and development,” Hill says

These days, GNS works for pharmaceu-
tical companies on a fee-for-service basis.
But, he says, “A lot of investors would say
you really need to take it all the way down-
stream to a drug to extract maximum value
from breakthrough technology.”  

The potential revenue from making
drugs is apparent to Entelos as well, says
Alex Bangs, the company’s co-founder
and chief technology officer. A few years
ago, for example, Entelos used its bioin-
formatics tools to help Organon, a phar-
maceutical company, identify new drug
targets for rheumatoid arthritis. A co-
development agreement gives Entelos a
piece of those drugs going forward. 

But, like GNS, the bulk of Entelos’
business still revolves around fee-for-serv-
ice. The company’s core product is com-
puter simulation of chronic diseases in vir-
tual patients. They build the models and

“I think it gave us a somewhat slanted
view of where value was going to lie for
computational systems biology,” says
Hill. “Normally, the real currency of the
industry is around a drug.”

GNS survived by making sure drugs
were their central focus. The company’s
strategy is to create models on the fly
from data about specific drugs in the
pharmaceutical development pipeline.
They have developed a unique tool that
can quickly—in hours or days—uncover
how a drug is working and predict which
patient populations will benefit. For
example, GNS helped Johnson and
Johnson discover the mechanism of
action for a multi-kinase inhibitor being
developed to treat cancer. 

“If we’re right, this will become one
of the key value drivers for the whole
pharmaceutical industry. If we’re wrong
then we’ll be one more platform tech-
nology company to come and go from

collaborate with pharmaceutical compa-
nies along all points of the drug discovery,
testing, and trial process. One of their
challenges as a business is to explain the
full range of their tools’ potential. “A tool
that works in discovery and clinical is
unusual,” Bangs says. “It’s hard for people
to wrap their arms around.”  

Bangs says their products have
proven extremely valuable in telling
pharmaceutical companies when a com-
pound is likely to fail in the marketplace.
“We’ve had people stop those programs
and spend their money in a different
way,” he says. “And when we get a result
that suggests something’s going to work,
we can explain why, suggest measures to
confirm what we’re seeing and recom-
mend when to take those measures to
get the best result. It’s very much a sci-
entific conversation, not a black box.”  

Entelos is no longer a startup. The
company went public last April in the

“VCs want companies that are going to have a good-size market with
good revenue possibilities,” says Alex Bangs. “If your market is to sell
to a small part of the pharmaceutical industry, then you have a small

number of customers with potentially varying budgets.”

(continues on page 11)
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Alex Bangs
Co-founder and chief technology officer at Entelos
While working at a management consulting company in the early 1990s,
Bangs helped his cohorts develop software tools in support of modeling
work for pharmaceutical companies. His contribution: the creation of a
software architecture that supported the development and analysis of
large scale physiology models and virtual patients. By 1996, they saw that
the tools had commercial potential. That’s when five partners started
Entelos. In 2006, the company went public.
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THE OPEN SOURCE BUSINESS MODEL

Warren DeLano, PhD
Principal, DeLano Scientific, LLC

“Scientists don’t want black boxes in their soft-
ware,” says Warren DeLano, principal of DeLano
Scientific. “They need to know how the thing
works.” So DeLano believes in making software
that’s open source rather than proprietary. 

When he created PyMOL, an open source molec-
ular visualization tool, DeLano hoped it would prove
useful to many researchers and that, like other open
source projects, it would benefit from an influx of
good ideas, new features and code that would make
it a self-sustaining project. The first part of that vision
became a reality: PyMOL has proven quite useful.
DeLano estimates that a quarter of all macromolec-
ular crystal structure images published in the scien-

tific literature today are created using PyMOL. But the software did not become independently self-sus-
taining. PyMOL’s users aren’t necessarily software engineers, says DeLano—they don’t typically contribute
code back to the project. Hence the need for a company—DeLano Scientific—to fulfill that role. 

Four years into it, DeLano says the company can definitely support one salary, and will likely soon sup-
port two. “A business person would be trying to maximize profit by restricting the intellectual property
and doling it out only for a high license fee,” he says, “But because PyMOL is open source and it’s impor-
tant to me that it remains as such, we have to find other ways to grow revenue.”  

The open source nature of the software gives DeLano little leverage to charge high fees. He relies on
negotiated relationships in which the clients recognize that, because they aren’t contributing code back
to the project, they should contribute some money instead—in the form of a subscription. For big cus-
tomers, DeLano provides more individual interaction and support. 

His is not the first company created to support open source software. RedHat serves that purpose for
Linux users. And MySQL has a similar model. “Open source software is widely used, which translates into
a very large impact on society from open source. But it’s not a profit center like proprietary software has
been for companies like Microsoft, Oracle, Apple and SAP.”  

And although he’s a big proponent of open source software, he says that companies making propri-
etary software for biologists are starting to succeed by creating programs that act more like open source,
with open architectures. “Accelrys’ model is a very open-architecture, pluggable system,” he says. “You
can hook your code into these networks of capabilities which are visible and open. It’s all proprietary
architecture, but it’s open in so many ways that a lot of flexibility is there.”  

As for DeLano Scientific, “On the continuum of open source to proprietary, we’re somewhere in the
middle,” says DeLano. “You can get free versions, but you can get more value if you buy your subscrip-
tion.” He hopes to grow the business, but that’s not the driving factor. “We’re already achieving the kind
of impact I wanted to achieve.” 
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Alternative Investment Market (AIM)—a
good market for small-cap technology
companies that can show they have a rev-
enue stream and growth opportunities,
says Bangs. He says their success springs
from three things: a technology that’s
proven to be of value to their customers
in a short time frame; financial disci-
pline over the last ten years; and main-
taining focus on a few applications
rather than expanding too rapidly. 

Ingenuity Systems, Inc. is another
company that strives to make drug dis-
covery more efficient for biopharma. “It
was not enough to provide a tool that
would only be used by informaticians,”
says Ramon Felciano, PhD, founder
and chief technology officer at
InGenuity Systems, Inc. “At the end of
the day, they are typically part of a larger
team with a goal to discover a new drug,
to understand its safety, to validate a
lead. So really focusing on those more

fundamental scientific and business
goals I think helped us stay on track.” 

