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g u e s t  e d i t o r i a l

A s the NIH National Centers for Biomedical Com-
puting (NCBC) program enters its final years of
support, there is an opportunity to reflect on how

this program has made a lasting impact on the research
community. The NCBCs were launched in response to
the BISTI report1 which called on NIH to make signifi-
cant investments to train a new community of biomedical
computational scientists; develop new methods in com-
putational research; support efforts to make data available
and useable; and foster a scalable national computer in-
frastructure to support biomedical research. 

The NCBCs have succeeded brilliantly in their mission
by focusing on important biomedical research questions,
publishing volumes of high impact research articles, train-
ing scores of new computational scientists, and producing
professional quality open-source software and resources
that many research and clinical groups now depend on as
an integral part of their research framework.  However, the
community-based research infrastructure developed by the
NCBCs is now in jeopardy as the program winds down.

Now, with a sense of déjà vu, the cycle is starting anew,
led by a report by the Data and Informatics Working
Group2 with a set of recommendations that parallel those
of the BISTI report, but with a stronger focus on data
management, integration and sharing designed to address
the huge challenge of making better use of the deluge of
data generated by biomedical researchers.

In response to the report, NIH has launched the Big
Data to Knowledge (BD2K) Initiative and set a high bar
for the long-term impact of this program: “A BD2K Cen-
ter application is expected to propose the development of
specific and substantive “products”—e.g., approaches,
methods, software, tools, and other resources to analyze
data—and then distribute the products to the user com-
munity to dramatically enhance the research community’s
capabilities for using Big Data in biomedical research.”3

This bold vision is a tall order and lessons learned
from the NCBC program indicate that new centers will
face a significant challenge to ramp up and deliver, given
the shortened time frame and reduced funding level of
this new program.  

The NCBCs have already provided innovative solutions
to many Big Data challenges, as will the BD2K Centers in
the future. What’s missing from both of these programs is a
mechanism to address the major challenge of sustaining the

GuestEditorial

infrastructure, software products and services necessary to
support biomedical research communities.

There are no easy answers to the question of who will
pay for the support of public access to research data, soft-
ware and the infrastructure to support it. Fran Berman and

Vint Cerf laid out several possibilities recently including
public-private investments, government support for some
community data collections and new economic models
such as a small fee for downloads of data or software.4

The NIH has the opportunity to take on this challenge
with the BD2K program by tasking the centers to develop
sustainability plans for data collections and/or software in
the first year of the project. Collectively the consortium
could evaluate the feasibility of these plans with feedback
from the community over time. If successful, the BD2K
program could develop a realistic sustainability model for
research resources that would be a huge benefit to the bio-
medical community.  nn

1. The BISTI report: http://www.bisti.nih.gov/library/june_1999_Rpt.asp

2. The Data and Informatics Working Group Report:
http://acd.od.nih.gov/Data%20and%20Informatics%20Working%20
Group%20Report.pdf

3. Centers of Excellence in Big Data Computing FOA:
http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-13-009.html

4. Berman, F and V Cerf (2013)  Who will pay for public access to re-
search data? Science vol. 341 pp 616 - 617

The Missing Link:  A Sustainability Plan
BY GWEN JACOBS, PhD, DIRECTOR OF CYBERINFRASTRUCTURE FOR THE UNIVERSITY OF HAWAII SYSTEM AND PROFESSOR OF NEUROSCIENCE

BY KATHARINE MILLER

A Nobel for 
One of Our Own

Michael Levitt, professor of struc-
tural biology at Stanford Univer-

sity, has received the 2013 Nobel Prize in
Chemistry in recognition of his pioneer-
ing work in computational biology.

“This is wonderful for computational
biology and a victory for physics-based
simulation,” said Scott Delp, PhD, pro-
fessor of bioengineering, mechanical en-
gineering and orthopaedic surgery at

Stanford and co-PI for Simbios, the Na-
tional Center for Physics Based Simula-
tion of Biological Structures, of which
Levitt is a part.

To read more about Levitt’s life and ac-
complishments, go to http://news.stan-
ford.edu/news/2013/october/levitt-nobel-
chemistry-100913.html  nn
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When simulating the movements of large mole-
cules on a computer, researchers typically rely
on an approximation of the force fields at play.

That’s because a truly correct simulation of those forces
would require complex quantum mechanics calculations
that would take years to simulate.  

Many researchers use off-the-shelf force fields without
knowing whether they are optimal for a specific situation.
To address this issue, Lee-Ping Wang, PhD, a Simbios
postdoc, created ForceBalance, a software program that
makes it easier for researchers to efficiently develop and
optimize their own force fields. “ForceBalance lets re-
searchers pursue a scientific problem with greater confi-
dence that their force fields are accurate,” Wang says.  

Force field design depends on three ingredients: The
functional form of the forces—essentially a simplified
description of the cloud of electrons; data represent-
ing the pieces of reality the force field should repro-
duce; and a method for optimizing parameters.  

ForceBalance allows researchers a good deal of
flexibility with respect to each of these three ingre-
dients. For the functional form, for example, re-
searchers have the freedom to represent the
electrostatics as one positive and one negative point on
each atom (a monopole), or as a dipole or multipole.
Among other things, they can also model the charges
moving around (induction or polarization). 

In addition, the data for ForceBalance can come from ex-
periments, theory (based on a small number of quantum me-
chanics calculations) or both combined. “ForceBalance is
the only force-field software that can simultaneously incor-
porate multiple types of data,” Wang says. He and his col-
leagues used this capability to generate an extremely accurate
model of water molecules that was published in November
2012 in the Journal of Chemical Theory and Computation. 

ForceBalance users can also choose among three differ-

ent optimization techniques: grid scan (which tests all the
possible parameters); simulated annealing (which tries
random jumps, honing in on the best parameters); and the
Newton-Raphson method (a derivative-based approach).