After eight years in business,
Ingenuity’s initial business idea is still
working for them. They help researchers
put high-throughput experimental
results into the context of what is already
known about a disease or cell. With the
advent of high-throughput experimenta-
tion, “existing methods for understand-
ing experimental data didn’t scale well
to the volume of data being generated,”
says Felciano. “We wanted to see if we
could bridge that gap.”

So Ingenuity created a large-scale plat-
form with, at its core, a set of biomedical
ontologies and a knowledge-base repre-
senting what is known about biology.
“The “so what” of the data is hard to
find because it’s buried in research doc-
uments, figures, tables, PowerPoint
slides and other non-structured reposito-
ries,” says Felciano. But that’s the infor-

mation Ingenuity has gathered together.
And they’ve made it available to their
customers through the company’s flag-
ship product, Ingenuity Pathways
Analysis: Researchers upload a dataset
and run analytic algorithms to build de
novo pathways linking their data and
Ingenuity’s knowledge base. 

Industry, government and academic
researchers use the knowledge base to
identify or validate a new drug target
or understand how a drug functions,
including its toxic side effects. “We’re
trying to accelerate and improve the
quality of scientific results that scien-
tist users can produce,” Felciano says.
“We think we’re doing well when they
can get their work done more quickly
and at a higher level of quality—better
and faster.”

The company now employs 85 to 90
people, not counting the part-time
researchers around the world who help

“What’s unlikely to happen is to solely pursue the science 
and serendipitously have business opportunities and 

revenue drop in your lap,” says Ramon Felciano.

(continued from page 9)
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Ramon Felciano, PhD
Chief technology officer & chief architect, InGenuity Systems, Inc.
Felciano and fellow Stanford students decided to start Ingenuity
Systems in 1998 after they won an entrepreneurial competition held by
the Business Association of Stanford Engineering Students (BASES).
“Winning the competition was a threshold for us,” says Felciano.
Afterward, they received calls from VCs and did another round of con-
versations with researchers and industry people. “A lot of our initial
understanding of the problem and the solution appeared to be valid. So
we decided to give it a shot.” 
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keep the knowledge base up to date.
And, according to Felciano, Ingenuity’s
revenue and number of users are grow-
ing, as is their publication record. Over
the last two to three years, the number
of scientific publications citing
Ingenuity’s platform has grown 250-300
percent. “It’s a great trajectory that we’re
looking at and a validation that we’re
doing well.”   

Hill, Felciano and Bangs all recognize
that, nowadays, VC support for busi-
nesses like theirs is rare. As Bangs puts
it, “VCs want companies that are going
to have a good-size market with good rev-
enue possibilities. If your market is to
sell to a small part of the pharmaceutical
industry, then you have a small number
of customers with potentially varying
budgets.” So Bangs suggests an alterna-
tive to VC: the small business route. “Do
it the old-fashioned way. Put a second
mortgage on your home, get SBIR
money, bank loans, and grow the busi-
ness slowly. That’s what you have to do
in the current environment.”  

Michael Sherman learned that les-
son the hard way. His company—
Protein Mechanics—also saw its start
in 2000 when “venture capital was
flowing a little too freely.”  The compa-
ny developed software to simulate pro-
teins, but after a few years, their
investors wanted them to make drugs.

“We didn’t know anything about
drugs,” he says, so the company sold at
a fire sale in 2004. 

His advice to scientists contemplating
a startup: “Be very cautious when taking
money from venture capitalists because
you might find your goals don’t align well
later.” And he agrees with Bangs’ recom-
mendation: go with the small business
model. “The fact that Protein Mechanics
isn’t around anymore is a minor thing for
the venture capitalists because they figure
they invest in ten companies and nine
might fail. But it’s a big deal to me. I’d
have rather built a sustainable company,
but that wasn’t interesting to the people
who funded it.”  

Felciano, by contrast, has had a good
experience with Ingenuity’s VCs. But,
he notes, “Good partners—whether VCs
or others—can help you succeed, and
bad ones can become major obstacles.”
Despite being a scientist himself, he’s a
realist about business. “If you want to
purely drive the science there are better
places to do that,” he says. “What’s
unlikely to happen is to solely pursue
the science and serendipitously have
business opportunities and revenue
drop in your lap.”  

THE RAZOR BLADE
In recent years, some biocomputa-

tion startups have drawn VC attention

“Be very cautious
when taking money

from venture
capitalists because
you might find your

goals don’t align
well later,” says

Michael Sherman.

Michael Sherman 
Former CEO of Protein Mechanics, Now the chief software architect for
Simbios, A National Center for Biomedical Computing at Stanford. 
In 2000, Michael Sherman and his partner raised about four million dollars
for their new company—Protein Mechanics—in one day. Their proposal: to
apply their mastery of mechanical engineering and computer science to bio-
logical simulations. They started out developing software without much of a
business model in mind. But, he says, the venture capitalists eventually
wanted them to make drugs. Sherman saw that his company’s chance of
making a good drug was low. If he were to do it again, Sherman would do
what he had done previously: start a sustainable business to sell useful soft-
ware and make money, without relying on VCs. Although he currently
works in academia, Sherman says he may eventually head back to the busi-
ness world. “Academia is great because you can sit and think and do the
right thing, but it has the character that basically nothing’s at stake.
Businesses are kind of cool because a lot of things matter, which makes it
exciting. It can be a disaster too, but that’s part of making it exciting.”

Genomic Health Genstruct Optimata    

Cognia Myriad Genetics Protein Mechanics
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not by selling software to biopharma,
but by masquerading as diagnostic, pro-
teomic, or genomics companies. To
Anderson of Pathwork Diagnostics,
this is clearly the way to go. “A well-
designed biocomputation product could
be the ultimate razor blade. It just needs
a little invention,” she says. 

According to Anderson, funding for
bioinformatics platforms is virtually
nonexistent from this point on. It’s a les-
son she learned from initially naming
her company Pathwork Informatics. No
one would fund it. “There are a lot of
decent platforms out there. The world
doesn’t need a new one,” she says.
“However, applications that are
anchored to solving a clinical problem
and that map out a path to revenue and
products are something else.”  

Coming up with a commercial prod-
uct from good science is not always easy. 

“The challenges start with how to
frame a problem in such a way that
research can discover an answer,” says
Anderson, “And then how do you layer
it back into something that can be pro-
duced in a reasonably cost-effective way
and delivered and sold to clinicians.
There are many challenges in taking an
idea into the actual practice, but that’s
what our business is about. If it were
easy it wouldn’t be so much fun.”  