Despite offering three methods, Wang says, it’s the New-
ton-Raphson approach that routinely finds the best solu-
tion in the least amount of time (taking only about 10
iterations to converge on the optimal parameters).  

“With ForceBalance,” says Pengyu Ren, PhD, associate
professor of biomedical engineering at the University of Texas
at Austin, who collaborates with Wang, “you can quickly
evaluate or compare a number of different physical models to
observables and determine what physics are more important
to what.” Researchers can in turn test more models for ac-
curacy. “ForceBalance will accelerate improvements in
models and make things more accurate,” Ren says. nn

SimbiosNews

DETAILS 

ForceBalance is described in Lee-Ping Wang, Teresa Head-
Gordon, Jay Ponder, Pengyu Ren, John Chodera, Peter
Eastman, Todd J. Martinez, and Vijay Pande, et al.,
“Systematic Improvement of a Classical Molecular Model of
Water”, J. Phys. Chem. B 117:9956-9972 (2013), and can be
freely downloaded from http://simtk.org/home/forcebalance.

ForceBalance fully automates the force field optimization process.

Simbios (http://simbios.stanford.edu) 
is the National Center for Physics-
Based Simulation of Biological 
Structures at Stanford.

A Balanced Approach 
to Designing Force Fields

BY KATHARINE MILLER

The Duke’s Choice Awards from Oracle and the Java
community honor organizations and developers for their
creative and innovative uses of Java technology. Ayman

Habib accepted the award on behalf of the OpenSim team
at the recent JavaOne conference, attended by 60,000 peo-
ple in San Francisco from September 22-26. nn

In Other Simbios News...
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Things change quickly in the fields of com-
putational biology and bioinformatics.

“New technology comes along and whoa!
You need to design a new course!” says Clau-
dia Neuhauser, PhD, director of graduate

studies, biomedical informatics and compu-
tational biology at the University of Min-
nesota, Rochester.

Today, she says, biomedical “big data”
are putting pressure on bioinformatics cur-
riculum. Be it genomic or molecular data,
imaging data, or electronic medical records,
big data adds a new level of complexity that
requires a shift in training. 

“We need new research and we need re-
vamped training programs,” says Rob Kass,
PhD, professor of statistics and machine
learning at Carnegie Mellon University. 

In July 2013, the National Institutes of
Health (NIH) hosted a workshop to discuss
possible training initiatives to help people
take full advantage of big data. The work-
shop, which was part of the Big Data to
Knowledge (BD2K) initiative, generated
plenty of ideas (some of which are de-
scribed below) that may soon find their
way into a grant program. 

But even without new grants, the bottle-
neck in big data training requires academic
institutions as well as society at large to
ponder a difficult question: What kinds of
training opportunities are needed to ensure
that researchers can extract knowledge
from biomedical big data?

As one might suspect, an individual’s
background is a huge factor in determining
the kinds of training needed as well as its du-
ration (short- vs. long-term). The specific re-
search question being addressed also affects
curriculum. Because genomics research using

big data will be quite different from imaging
or electronic medical records (EMR) research
using big data, it’s hard to imagine a generic
“Big Data for Biomedicine” curriculum.

The NIH workshop participants therefore

discussed many different types of training op-
portunities that could help open up the bot-
tleneck, says Karen Bandeen-Roche, PhD,
professor of biostatistics at Johns Hopkins’
Bloomberg School of Public Health, who led
the workshop discussion together with Zak
Kohane, MD, PhD, director of the informat-
ics program at Children’s Hospital, Boston,
and co-director of the Center for Biomedical
Informatics at Harvard Medical School. All
agree that there is no one-size-fits-all solu-
tion. So here’s a sampling of potential pro-
grams, some of which are already being
piloted at various institutions around the
country while others may require funding
from BD2K or other sources. 

Build on a Data 
Science Foundation

For researchers who already consider
themselves data scientists in biomedicine,
the leap to big data isn’t a huge stretch,
says Kass. “People already good at data
analysis have an easy transition to bigger
datasets because the principles haven’t
changed,” he notes. Still, the growing size
of biomedical data sets means students
need an appreciation for computer systems
and software engineering as well as algo-
rithms and statistical methods, not to men-
tion all the issues associated with data
warehousing, standardization, access, secu-
rity, and confidentiality, Kass says. 

Carnegie Mellon is already building more
and more references to big data into its reg-

ular courses in data analysis. And one of
Kass’s colleagues, William Cohen, has de-
veloped a course in machine learning with
large datasets. “It’s a class that specifically
talks about how to scale things up,” he says.
Courses of this type should be more wide-
spread, Kass says. 

Use Case Histories 
at the Cutting Edge

Kohane would like to see training pro-
vided “right at the cutting edge of where
the experts are.” He supports the use of
case studies that involve problems created
by the size of the data set and the limits
on computational resources and band-
width. As he sees it, learning happens best
when there is a problem that biomedical
domain experts believe is important, and
they have the methodological people
working on it with them. “Then it’s not
make-work, and it’s not tangential,” he
said during the workshop. 

Train Team Members
People working at the interface of big

data and biomedicine will inescapably
work in teams of individuals with diverse
sets of skills, Bandeen-Roche notes. The
question then becomes, she says, “How do
you create a community well-trained to be
team members?” 

In Bandeen-Roche’s own training pro-
gram on the epidemiology and biostatistics
of aging, people from different fields gain
expertise in their own areas but are also

CURRICULUM AND BIG DATA: 
Revamping to Open the Bottleneck

“New technology comes along and whoa! 
You need to design a new course!” 

says Claudia Neuhauser.

“How do you 
create a community
well trained to be
team members?”

Bandeen-Roche says.
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trained in shared activities—common cur-
riculum and shared research projects—
where they learn to work together and

communicate across disciplines. A similar
approach might work for big data, she says.

Train for Real World Data
Colin Hill, PhD, chairman and CEO of

GNS Healthcare, a big data analytics com-
pany, says there are really two buckets of
healthcare big data: the bioinformatics/ge-
nomics side for drug discovery and develop-
ment; and then the real-world data side
dealing with mash-ups of EMRs, claims, and
genomics data. “Our biggest growth (and the
biggest growth in the field),” Hill says, “is in
the real-world data side.” For jobs in this
arena, he says, current training programs in
computational biology or bioinformatics lack
the necessary epidemiological training while
current epidemiological training “typically
doesn’t cover the new math of causal infer-
ence/Bayesian network inference and gives
little exposure to claims data and EMR data.”
Curriculum developers, he says, should take
this job market into account. 

Take It to the Users
Bioinformatics and computational biology

programs are a diverse lot, Bandeen-Roche
says. “Some might approximate what is
needed to handle big data while others
don’t,” she says. And only a few are dedicated
to training the users of big data rather than
PhDs. “It’s important to think about training
the huge number of people needed to do the
standard day-to-day stuff—interpreting and
explaining the data and translating it to clin-
ical practice,” she says. “At the end of the
day, it somehow has to help patients.”

Neuhauser’s program at the University
of Minnesota has a huge focus on educating
the local workforce of people at Mayo
Clinic who are working in the labs where
big data is already being used. Mayo em-
ployees have come to Neuhauser’s program
seeking new skills. Because many have bi-
ology backgrounds, she established a se-
quence of three online quantitative courses
(an introductory computer science course,
as well as separate algorithms and program-
ming courses) that enable them to enter the

graduate program in biomedical informatics
and computational biology. “We’re prepar-
ing people for something that would have

been closed off to them a few years ago,”
Neuhauser says. 

Brush Up Professionals’ Skill-Sets
Several workshop participants noted

their own need for big data training. “We
all need to be retooled, PhD students as
well as the rest of us,” said Elaine Larson,
PhD, associate dean for research at Colum-
bia University School of Nursing. Current
professionals could benefit from short-term
training provided online, at workshops,

bootcamps, or summer programs. Fellow-
ships could help medical doctors learn big
data informatics. And team challenges and
competitions can provide training with the
extra dose of reality that only a true prob-
lem-oriented experience can provide.

Get Creative—
MOOCs and Modules

We live in a new era of education where
MOOCs (massive online open courses)
allow the possibility for scaffolding courses
and making them broadly available. An-
drew Laine, PhD, professor of biomedical
engineering at Columbia University, noted
during the workshop that the NIH could re-
quire grantees to contribute modules to a
broadly shared resource. “If it can be done
once and done really well, it can be a com-
modity to the community,” he said.

As Bandeen-Roche notes, “Extracting
knowledge from big data is more difficult
than one might have hoped.” Hopefully, ef-
forts to design new training programs will
allow researchers meet the challenge. nn
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BIG DATA 
PROGRAMS 

OUTSIDE 
BIOMEDICINE 

If programs focused on
biomedicine don’t offer
enough big data training,

researchers can look for
opportunities elsewhere. For
example, several organizations
already offer novel training
programs in big data. 

Berkeley’s Simons Institute is
currently running a four-month
program called “Theoretical
Foundations of Big Data
Analysis.” Although not
specifically designed for
biomedical researchers, the
program covers the same big
data turf that a biologist would
find useful, such as succinct
data representations; parallel
and distributed algorithms; and
big data privacy. And several of
the instructors have experience
using big data in biomedicine. 

Insight Data Science also offers a
6-week post-doc training
fellowship to help “bridge the
gap between academia and a
career in data science.” Jenelle
Bray, PhD, who recently
completed her post-doc at
Stanford using machine learning
to study protein structures,
entered the Insight program in
September. She saw it as the best
way to get the training she
needed to lead a data science
team—in biomedicine if possible.
“Sometimes the newest
technologies take a while to
permeate academia,” she says.
“You can learn them more
quickly going into industry.”

“We all need to be
retooled, PhD students
as well as the rest of

us,” says Elaine Larson.

“There is a need to train the vast numbers
of people in the biomedical field who
might need to talk to patients with a
genome on a stick,” Neuhauser says. 
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L ike a “Wanted” poster distributed to a
posse, peptide vaccines show the im-

mune system a small sample (about eight
amino acids) of a pathogen, training the
body to seek and destroy viruses, cells or bac-
teria that tote identical peptides. But just as

a criminal might dye his hair and get a nose
job to avoid recognition, some vaccine tar-
gets can frequently mutate those peptides,
rendering them invisible to the immune sys-
tem posse. Designing vaccines to handle
these shape-shifters has proven
challenging using the traditional
trial-and-error approach. Today,
computer and physical scientists
are trying to change that by devel-
oping computer programs and sim-
ulations that identify the likeliest
vaccine candidates and test out
their capabilities in silico. 

“One of my own goals…is to
see how we can make vaccine de-
sign a systematic discipline,” says
Arup Chakraborty, PhD, direc-
tor of MIT’s Institute for Medical
Engineering and Science in Cam-
bridge. Two recent studies take
steps in that direction—and offer
hope of vaccines to treat HIV in-
fection and cancer.  

Hitting HIV at 
Its Most Vulnerable

As soon as immune cells learn
to recognize HIV, the rapidly mu-
tating virus tweaks its peptides
and becomes invisible once more. Vac-
cine-makers have tried to foil HIV by
training the immune system to recognize
the virus’s most crucial peptides—those
that, if mutated, would weaken the virus.
Thus far, this approach has failed because
the virus can often make additional com-
pensatory mutations, wiping out the disad-
vantage caused by the first mutation—

rendering the vaccine impotent.
To design effective vaccines, Chakraborty

says, scientists need a deeper understanding
of how each amino acid in a key protein con-
tributes to HIV fitness, and how multiple
mutations work together. It’s no simple prob-

lem: Each amino acid can mutate to 19 dif-
ferent alternatives. Bioengineering each
possible combination would be preposterous.
That’s where computers can help. 