Anderson has built her career around
this kind of thinking. “What I’ve been
really fascinated with my whole life is
how you craft products that are success-
ful along with a business model that’s
successful as well,” she says. 

Now, after three years in business,
Pathwork Diagnostics has its first prod-
uct before the FDA. It addresses a com-
mon problem in cancer recurrence:
Often, clinicians cannot determine
where the cancer started in the body. So,
Pathwork’s Tissue of Origin Test
answers this problem by analyzing gene
expression data from tumor biopsies.
With the analytic report in hand, a
physician can better determine how to
treat such cancers.

But this is just the beginning, says
Anderson. “The Holy Grail in oncology
diagnostics is predicting treatment
response. Our real intent is to develop a
platform that could answer that ques-
tion.” The Tissue of Origin test posi-
tions the company to do just that, she
says. “This is what makes our business
model compelling and what helps pull
us over the hump in terms of funding.”   

Pathwork Diagnostics is not alone in
taking this approach. XDx, founded in
2000, offers a test to determine the like-
lihood that a heart transplant will be
rejected. “XDx’s analytics are their razor

“A well-designed
biocomputation

product could be the
ultimate razor blade. It

just needs a little
invention,” says

Glenda Anderson.
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Glenda Anderson
Founder and chief technology officer, Pathwork Diagnostics
After spending nearly twenty years leading research and development
organizations for healthcare manufacturers, Glenda Anderson decided in
2001 to take a closer look at bioinformatics. “It was clear that biocompu-
tation would form the basis for new medical products over the next 20-
30 years,” she says. And she thought her engineering degree in comput-
er modeling and experience taking ideas from technology or science into
a clinical application and a product would be helpful in building such a
business. “Biocomputation is a field that lends itself to asking questions
about how to put a business model and product together to create real
value.”  In 2003, Pathwork was born, and the company’s first product is
now before the FDA. 
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blade,” says Anderson. “And they can
command a high price for each potential
transplant recipient they evaluate
because the cost of failure is so high.” 

Genomics startups with a heavy bio-
computation focus are also gaining some
momentum according to Dotzler. A
number of companies offer to analyze
DNA from a blood sample or cheek
swab to trace a customer’s genealogy or
give advice about disease susceptibility.
One new company, 23andMe, launched
in 2006, hopes to take that analysis fur-
ther. As new gene association studies
appear in the literature, they gather the
results together into a database. “There’s
an exciting flood of information about
gene/disease associations,” says Brian
Naughton, PhD, one of the company’s
core team. Making sense of it is not a
trivial task, he says. But he and fellow
team member Serge Saxonov, PhD,
both recent graduates of Stanford’s
Biomedical Informatics program (BMI),
say they have the skills to do it. 

This year, the company hopes to
release its first product, which will
require a saliva sample rather than a
blood sample or a cheek swab. It will
analyze the customer’s entire genome
looking for SNPs—the single nucleotide
polymorphisms that distinguish individ-
uals from one another; some SNPs are

also associated with disease. “Most peo-
ple are curious about their genetics—
their families, their ancestry and their
health—but have nowhere to go to learn
about it,” says Naughton. “We want to
fill that niche.”  

VENTURING OUT OF
ACADEMIA

Startups often blossom directly from
academic research. The very first biocom-
putation startup—Intelligenetics—began
that way, says Doug Brutlag, PhD, pro-
fessor of biochemistry and medicine at
Stanford. He was part of that launch,
which began in the late 1970s. After
sequencing methods had been devel-
oped, he says, Stanford researchers put all
the accumulating data and software on a
computer and made it accessible over
phone lines—before the Internet really
took off. “We wanted to show people
how useful it was so we made it freely
available to biologists and everybody start-
ed using it.” But, says Brutlag, “I didn’t
think it was appropriate to support biolo-
gists from an academic environment.
Support is better provided by commercial
entities.” Moreover, he says, in this area
it’s very important to do technology trans-
fer. “If you just publish your work and
don’t provide support for it, then people

Making open source
code available

through an academic
web site can lead to

frustration, says
Valerie Daggett.

“People in your lab
become unpaid con-
sultants responding

to every call and
email that comes in

about how to use the
software. I don’t want

to do that to my
research program.”
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Valerie Daggett, PhD, 
Future founder of Dynameomics 
Professor of medicinal chemistry at the University of Washington
A few years ago, Valerie Daggett registered the domain name for
dynameomics.com. “I’ve been getting ready to do this for a while,” she
says of the venture she has yet to launch. “This is the work we’ve been
doing for the last 15 years or longer. I want to see it come to fruition.”
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won’t use it.” So Intelligenetics was
born—and it lasted about 13 years.

Nowadays, says Brutlag, things are
different. With the development of the
Internet, he does much of his technolo-
gy transfer himself. “We make software
tools freely available to not-for-profit
institutions and allow for-profit compa-
nies to license them from Stanford
University,” he says.  

But Valerie Daggett, PhD, professor
of medicinal chemistry at the University
of Washington, says making open source
code available through a web site can
lead to frustration. “People in your lab
become unpaid consultants responding
to every call and email that comes in
about how to use the software. I don’t
want to do that to my research pro-
gram.” Moreover, she says, users of her
protein dynamics simulation software
really do need help. “These are very
complicated simulations to setup and
run, and biologists don’t necessarily
have the equipment or the skills to do
it.” The result: the academic software
provider gets blamed for mistakes made
by the users. 

So Daggett is contemplating a new
startup. She calls it Dynameomics.
“It’s very hard in academia to take your
work to the next level and see it transi-
tion out of the computer lab and into
an application that people will use,”
she says, but the technology transfer
office at the University of Washington
is helping out.

Daggett’s lab has created the biggest
database of protein simulations in the
world. With upwards of 2500 protein sim-
ulations it becomes prohibitive to host the
work (20 terabytes and counting) from an
academic lab. This Spring, Daggett's
group plans to take an early step toward
commercialization when they launched
dynameomics.org. The dot-com site will
come later. The dot-org site will give peo-
ple free access to simulations representing
the top 30 folds (structures) of proteins
known from the Protein Data Bank
(PDB). These represent 50 percent of all
known structures. From the web site, biol-
ogists will see the simulations; the struc-
tures generated by the simulations; movies
of how the protein moves over time; and
metadata (analyses of the simulations). 