In a paper published in Immunity in March

2013, Chakraborty and his colleagues—Bruce
Walker, MD, Andrew Ferguson, PhD, and
Thumbi Ndung’u, PhD—computed the
fitness landscape for the HIV polyprotein
Gag, which contributes the main structural
elements of the virus.  Here’s a simplified

example of a fitness landscape: Suppose a
virus contains just two amino acids. For
each potential amino acid pair, the virus
may be fitter or weaker. When mapped,
there will be peaks for fit pairs and dips for
poor ones. In designing an effective vac-

cine, Chakraborty says, “You want to push
the virus off the hills and into the valleys.”

Of course, for the Gag proteins, which
together encompass 500 amino acids, this
computation is more complex. The first in-

carnation of the model (in the Immunity
paper) calculates the fitness of Gag se-
quences made up of various combinations
of wild-type amino acids and alternative
(mutated) residues. It considers not only
Gag with single mutations, but Gag with

VACCINES BY THE NUMBERS:
Computational Approaches to Design Vaccines Faster

HIV particles attack a human T cell in this scanning electron micrograph. Courtesy of National
Institute of Allergy and Infectious Diseases (NIAID). 

“One of my own goals…is to see how we can make 
vaccine design a systematic discipline,” says Arup Chakraborty.
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every possible pair of mutations, or three,
four or more mutations at once. The group
is currently expanding the model, calculat-
ing fitness for not just wild-type or muta-
tion, but for any of the 20 possible residues
at each place in Gag. To determine fitness,
the researchers measured the prevalence of
different mutations in HIV DNA sequences
collected from patients. They inferred the
protein sequence from the DNA and as-
sumed that more predominant strains were
the fittest. The result is a multidimensional
topographical map, with peaks where the
virus does well and valleys where it’s weak. 

To test the model in vitro, the researchers
engineered a handful of viruses with different
sequences and infected human cells with the
strains. Sure enough, the viruses that the
computer predicted to be least fit replicated
the slowest. 

Using fitness landscapes, Chakraborty
can identify places where mutations would
cripple HIV, and the virus could not easily

compensate and evolve back to full fitness.
“If you make those mutations, the virus is
screwed,” he says. The group has designed
therapeutic vaccines that should force HIV
to make just those mutations, and is work-
ing toward a trial in monkeys.

The approach combines two technolo-
gies, DNA sequencing and computation, that
are becoming ever cheaper, Chakraborty
notes. “I think this will be useful for any mu-
tating virus that we have today, or that will
emerge in the future,” he says. Influenza, for
example, is another rapidly mutating virus.

Modeling Cancer Vaccines
Therapeutic vaccines can train the im-

mune system to attack not only infections,
but also cancer. “The tumor tries to hide
from the immune response,” says Robert
Preissner, PhD, of the Medical University
of Berlin. The “Wanted” poster elements of
cancer vaccines, designed to target individ-
ual cancers, are peptides that represent ab-
normal proteins on a tumor’s surface.

For a vaccine peptide to work, it must
interact with two immune system proteins:
the major histocompatibility complex
(MHC) found in all cells and the T-cell re-
ceptors found on the surface of white
blood cells. MHC molecules stick out from
the surface of cells, displaying sample pep-
tides from inside the cell—including vac-
cines—and signaling whether the cell
contains foreign or otherwise undesirable
material. A therapeutic cancer vaccine
trains T cells to recognize the native but
anomalous proteins expressed in cancer, so

they will attack a tumor.
Researchers have made computer mod-

els of cancer vaccine action before, but only
with simplified yes-or-no interactions be-
tween the vaccine, MHC proteins, and T
cell receptors. In a study published by BMC
Bioinformatics in April 2013, Preissner and
his colleagues present an updated model,
VaccImm, which calculates, in greater de-
tail, the interactions between the specific
amino acids in the vaccine peptides and
those in the T-cell receptors and MHC
molecules. The model should better predict

whether a given peptide would help the im-
mune system fight off cancer.

In the VaccImm model, cancer cells, im-
mune cells, antigens and antibodies interact
according to set rules. For example, if a T
cell recognizes an antigen, it becomes acti-
vated and kills tumor cells. Users can input
different peptide vaccines, and the program
will calculate their effect on tumor growth.
VaccImm is freely available online at http://
bioinformatics.charite.de/vaccimm/.

In his simulations, Preissner has noticed
that multiple vaccine peptides—four or
more—work best. This matches the expe-
rience of immunologists using multiple
peptides in vivo. However, only clinical tri-
als will show if peptide cocktails that work
in the simulation will work in people,
Preissner noted.

VaccImm is still missing useful parame-
ters, Preissner says. For one, there are many
different types of MHC molecules. He
would like to extend the list of MHC types

available to users. In addition, the current
incarnation does not allow the cancer cells
to mutate, but it should be possible to add
this feature.

Francesco Pappalardo, PhD, of the Uni-
versity of Catania in Italy, co-developed the
original framework on which VaccImm was
based. He says computational vaccine de-
velopment will save time, money and the
lives of experimental animals. Moreover, he
says, it will help immunologists understand
the biological processes that underlie vac-
cine success.   nn                      
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Two-dimensional representation of the players in a VaccImm simulation. Image credit: Robert Preissner. 
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fessor and director of computational biology
in the pathology department at the Univer-
sity of New Mexico Cancer Center. 

The power of the models and equations
lies in the fact that data on any given pa-
tient’s tumor can be plugged into the for-
mulas and the resulting output—whether
it’s a prediction of a drug’s benefit, a sur-
vival prognosis, or a description of the
tumor’s growth—will be personalized to
that patient. The models haven’t yet led to
major changes in how doctors treat cancer
outside of clinical trials, but they’re poised
to make a difference. 

Modeling Tumor Growth 
Swanson has focused her initial model-

ing efforts on gliomas, aggressive brain tu-
mors with few treatment options. Gliomas
rarely spread to other organs, making them
an appealingly simple tumor type to model.
But it’s also notoriously hard to predict the
prognosis for patients with glioblastoma
multiforme, so there’s lots of room for im-
provement in the clinical realm. Brain MRI

scans can reveal some aspects of the tumor
size, but little else. 

“Cancer is by definition a dynamic
disease,” says Swanson. “So it doesn’t
make sense to judge it with scans at sin-
gle time points.” 

In 2010, Swanson reported in Physics in
Medicine and Biology that by creating a
growth model of a patient’s glioma from a
series of brain MRIs, she could predict
whether the tumor would shrink in response
to radiation therapy. She’s now working
with clinicians at Northwestern and other
medical institutions to optimize how this
model can guide the radiation therapy dose

chosen for each patient and to create an
iPad app that would put the models
into the hands of doctors. 

Her research team has also adapted

the model to be used in other situations.
Based on two MRIs taken at least five days
apart, they create a mathematical descrip-
tion of the kinetics and shape patterns of
how a patient’s tumor is growing. Then,
they can use the model to project the size
of the tumor at any later date. 

Their most recent study, published in May
2013 in Cancer Research, used these modeled
projections to study of the effectiveness of

When Kristin Swanson’s father was
being treated for lung cancer, doctors

collected no shortage of data on his disease.
They scanned his chest, regularly drew
blood, and biopsied his tumor to study the
cancerous cells. But each test told a differ-
ent, sometimes contradictory, story about
the cancer. And when Swanson asked the
doctors about her dad’s prognosis, their pre-
dictions often seemed rooted in averages for
all lung cancer patients, rather than being
informed by any of the test results. 

“I realized,” says Swanson, who started
her career as an applied mathe-
matician, “that there were
all these different pieces
of data, and no one
was bringing them
together.” 

The experience
motivated Swan-
son to focus her re-
search on developing
ways to integrate data on
a patient’s cancer into person-
alized models of tumor growth. Such
models, her research group at Northwest-
ern University has shown, can better pre-
dict how a tumor will respond to different
treatments and drugs than any one piece
of data alone. 

Swanson isn’t the only researcher trying
to build such models. Mathematicians,
physicists, and engineers with diverse back-
grounds have realized that their expertise in
studying complex systems can help them
make sense of cancer. So they’re creating
models of the physical forces on tumors; de-
veloping equations to describe how cancers
grow and spread; and using mathematical
approaches to study how the molecular
pathways in cancer cells interact. 

“The reality is that no matter how com-
plicated the molecular biology is, tumors
are physical systems that obey the laws of
physics,” says Vittorio Cristini, PhD, pro-

CANCER’S CRYSTAL BALL: 
Personalized Tumor Models to Guide Treatment

Using MRI scans of a patients’ glioblas-
toma at multiple time points, Kristin

Swanson created a personalized model of
the tumor’s growth and could determine the

theoretical tumor size at any time point.
Shown (clockwise from top left) is the tumor at the

time of the first pre-treatment MRI, the modeled tumor 19
days prior to the initial scan, and the modeled tumor 107
days later. Using this model as a baseline, Swanson could
determine how much any given treatment affected the
growth of a glioblastoma. From Neal ML, et al. (2013) Dis-

criminating Survival Outcomes in Patients with Glioblastoma
Using a Simulation-Based, Patient-Specific Response Metric.

PLoS ONE 8(1): e51951. doi:10.1371/journal.pone.0051951
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chemotherapy and radiation combinations in
63 glioma patients. Standard response met-
rics comparing the size of a tumor before and
after treatment are poor predictors of overall
survival, Swanson says. But using models
based on routine scans the patients already
had, her group was instead able to compare
the projected size of a tumor without treat-
ment to the size of the tumor after treat-

ment. The resulting metric, dubbed “Days
Gained,” measured not just a net change in
size of a tumor, but took its growth speed
into account. Patients who had a “Days
Gained” result of more than 117 days after
their initial therapy were most likely to sur-
vive long-term. 

Earlier this year, Swanson laid out the
current status of the field that she
calls mathematical neuro-oncol-
ogy in a Frontiers of Oncology re-
view. Models, she wrote, through
metrics like “Days Gained,” are
helping identify patients who can
better be treated with deviations
from the standard of care. But it
will take more doctors and institu-
tions buying into the benefits of
models before such model-based
personalized care is routine. Al-
ready though, Swanson says she’s
seen more acceptance of modeling
from clinicians. 

“A dozen years ago, I gave pre-
sentations on modeling tumors
and was routinely laughed at by
oncologists,” says Swanson. “Now
that we’re getting real clinical re-
sults and have cohorts of patients,
we’re being listened to.”

Master Equations 
of Cancer

While Swanson primarily mod-
els how tumors grow, Cristini is
more concerned with mathemati-
cally describing how molecules
from the outside can infiltrate a
tumor. Whether or not drugs can
reach the deepest, densest parts of
a tumor, he thinks, is a driving fac-

tor in whether the drug can effectively fight
the cancer. 

“The physics of transport might be the
single most important mechanism for drug
resistance,” he says. 

By modeling the environment in and
around a tumor, he’s found, he can predict
whether a treatment will be successful based
on how drugs can perfuse into the tumor.

And such predictions, like those that
Swanson has made based on her glioma
models, can help guide clinician decisions
between therapy options or dosages on a
personalized level. 

In August 2013 in PNAS, Cristini and his
collaborators published the results of a study
on colorectal cancers that had spread to the

livers of 10 patients. Using microscope slides
containing samples of the liver tumors after
chemotherapy, the scientists calculated the
distribution and sizes of blood vessels that
ran through each tumor. Then, they ana-
lyzed which tumor cells, and how many, fell
into the so-called “kill radius,” the zone
where cells had been successfully killed by
chemotherapy. Working backward, the team
was able to generate a mathematical equa-
tion linking blood vessel characteristics to
the resulting kill radius. The equation can
now be used prospectively to calculate what
dosage of chemotherapy is required to pene-
trate the entire tumor. 