SUPPORTING TECHNOLOGY TRANSFER: 
THE STANFORD WAY

Stanford opens up channels for getting technologies out to
the real world in three important ways. First, it allows faculty
to consult up to 1 day per week (20 percent of their time).
Second, it has a very proactive office of technology licensing
that identifies potentially useful technologies in the lab—even
if faculty aren’t aware of it—and then files patents and mar-
kets these to companies that may want to productize them.
And third, it has a corporate affiliates program that allows
industry to provide funds—e.g., fellowships—to departments.
In return, the affiliates get preferential access to workshops
and students (for recruitment). 

This approach to commercializing technology has produced
Google, Yahoo, recombinant DNA, and the Yamaha 
synthesizer, to name a few, and has been a model for other 
universities to follow.

At some point, Daggett expects to
take orders for simulations of specific
proteins not represented in the set.
Although dynameomics.com will offer
much more, Daggett says, it’s still
unclear whether the product will be a
software modeling package or drug
design services or both. Several software
companies and VCs have shown interest
in both options, she says.

Either way, the dynamic aspect of
proteins is really underutilized thus far
and Daggett hopes to make it available
to industry. “By basing functional analy-
sis of proteins on static structures we’re
missing a good deal of the picture.”
And because there are loads of proteins
and a lot of interesting biomedical tar-
gets that exert their actions through
changing protein conformation, she
thinks her protein dynamics simulation
tools are a product people will need for
some time to come. But until she settles
on a product, it’s not entirely clear
whether she’s commercializing a razor or
a razor blade—she hopes it’s the latter. 

STICKING WITH IT
Regardless of the product being

sold, says Hill, biocomputation startups
require perseverance. “It’s not an indus-
try that typically gives quick payoffs,”
he notes. “Unlike pure technology com-
panies, we don’t have to just make
some widget and sell it and be a huge
success. ... The ultimate test in our field
is affecting disease in a living human. ...
It’s much more difficult than just devel-
oping technology.” So, he says, you
have to do it for the right reasons. 
“If you just want to make a lot of
money, go to Wall Street. Or create the
next YouTube.” 

Hill himself was following his scien-
tific interest when he started GNS
seven years ago: He wanted to discover
how living systems work in a funda-
mental way. “Having that goal collide
with some serious unmet and burning
needs in a very practical and very lucra-
tive industry (pharmaceutical develop-
ment and biotech) is what made me do
this. The fact I could do both—have my
cake and eat it too—that was too good
to pass up.” ■■
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Modeling 

Cancer 
Biology:

BY KRISTIN COBB, PhD
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The most common test for prostate cancer (known as PSA
screening) misses aggressively growing prostate tumors—the
type typically seen in young patients. It’s a fact that was accept-

ed by the medical establishment in 2004 only after a seven-year study
of 9000 men appeared in the New England Journal of Medicine. But
Kristin Swanson, PhD, predicted the test’s inadequacy in 2001
using a single differential equation—a “back of the napkin calcula-
tion” that “a high school student could answer.”   This is the type of
powerful insight that mathematics can offer cancer biology, says
Swanson, who is an assistant professor of pathology and applied
mathematics at the University of Washington. 

Unfortunately, mathematics has remained largely untapped and
under-appreciated in cancer biology. Though mathematicians have
been deriving formulas about cancer for decades, their work has
been confined to mathematical and theoretical biology journals—a

set of dense journals that the average biologist doesn’t read.
Biologists are also skeptical: How can cancer, which is so complex
and unpredictable, be reduced to a set of neat equations? 

But cancer biology may be at a turning point. Never before has
there been a greater need for the field to embrace mathematics and
computation. As biological data pile up at an astonishing rate, there
is growing recognition that only quantitative approaches can pull it
all together. As a result, quantitative cancer models are slowly mak-
ing their way out of the theoretical and math journals and creeping
into mainstream cancer biology. Leading biology journals like Cell
and Cancer Research now contain theory sections. And, in 2003, the
NIH established the Integrative Cancer Biology Program—which
now funds nine inter-disciplinary centers that are applying quantita-
tive modeling and systems biology approaches to cancer (the ICBPs). 

transforming
fight cancer

How mathematical models are transforming   
the fight against cancer
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These efforts promise enormous pay
off. Modeling can streamline wet-lab
experiments; give scientists deeper insight
into how tumors develop, grow, and
spread; and even predict a patient’s prog-
nosis and optimal treatment regimen.

“Biologists tend to think of model-
ing as some sort of magical thing or
black art,” says professor Philip K.
Maini, PhD, director of the Center for
Mathematical Biology at Oxford
University. “But we haven’t done any-
thing extra; we haven’t done any jiggery-
pokery or put any voodoo in there.”

Mathematicians simply translate biol-
ogist’s hypotheses into a formal set of
testable equations, he says. 

“Biologists are the first people to tell
us that biology is very complicated; it’s
highly non-linear. Yet biologists use ver-
bal reasoning, which is linear reasoning,
which is the wrong model,” he says.
Mathematical models are needed to
reach beyond where human intuition
and linear thinking can take us, he says. 

What follows are some examples of how
modeling is adding insight to intuition—
from cancer initiation to metastasis and
from the molecular to the patient level.

A CANCER CELL IS BORN:
THE SUBCELLULAR LEVEL
Cancer arises through a series of

genetic changes. Mutations in proto-
oncogenes allow cells to grow and divide
without the need for normal growth sig-
nals, and mutations in tumor suppressor
genes allow cells to evade normal checks
and balances—such as anti-growth signals
and programmed cell death (apoptosis).
Mutations in genes that detect and
repair DNA damage facilitate the
process by upping a cell’s mutation rate. 

Stochastic mathematical models help
investigators test hypotheses about how
cancer mutations accumulate. For exam-

ple, Natalia Komarova, PhD, associate
professor of mathematics at the
University of California, Irvine, models
the initiating event in colon cancer—the
inactivation of the APC tumor suppres-
sor gene. Normally, APC causes cells to
enter apoptosis at the end of their
“term” in the colon tissue, which helps
prevent cancer. 