Cristini has applied his mathematical
models of drug diffusion not only to the liver,
but to tumors in the brain and breast as well.
In PLOS One in April 2013, he showed that
the inability of immunotherapy drugs to
reach every part of a breast cancer explains
why some tumors are unresponsive to the
therapy. Most clinicians and biologists,
Cristini says, had assumed that a molecular
difference between how tumor cells respond
to drugs—rather than a difference in the
ability of drugs to reach tumor cells—was to
blame for the differing outcomes. 

Cristini’s goal is to develop what he calls
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By taking histological samples from colorectal cancers that have metastasized to the liver, Vittorio Cristini’s
group determined which sections of the liver tumor had been killed by chemotherapy (left). Then, the scientists
made a computer model (right) showing which areas of the tumor were alive (blue), dead (red) or part of the
liver's portal triad and central vein (yellow). Using the model, they could determine how responsive a patient’s
tumor was to chemotherapy, and calculate how much drug would be necessary to eradicate the tumor.
Reprinted from Pascal, J, et al., Mechanistic patient-specific predictive correlation of tumor drug response with
microenvironment and perfusion measurements, PNAS 2013 110: 14266-14271.   
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“master equations of cancer.” Every physical
parameter of a tumor, he says, can be de-
scribed through physics and mathematics.
And, as researchers like him are increasingly

showing, many of these physical attributes
are closely linked to differences between tu-
mors and treatment success rates. 

Modeling Molecular Pathways
But the complexity of cancers doesn’t

just lie in physical properties that can be ex-
tracted from scans. Tumors are also diverse
at the molecular and genetic levels. And
modeling is ripe for understanding how the
molecular attributes of a tumor influence

their physical properties. 
With multi-scale modeling, Thomas

Deisboeck, MD, associate professor of radi-
ology at Massachusetts General Hospital
and Harvard University says, researchers in-
tegrate data not only from scans, but also
from isolated cells, tumor biopsies, and even
blood samples. “But getting that type of data
consistently even for one patient is spotty,
let alone trying to get a big data set,” he says.
And that’s what’s holding the field back. 

To increase the power of existing data
sets he’d like to see more collaboration
within the field, and the establishment of
standards and common markup languages
that work for multi-scale models, he and his
colleagues wrote in a 2013 commentary in
Cancer Informatics. A new markup language
called tumorML, he says, is poised to make
a difference by working for models at both

the macroscopic and microscopic level.
The more data researchers integrate,

though, the more data they have to store and
process for modeling. And that presents a

challenge. “If a model only runs at Sandia or
Los Alamos because it requires so much
computing power,” he says, “then it’s not
very practical for most clinicians to use.”

Once multi-scale models are perfected,
Deisboeck expects them to be used not only
to guide decisions on individual patients, but
to generate hypotheses on how novel cancer
drugs will affect every aspect of a tumor. 

“It’s all about target validation,” he says.
“With a model, you can ask how targeting

a particular protein would change the be-
havior of the rest of a cellular system.”

If there are five drug options for a par-
ticular cancer, he explains, a multi-scale
model could predict which drug or drug
combinations—even what order and
dosages to give the drugs in—would best
help a particular patient. 

Forecasting Outcomes
A hundred years ago, predicting a hur-

ricane before it made landfall was nearly
impossible. Today, sophisticated satellite
measurements and a plethora of data are
plugged into models that predict when and
where and with how much force a hurri-
cane will hit. That’s the metaphor that
Thomas Yankeelov, PhD, associate profes-
sor of radiology and cancer biology at Van-
derbilt-Ingram Cancer Center, uses to talk

about where tumor modeling stands now
and where it’s going. The technologies to
access quantitative data from scans have
already been developed; now, it’s a matter

of correlating available data to outcomes. 
Yankeelov’s lab at Vanderbilt University

is working with oncologists to model how
breast tumors respond to neoadjuvant ther-
apy—drugs given before surgery with the goal
of eliminating the cancer. By scanning pa-
tients before and after a neoadjuvant drug is
given, they’re developing equations that may
be able to predict better than individual scans
whether or not the neoadjuvant therapy will
be effective at getting rid of cancer cells. 

Like the models others are developing, the
ultimate goal of Yankeelov’s work is to find
ways to better guide treatment decisions.
And the challenge is getting physicians to
buy into using the technology. Or at least,
initially, integrating it into clinical trials. 

“Modeling can help us design better in-
formed clinical trials and gauge better
whether treatments are working,” he says.
His collaborations with physicians help
bring the technology closer to those uses,
transitioning from bench to bedside. 

Today, a patient being treated for cancer
will likely hear the same predictions that
have been used in the past on the odds of
treatment working for their tumor—based
on averages. But as models make their way
toward the clinic, these predictions will start
to change. And for doctors and patients
alike, that could prove a useful forecast.  nn

To gauge the response of a breast tumor to neoadjuvant chemotherapy, Thomas Yankeelov’s research group used scans of the tumors at various
time points to determine tumor cell distribution. Together, these models from multiple time points could be used to reconstruct cell proliferation
and diffusion model parameters. Following parameter optimization, the model is used to predict the tumor cell distribution at the final time
point and compared to experimental observations. Courtesy of Thomas Yankeelov, Jared Weis and Mike Miga.



History of Life

Computing
THE

Using New Data 
and New Models 
to Tackle Old Puzzles



In 1977,
the late Carl Woese, PhD, shook up biology when he pub-
lished the first tree of life based on genetic sequence data. His
team showed that, contrary to popular belief, eukaryotes did
not evolve from prokaryotes; instead, three distinct domains
of life (bacteria, archaea, and eukaryotes) all arose from a com-
mon ancestor. 

Woese’s revelation is now considered one of the greatest
biological discoveries of all time. But it was initially met with
vehement skepticism from fellow scientists. He challenged a
beloved paradigm in biology, and he initially paid the price.
It took a decade for his findings to
become widely accepted. 