Cells in the colon are constantly
exposed to the elements, and thus have
a high risk of mutation. Thus, it is
imperative that colon cells turn over
quickly. The bottom of each microscop-
ic pit of colon tissue (called a crypt) con-
tains adult stem cells whose job is to pro-
duce daughter cells to continually
replenish the colon. These daughter
cells climb up the crypt, differentiate
into colon cells, and die off in about a
week. It is a delicate balance, however:
the quick turnover helps prevent cancer
in the daughter cells, but the frequently
dividing stem cells are vulnerable to
accumulating mutations. 

One question that cannot be reliably
answered experimentally is how many
stem cells are in each crypt. Komarova
tries to answer this question mathemati-
cally—by calculating the optimal number
to minimize a person’s chance of getting
mutations in the APC gene.

“A situation like this is perfect for
the application of modeling because in
the model we can assume that there is
one stem cell or that 50 percent of
them are stem cells and we can see what
happens,” Komarova says. It turns out
that, for young people, having many
stem cells minimizes the chance of 
cancer. But for older individuals, 
having a few stem cells is the best 
strategy. Likely, evolution favored the
optimal strategy for young people, since
evolution acts on those of reproductive
age, she says. 

Besides probabilistic models of muta-
tion “hits,” other researchers model the
signaling pathways involved in growth,
anti-growth, and cell death. Typically,
these models consist of systems of ordi-
nary differential equations. Each equa-
tion describes the rate of change in the
concentration of a particular enzyme,
substrate, receptor, or signaling mole-
cule as a function of its production,
degradation, and reaction with other
network players.  

For example, Galit Lahav, PhD,
assistant professor of systems biology at
Harvard Medical School, models the
p53 signaling network. p53 is a tumor
suppressor gene that plays a crucial role
in apoptosis, among other important
anti-cancer functions. If specialized sen-
sors in the cell detect DNA damage (or
other dangers, such as oncogene over-

“Biologists tend to think of modeling as some sort of magical thing or
black art,” says Philip K. Maini, “But we haven’t done anything extra;

we haven’t done any jiggery-pokery or put any voodoo in there.”

DNA-Damage Control. When cells are
exposed to DNA-damaging radiation, they
produce p53, an anti-cancer protein that
causes damaged cells to undergo apoptosis
(programmed cell death).  Here, cells
express fluorescently tagged p53 (green)
and Mdm2 (red) following gamma irradia-
tion. Time-lapse microscopy shows that, fol-
lowing DNA damage, p53 and Mdm2 levels
undergo a series of pulses that vary in num-
ber from cell to cell. Courtesy of Galit
Lahav's lab, department of Systems Biology,
Harvard Medical School.
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ential equations to predict the changing
levels of p53 and related proteins, such
as Mdm2, which is involved in a negative
feedback loop that regulates p53. 

“The idea of the models is to help us
predict how the network will behave in
response to different treatments and to
suggest new experiments,” she says.

For example, she discovered that lev-
els of p53 oscillate following gamma irra-
diation, and she is using modeling to
help understand these oscillations. If
they are important for apoptosis, then
some cancer drugs may work better if
delivered in pulses rather than continu-
ously, she says.

expression), they trigger p53 to initiate a
cascade of events leading to the cell’s
death. More than half of all human can-
cers contain a mutation in p53, making
it the most common cancer mutation. 

Lahav studies the p53 network both
experimentally and theoretically. “We go
back and forth from the bench to the
computer,” she says.

In the lab, Lahav uses fluorescence
microscopy to measure the changing lev-
els of p53 and other proteins of interest
(all tagged with fluorescent markers)
after a cell is exposed to DNA-damaging
gamma radiation. On the theoretical
side, she uses a series of ordinary differ-

THE GROWING TUMOR: 
THE CELLULAR LEVEL

Once tumor cells have acquired the
ability to propagate unchecked, they
grow into a small ball of cells—which
mathematicians model as a growing
spheroid. Initially, the tumor feeds on
oxygen and nutrients that diffuse to its
surface. But these supplies cannot pen-
etrate deep into the tumor, so cells in
the core become dormant or die of
starvation. The limited nutrient supply
curbs the tumor’s growth to about half
a millimeter in diameter—and if the
story ended here, the tumor would be
harmless.

Virtual Angiogenesis. In these snapshots from a computer simulation of tumor growth and angiogenesis, the top panels show the presence
and density of tumor cells at time=5; cells in the core of the tumor become quiescent because oxygen cannot reach them. As the tumor
grows, tumor cells secrete angiogenesis factors that cause new blood vessels to grow and supply extra oxygen and red blood cells to the
tumor (bottom panels). Courtesy of Philip K. Maini.
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Unfortunately, as cells in the center
become starved of oxygen (hypoxic), they
release chemicals that stimulate angio-
genesis—the growth of new blood vessels.
These chemicals encourage blood vessel
cells (endothelial cells) to migrate toward
the core of the tumor and supply it with
blood. Now the hungry tumor can feed
unhindered. At the same time, the
tumor gains a connection to vessels
throughout the body, giving it an escape
route for metastasis. 

One strategy for modeling angiogene-
sis is to set up systems of partial differ-
ential equations that describe how the
tumor and vasculature are changing in
both time and space (how their shapes
are changing). For example, Zvia Agur,
PhD, President of the Institute for
Medical BioMathematics in Israel, has

vidual tumor, Agur simulated its expect-
ed growth in the computer and then
compared the simulation results to the
actual results from the lab—and the pre-
diction was quite good, she says. 

She then simulated what would hap-
pen if tumors were treated with anti-
angiogenesis drugs, and got a surprising
result: The model showed that treat-
ment with a single anti-angiogenesis
drug is not sufficient to eliminate a
tumor; rather, combinations of anti-
angiogenesis drugs are needed. 

“At the time, the anti-angiogenesis drug
Avastin was very much in the news, and
people thought that it could be used on its
own,” Agur says. “Genentech was doing
extensive clinical trials using Avastin
monotherapy, and it took them another
year or so to realize that we were right.”

modeled angiogenesis using three inter-
connected modules of partial differen-
tial equations. Her equations describe:
the changing volume of tumor cells
(which depends on factors such as oxy-
gen concentration); the changing vol-
ume of immature blood vessels (which
depends on how quickly tumor cells
release VEGF, a potent angiogenesis fac-
tor); and the changing volume of mature
blood vessels (which depends on molec-
ular signals that promote maturation).
“The simplest model we could make was
quite complex,” Agur says. 