The question “where did we
come from?” is one that philoso-
phers, theologians, and scientists
alike have been trying to answer
for millennia. But reconstructing
events that took place millions to
billions of years ago is fraught with
difficulties. The further back one
goes, the less information there is;
and the more people resort to fill-
ing in the gaps with ideas and sto-
ries. These ideas are often so neat
and elegant and pleasing that it’s
hard to give them up, even when
new data clearly contradict them. 

Today we are in a data-rich
era in evolutionary biology. For
decades, computational biologists
who work in phylogenetics have
built evolutionary trees by infer-
ring evolutionary distance from
the similarities of DNA sequences
for one gene. Now they can build
trees using whole-genome se-
quences (currently available for
numerous species). Armed with
such data, as well as increasing computational power and so-
phisticated new computational models and tools, it finally
might be possible to answer some of the toughest and oldest
puzzles in evolution. 

“It used to be that data were the limiting thing. But of course
now, keeping up with the data is the problem. I’ve been around
a long time and watched it all. It’s been exciting,” says Russell
Doolittle, PhD, emeritus professor of molecular biology at the

“It used to be that
data were the limiting

thing. But of course
now, keeping up 

with the data is the
problem. I’ve been
around a long time
and watched it all. 
It’s been exciting,”

says Russell Doolittle.



University of California, San Diego. A pioneer like
Woese, he reconstructed animal evolution using pro-
tein sequence data in the 1960s. 

This article reviews seven history-of-life puzzles on
which computational biologists and bioinformaticians
are making headway: How did life begin? Which
came first: RNA or proteins? Or did metabolism come
first? Is there a fourth domain of life? How have pro-
teins evolved since life began? Why did introns
evolve? And what drives the evolution of form? 

To answer these questions, many computational
biologists are venturing beyond phylogenetics and
simple Darwinian tenets by incorporating chemistry,
physics, protein structure, epigenetics, morphology,
ecology, and development into their algorithms. 

The answers to these puzzles may surprise you, and
some remain hotly contended. “People are still argu-

ing many of the same arguments that they had before
all of the data were there,” Doolittle says. But if there
is one thing evolutionary biology needs, it’s a few
renegades who aren’t afraid to challenge the status
quo. Not all their revolutionary ideas will hold up to
scrutiny, but those that do could forever change our
understanding of life itself.  

How did life begin?
Life on Earth began about 3.8 billion years ago.

But exactly how this happened—how non-living
chemicals transformed into organic building blocks
and then living cells—remains a mystery. 

Phylogenetics can only answer questions about
what happened more recently than about 3.5 billion

years ago, when the last universal common ancestor
(the primitive cells that gave rise to bacteria, archaea,
and eukaryotes) first appeared on Earth. “The earliest
thing you’re ever going to see by direct sequence
analysis is already an incredibly complicated organ-
ism. It had a lot more than DNA; it had RNA, pro-
teins, RNA machinery, transport, homeostasis, and
bioenergetics,” says Eric Smith, PhD, an external
professor at the Santa Fe Institute. “So you have to
dig back way further than that in time.”

Experimental scientists have established several
different scenarios for how organic molecules might
have first appeared on Earth. For example, in 1953,
Stanley Miller and Harold Urey famously created
a “primordial soup” of amino acids by passing elec-
tricity (simulating lightning) through an airtight
flask of water plus methane, ammonia, and hydrogen

gases (which they believed, at the
time, to be present on early
Earth). After organic molecules
first appeared, however, it is un-
clear how they joined together to
build the basic machinery of life. 

Some scientists have proposed
that “autocatalytic sets”—groups
of molecules capable of producing
each other through mutual catal-
ysis—were necessary to get things
going. But others have argued
that autocatalytic sets could not
have arisen spontaneously. “Some
say it’s equivalent to a tornado
blowing through a junkyard and
randomly assembling pieces of
metal and plastic into a Boeing
747,” says Wim Hordijk, PhD, a
computer scientist and owner of
SmartAnalytix.com. 

So, Hordijk and his collabora-
tor Mike Steel, PhD, professor of
mathematics and statistics at the
University of Canterbury in New
Zealand, decided to actually calcu-
late the probability. “Nobody had
ever looked at this in a concrete
mathematical way,” Hordijk says.

“So that is what we’ve done. We proved mathemati-
cal theorems about it and ran computer simulations.”
The mathematical framework integrates probability
theory and graph theory—with molecules as nodes
and interactions between them as edges in the graph. 

In a 2012 paper in Acta Biotheoretica, they showed
that autocatalytic sets do appear spontaneously with
high probability. “In this simple model of a chemical
reaction system where you have polymers floating
around that could be glued together or broken apart
and can do catalysis, it’s actually very likely that you
will get these autocatalytic sets,” Hordijk says. Plus,
smaller autocatalytic sets can team up together.
“The smaller ones can grow into bigger ones. That’s
necessary to get some sort of evolutionary process
going,” Hordijk says.

Tripartite Life. In 1977, Carl Woese first proposed the radical idea that three
domains of life arose from a common ancestor. He inferred evolutionary re-
lationships by comparing sequence similarities in ribosomal RNAs across mul-
tiple organisms. His three-branch tree of life is now widely accepted. Created
by Maulucioni from figure 1 in Woese CR, Kandler O, Wheelis M (1990). “To-
wards a natural system of organisms: proposal for the domains Archaea, Bac-
teria, and Eucarya,” Proc Natl Acad Sci USA 87, and made available through
the Wikipedia Commons at http://en.wikipedia.org/wiki/File:Phylogenetic-
Tree,_Woese_1990.png.