She also set up an experimental sys-
tem to validate her model. Her team
implanted small balls of ovary cancer
cells into mice and measured changes in
the size and shape of the tumors and the
blood vessels using MRI. For each indi-

Forecasting Invasion. This graphic depiction of a mathematical model developed by Vito Quaranta and Alexander Anderson predicts
whether a tumor will become invasive. The tumor is represented on a two-dimensional grid. Each virtual cell is accounted for on the grid
and its behavior (e.g., growth, movement, death) is tracked based on mathematical functions and partial differential equations. Solving
these equations in sequential time-steps generates a computer simulation of tumor growth and invasion. This approach has the poten-
tial to predict disease outcome based on precise quantities measured in the tumor of a specific patient. The model was described in:
Anderson et al. Cell. 2006 Dec 1;127(5):905-15. Courtesy of the journal Cell. Graphic by Dominic Doyle.
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INVASION AND METASTASIS:
THE TISSUE LEVEL

For a while, the tumor continues to
grow as a cohesive ball of cells with
smooth edges. At this point, the tumor
is still often curable, as a surgeon can
just scoop it out, says Vito Quaranta,
MD, professor of cancer biology at
Vanderbilt University and also principal
investigator of the Vanderbilt Integrative
Cancer Biology Program (one of the
nine ICBPs).

But, eventually, some rogue cells
break away from the growing tumor and
invade the local tissue. To become inva-
sive, tumor cells have to pick up certain
abilities—they must escape cell-to-cell
adhesion, migrate along the extracellular
matrix (the surrounding connective tis-
sue), and secrete enzymes that digest the
extracellular matrix.

Eventually, these invading cells bur-
row their way into the blood or lymph
systems and spread (metastasize) to dis-
tant sites, where they seed new tumors.
Now it is impossible to just reach in and
scoop out the tumor—and the cancer is
much more deadly. 

Quaranta, who is an experimentalist,
collaborates with mathematician
Alexander Anderson, PhD, senior lec-
turer of mathematics at the University of
Dundee in Scotland, to model the
process of invasion. They use a “hybrid
discrete-continuum” model, which
means molecules and proteins—such as
oxygen and matrix-degrading enzymes—
are modeled as continuous densities,
but cells are modeled as individual, dis-
crete entities that make autonomous
decisions. Such agent-based models are
computationally intensive, so simula-
tions are limited to about five million
cells (in contrast, a tumor may have a few
billion cells).

Cells move on a two-dimensional grid
that represents the changing micro-envi-
ronment—including the concentrations
of nutrients, enzymes, and extracellular
matrix proteins. Cells have a certain prob-
ability of moving to each adjacent point
on the grid (called a biased random walk).
For example, cells are more likely to move
to regions where oxygen levels are high.
Cells are also allowed to adhere to each
other, migrate, degrade their surrounding
tissue, divide, even die, according to cer-

Cancer Invasion. Starting with only 50 cancerous cells, this mathematical simulation shows
how a tumor grows first into a smooth ball of non-invasive cells and then—under the right
conditions—into an invasive mass that fingers into the surrounding environment. Blue cells
are highly aggressive; orange cells are less aggressive, and brown cells are dead.  
Courtesy of Alexander Anderson

Virtual Tumor. A simulation of one half of the whole living tumor cell population (outer half
sphere) and the complete necrotic (dead) tumor cell population (inner sphere). Coloration
relates to cell-adhesion value—cells on the outer surface of the tumor all have zero cell-to-
cell adhesion. Courtesy of Alexander Anderson
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THE INTEGRATIVE CANCER 
BIOLOGY PROGRAM

Established by the National Cancer Institute in 2003, the Integrative
Cancer Biology Program (ICBP) funds efforts in computational model-
ing and systems biology approaches to cancer.  “It’s difficult to do this
type of research because you have to do both experimental biology
and sophisticated computational approaches. Pulling those kinds of
groups together really requires a structure like a center,” says
Jennifer Couch, PhD, IT/Computational Biology Coordinator for the
ICBPs. “Our vision is always that these centers will sort of form the
locus for the development of a community focused on integrative
cancer biology.” Currently, the ICBP funds nine centers:

Todd Golub, M.D., Dana-Farber Cancer Institute, 
Boston, Mass.
Identifying protein kinase signatures in cancer.

Joe W. Gray, Ph.D., Lawrence Berkeley National
Laboratory, Berkeley, Cailf.
Modeling signaling networks to identify patients for tar-
geted therapeutics.

Tim H-M Huang, Ph.D., Ohio State University, 
Columbus, Ohio.
Epigenetic changes in cancer genomes.

Timothy Kinsella, M.D., University Hospital of
Cleveland, Cleveland, Ohio.
Modeling mismatch repair defective malignancies.

Sylvia Plevritis, Ph.D., Stanford University School of
Medicine, Stanford, Cailf.
Regulatory and signaling pathways in neoplastic trans-
formation.

Joseph Nevins, Ph.D., Duke University, 
Durham, N.C.
Cell signaling pathways in cell proliferation and oncoge-
nesis.

Thomas Deisboeck, M.D., Massachusetts General
Hospital, Boston, Mass.
Model and simulation of multicellular patterns in cancer.

Richard Hynes, Ph.D., Massachusetts Institute of
Technology, Boston, Mass.
Modeling cancer progression.

Vito Quaranta, M.D., Vanderbilt University Medical
Center, Nashville, Tenn.
Model and simulation of cancer invasion.

tain parameters—which Quaranta meas-
ures experimentally—such as speed 
of migration and the rate of cell 
division.  Moreover, as cells divide, they
acquire mutations that make them more
aggressive and invasive (better able to 
proliferate, migrate, and enter the sur-
rounding tissue). 

The resulting computer simulation—
which shows a slice of a growing tumor—
looks a bit like a weather forecasting
map, Quaranta says. Virtual cells divide,
move, and change colors to represent
their changing phenotypes—for example,
blue for highly aggressive, orange for less
aggressive, and brown for dead.
Depending on the conditions, tumors
will either grow with smooth margins
(remain non-invasive) or will finger 
out into the surrounding tissue 
(become invasive). 

When they ran their model, they
got a surprising result: “We found that
if the surrounding environment is a
smooth, easy environment, then the
cells tend to be non-invasive. But if
you put pressure on the cells, say by
reducing oxygen or making the land-
scape very hard to deal with, then the
tumors become invasive,” Quaranta
says. In gentle conditions, many differ-
ent tumor cell phenotypes co-exist, but
when the conditions become harsh
one or two super-aggressive pheno-
types prevail. 

Anti-angiogenisis drugs, inflamma-
tion, even chemotherapy and radiation
therapy might create conditions for
aggressive phenotypes to become domi-
nant, Quaranta says. 

Their findings were published in the
December 1 issue of Cell, a leading biol-
ogy journal. Anderson says that before
his collaboration with Quaranta he
would never have dreamed of submit-
ting a paper to Cell. 

“There was a bit of a wrestling match
over the exact wording. But that ulti-
mately paid off because it produced a
paper that was really aimed at their audi-
ence, and that they could understand,”
Anderson recalls.  

“Ultimately I’m hoping this is going
to be good for the math biology com-
munity, because if I can get a paper
published in Cell, then why can’t some-
body else?” he adds.
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Quaranta says the partnership has
changed his biology as well. “Our
experiments now are actually driven 
by mathematics. So we’re entering an
era of mathematics-driven experimen-
tal biology that is going to be interest-
ing to see.”

“It’s a nice change,” Anderson says.
“To have mathematics driving experi-
mentation, instead of us just always play-
ing catch up with the biology.” 

GLIOMAS: 
THE PATIENT LEVEL

Kristin Swanson (of the University of
Washington) also works on modeling
tumor invasion, but in glioma—a specific

Brain Tumor Revealed. Only 10 percent of glioma cells are visible on MRI (the bright white
area above); a computer simulation superimposed over the MRI helps doctors visualize the
rest. The yellow/pink/red areas show that glioma cells may have diffused way beyond the
borders of the mass seen on MRI.  Courtesy of Kristin Swanson

type of brain tumor that is particularly
invasive and deadly. By the time a
glioma mass is detectable on MRI, inva-
sive glioma cells have already wandered
far into the brain. Swanson compares it
to an iceberg: the mass you can see rep-
resents only about 10 percent of the
total tumor cells in the brain; the rest are
undetectable, making it impossible to
remove them. 

Swanson’s model consists of a series
of partial differential equations that
describe how the mass of glioma cells
spreads within a virtual brain—a three-
dimensional lattice complete with areas
of white and grey matter (glioma cells
migrate at different rates in these dif-

ferent tissues). Her computer simula-
tions show the changing density of
glioma cells along sections of the virtu-
al brain—for example, red where the
tumor density is high and blue where
density is low. 

A glioma patient’s MRI reveals only
the detectable part of the tumor, so
Swanson uses her simulations to visual-
ize the undetectable portion and predict
how the tumor will spread.  

“Just using diagnostic MRI and this
mathematical model, you can predict
survival with very reasonable accuracy
for an individual patient,” she says. 

Her model can also be used to run in sil-
ico clinical trials. “It’s hard to test therapies
for gliomas because patients don’t live long
and you can’t see what’s happening with
most of the tumor,” Swanson says. “But if
you have a model for the expected behavior
of an individual patient’s tumor, then you
can assess the success of therapy relative to
the expected behavior.”

Another investigator working on
gliomas is Thomas S. Deisboeck, MD,
who is assistant professor of radiology at
Massachusetts General Hospital and
Harvard Medical School, as well as prin-
cipal investigator of the Center for the
Development of a Virtual Tumor
(CViT), one of the nine ICBPs.
Deisboeck uses a discrete, cell-based
approach, rather than a continuous
approach, to predict how cells will
spread through a three-dimensional vir-
tual brain. This allows him to connect
what is happening at the subcellular to
the cellular and tissue levels. “Our main
interest is multi-scale, multi-grid, multi-
resolution modeling,” he says.

His virtual cells can proliferate,
migrate, die, and respond to the envi-
ronment and each other. They also con-
tain a nucleus, cytoplasm, membrane
and even working biochemical pathways.
The actions of particular biochemical
pathway components can influence the
behavior of the cells and the spread of
the tumor. For example, Deisboeck is
modeling how the EGFR (epidermal
growth factor receptor) pathway acts as
part of a molecular switch that turns
glioma cells from proliferative (dividing)
to migratory (invading local tissue). 

Though he eventually hopes to use
his models to improve patient treat-

“It’s a nice change,” Alex Anderson says. 
“To have mathematics driving

experimentation, instead of us just always
playing catch up with the biology.” 



“Maybe in one or two generations,
we’ll have experimental biologists who
are fluent in the language of mathemat-
ics,” agrees Vito Quaranta of Vanderbilt
University. 

THE CUTTING EDGE
Quaranta believes that a new era of

cancer biology is fast approaching. “The
way we do experimental oncology is
going to change dramatically as these
mathematics-driven simulations become
more and more common place,” he says.

As quantitative modeling moves from
the margins of cancer biology to the
mainstream, it is also presenting cutting-
edge challenges for modelers.

“It’s raising issues that mathemati-
cians and modelers have never had to
face before,” says Philip Maini of
Oxford University. For example, how
do you model the mechanics of a
growing tissue? How do you build
multi-scale models that are accurate
across different biological and time
scales? How simple or complex is the
optimal model? 

“It’s a very interesting time for grad-
uate students and post-docs to be
involved, because it’s an area that’s
now really beginning to take off,”
Maini says. “Yet it isn’t so far devel-
oped that you can’t immediately start
making inroads.” ■■
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ment, his first goal is more modest—to
improve diagnostics and patients’ quali-
ty of life. 

“What would be already a very signif-
icant achievement is if you could argue
that instead of taking three MRI images
say over six months, the combination of
in silico modeling with two images would
be just as informative,” he says.  

As principal investigator of CViT,
Deisboeck’s broader vision is to build an
online community of cancer modelers
and a toolkit for multi-scale in silico can-
cer research. CViT is creating new infra-
structure, including a digital model
repository that will allow people to share
and combine models (www.cvit.org).

BRIDGING THE DIVIDE
The above examples share a com-

mon theme—a tight link between the
lab or clinic and the computer. But
these examples are still the exception
rather than the rule. The major obsta-
cle in bringing modeling to cancer
biology remains the lack of communi-
cation between modelers and experi-
mentalists. 

On the one hand, biologists and cli-
nicians tend to be mathematically illiter-
ate and fearful of mathematics, says
Robert A. Gatenby, MD, professor of
radiology and applied mathematics at
the University of Arizona. 

On the other hand, mathemati-
cians tend to neglect the biology, he
says. “Mathematicians will set up
equations and then they’ll do unique-
ness theorems and things like that,
which are very mathematical
approaches but utterly meaningless
biologically. This just reinforces the
biologists’ opinion that this is mean-
ingless and can’t be even remotely
helpful to them.”

Getting these two groups to
speak a common language and
embrace a common objective is 
a major challenge. But efforts like
the Integrative Cancer Biology
Program are helping to bridge this
divide and to train a new generation
of scientists who are eager to cross
disciplines. 

“A lot of the students nowadays
don’t want to get locked into just
one field; they are looking for these
multi-connections between a lot of
disciplines. They may be engineer-
ing majors, but they want to know
something about biology,” says
Daniel Gallahan, PhD, Project
Director of the Integrative Cancer
Biology Program at the NIH.
“That’s been a pleasant surprise to
me and it’s something I see as a
critical component for the future
of this effort.” 

From Patients to Molecules and Back. MRI images from a brain tumor patient (left) are used to build a 3-D in silico model of the growing
tumor (right). Each cancer cell is represented as an autonomous agent that can move in space and change phenotypes (proliferation = blue;
migration = red; quiescence = green). Each cell’s behavior is determined by equations that represent the cell’s intracellular networks, cell-to-
cell interactions, and cell-microenvironment interactions. Images Courtesy of Thomas S. Deisboeck. The underlying multi-scale model was
described in Zhang et al. J. Theor Biol. 244(1): 96-107,2007.
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On the computer screen, vessels throb realistically
with each pump of the heart while the river of
blood swirls and pools at curves and intersec-

tions. This is a simulation built with SimVascular—an inte-
grated software system for doing cardiovascular modeling.
Starting this summer, it will be available for testing by
beta-users. 

“Most people doing simulations of blood flow focus on
several inches of the vascular system and treat it as a rigid
tube,” says Charles Taylor, PhD, associate professor of
bioengineering at Stanford University and PI for the car-
diovascular dynamics project within Simbios. “This soft-
ware allows you to do things that are much more exten-
sive.”  

SimVascular creates geometric models from medical
image data; converts those into finite element meshes;
models blood flow through these different geometries;
solves governing equations of blood flow, wall dynamics
and pressure; and then visualizes the results. It is unique-
ly able to simultaneously model blood flow and muscle
wall dynamics; handle patient-specific geometric model-
ing; and take into account the part of the cardiovascular
system beyond the limits of the medical image data.  

“Where SimVascular really shines is in handling com-
plex modeling,” says Bill Katz, MD, PhD, senior scientist
for Simbios. At Stanford, over the last few years, the soft-
ware has been used to help understand and quantify the
relationship between blood flow and cardiovascular dis-
eases such as atherosclerosis and aneurysms. And Taylor is
working with clinicians to assess its ability to plan and pre-

dict the outcome of interventions for adults with cardio-
vascular disease as well as for children with congenital
heart defects. 

Because SimVascular includes commercial components,
its release to the scientific community as an open source
project has posed some challenges, says Katz. “It required a
good degree of encapsulation so that we can eventually
allow open source alternatives to the commercial compo-
nents.” At the same time, he says, the various commercial
entities they’ve dealt with have been very cooperative—UGS
gave starter grants to alpha users for their solid modeling
software, and companies have pre-negotiated the terms of
their relationships with future users. 

For Taylor, the public release of the software feels 
like letting go of his baby. He conceived of the technology
just over 11 years ago and has been nurturing it ever 
since. But, Taylor says,
it’s time to let others
use it as well. “There
are so many applica-
tions for this technolo-
gy to different manifes-
tations of congenital
and acquired cardio-
vascular disease. We
won’t be able to do all
the work here at
Stanford.” 

SimVascular to Simulate Cardiovascular Flow

SimbiosNews
s i m b i o s  n e w s

BY KATHARINE MILLER

Simbios is a National Center for 
Biomedical Computing located 
at Stanford University.

WHAT IS SimVascular?

SimVascular is a software application for patient-specific
cardiovascular modeling and simulation. It integrates
best-in-class commercial components and custom open-
source code, including an integrated flow solver with
outflow boundary conditions and fluid-structure inter-
action for cardiovascular problems. SimVascular
includes:

• Image processing and visualization using VTK
and ITK from KitWare, Inc.;

• Patient-specific geometric modeling using the
Parasolid® solid modeling kernel from UGS;

• Automatic mesh generation using MeshSim
from Simmetrix, Inc.;

• Parallel finite element flow solver, developed
jointly by RPI and Stanford, which incorporates an
iterative solver library (LesLib) from AcuSim, Inc..

Here, SimVascular simulates mean wall shear stress in the pulmonary
arteries of patients with (right) and without (left) pulmonary hyperten-
sion. The disease has altered the arterial geometry in the lungs. 

WANT TO BE A BETA-TESTER?

Taylor is currently planning a SimVascular user-training
course for July or August of 2007. Contact Bill Katz,
william.katz@stanford.edu, for more information. 
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Image provided courtesy of Perttu Niemala. It was published as part of a paper titled
“Assessing the Nature of Lipid Raft Membranes” in PLOS Computational Biology in
February 2007. 

A
ccording to traditional theory, lipid membranes
consist of a “fluid-mosaic” in which molecular
components, including membrane proteins, are

randomly distributed and move freely against a fluid
background. 

In recent years, however, this idea has been chal-
lenged by experimental results suggesting membranes
may contain nano-sized rigid patches known as lipid
rafts. Some have suggested that these rafts are involved
in membrane trafficking, signal transduction, and reg-
ulation of membrane proteins. 

But it’s nearly impossible to observe rafts in action.
So Perttu Niemala, a graduate student at Helsinki
Institute of Technology, and his colleagues decided to
simulate lipid rafts on a computer. They compared the
structures of three different mixtures of a background
lipid, cholesterol and sphingomyelin—with ratios of
1:1:1 (top); 2:1:1 (middle); 62:1:1 (bottom).
Cholesterol and sphingomyelin are believed to induce
raft formation. 

The researchers found that at higher cholesterol
and sphingomyelin concentrations, the membrane
becomes thicker (as shown here) as well as more rigid.
Moreover, the measured lateral pressure profiles with-
in the studied membranes were considerably different,
which is suggested to be an important factor for regu-
lating the action of membrane proteins. 

Simulated 
Lipid Rafts
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