It’s difficult to create and study autocatalytic sets
experimentally. But, in an October 2012 paper in
Nature, experimentalists reported that small RNA
molecules can spontaneously form a cooperative
self-replicating network. Next, Hordijk and Steel
simulated that system using their model, virtually
replicating the experimental results, as published in
a 2013 paper in the Journal of Systems Chemistry.
They also made new predictions about the behavior
of the system that the experimentalists are now test-
ing. “The hope is that by doing these computer simu-
lations, we can actually guide the experimentalists,”
Hordijk says. This particular experiment started with
already assembled RNA, so it doesn’t answer the ques-
tion of how RNA formed in the first place, he notes.

Also, Hordijk and Steel’s model makes no as-
sumptions about the type of molecule involved; their
mathematical framework could just as easily be ap-
plied to proteins or metal complexes. So, it doesn’t
answer the question of which type of molecule got
life going. 

Which came first: 
RNA or proteins?

Nucleic acids store the information that is needed
to make proteins, but proteins are the workhorses
that allow nucleic acids to replicate. So, scientists
have long puzzled over which came first. In the
1980s, with the discovery that RNA can both store
information and catalyze reactions, many scientists
believed they had the answer: RNA came first (note
that DNA is a more stable molecule believed to have
evolved from RNA). The “RNA world” hypothe-
sis—which purports that RNA got things going and
was gradually replaced by proteinaceous enzymes and
DNA—still prevails today. “I still accept the idea of
an RNA world as real,” Doolittle says. “There are
RNA surrogates for many proteins. RNA could have
easily been the intermediate that was gradually re-
placed by proteins.”

But not everyone is convinced. For one thing, no
one has ever synthesized ribose, the sugar backbone
of RNA, in abiotic conditions, says Jean-Michel
Claverie, PhD, professor of medical genomics and
bioinformatics at the University of the Mediter-
ranean in France. “I’m not in that field, but I had to
review a book about the RNA world. And this is
when I realized how weak the evidence is,” he says.
“The existence of an RNA world, although it would
make a lot of sense and would elegantly explain the
central role of the ribozyme in protein synthesis, is
still not founded on anything solid.”

In a 2012 paper in PLoS ONE, Gustavo Cae-
tano-Anollés, PhD, professor of crop sciences at the
University of Illinois at Urbana-Champaign (where
Woese once worked), and his colleagues challenged
the RNA world hypothesis. Caetano-Anollés builds
evolutionary timelines by looking for similarities
across organisms in 3-D structures—RNA secondary
structures and protein folds—rather than in genetic
sequences. “I have always been suspect of explo-

rations that come from sequence and target very
deep evolutionary divergence,” Caetano-Anollés
says. “How can people make judgments about what
happened so far back in time with something that is
changing so incredibly fast?” Structures change at a
much slower pace than sequence; structure compar-
isons are also much less sensitive to messy evolutionary

phenomena such as convergent evolution (indepen-
dent evolution of similar features) and horizontal gene
transfer (the exchange of genes between unrelated or-
ganisms), he says. 

His team traced the evolutionary history of the ri-
bosome using data from the SCOP (Structural Classi-
fication of Proteins) and CATH (Class, Architecture,
Topology, Homology) protein structure classification
databases (which group proteins into fold groups).
They computationally compared ribosomal protein
and ribosomal RNA structural domains across nearly
1000 organisms, including bacteria, archaea, and eu-
karyotes. The idea: structural domains that are the
most universal are the oldest, whereas domains that
appear in only a few organisms are the youngest.
RNA-world proponents believe that the first ribo-
somes were composed solely of RNA. But Caetano-
Anollés’ team found that ribosomal proteins are just
as old as ribosomal RNA; and that the two evolved
together. Thus, early Earth was in fact a ribonucleo-
protein world, he says. “My stance may not be popular
with those who focus on sequence. However, struc-
tural genomic data have been analyzed and the inter-
pretation is against the RNA world.”

“Caetano-Anollés has certainly done some
provocative stuff,” Doolittle comments. “I think he’s
been mistaken about some of it, but his approach is so
refreshing that I read all of his work, even though I’m
skeptical of some of his conclusions.” Doolittle won-
ders how the proteins could have been propagated
without a memory system. “You can’t have all the in-
formation for a particular kind of fold passed on from

“I have always been suspect of
explorations that come from sequence
and target very deep evolutionary
divergence,” Caetano-Anollés says. 
“How can people make judgments 
about what happened so far back 
in time with something that is 
changing so incredibly fast?”



A Structural History of Life. Gustavo Caetano-Anollés builds evo-
lutionary trees based on the 3-D structures of RNAs and proteins. This
tree reconstructs the evolutionary history of ribosomal RNA helices.
The oldest structures are in red and the youngest structures are in
blue. Similar analyses of ribosomal proteins (not pictured here) sug-

gest that ribosomal proteins and ribosomal RNAs coevolved, refuting
the idea that RNA appeared on Earth before proteins (the so-called
“RNA world hypothesis”). Reproduced from figure 2 of: Harish A, Cae-
tano-Anollés G. Ribosomal History Reveals Origins of Modern Protein
Synthesis. PLoS ONE 2012; 7: e32776.  



one generation to another until you can explain how
this information is stored. At the moment, that’s still
a fatal flaw,” Doolittle says. 

But, in a 2013 study in PLoS ONE, Caetano-
Anollés’ team provides evidence that protein synthe-
sis occurred before there was a memory system
(before there was a genetic code or ribosomes). “The
ancestors of synthetases [the enzymes that load
amino acids onto transfer RNA], are responsible for
the specificity of the genetic code,” Caetano-Anollés
says. During transcription in the ribosome, tRNA
molecules bring the correct amino acid into the
growing protein sequence by matching their three-
letter anticodons to codons in the messenger RNA.
Synthetases contain two types of domains: those that
perform the loading and those that read the anti-
codon to determine exactly which amino acid to
load. Caetano-Anollés team found that the former
are more ancient than the latter; this and other evi-
dence suggest that these enzymes were originally in-
volved in non-ribosomal protein synthesis. The
genetic code only arose later, likely as a way to im-
prove protein flexibility and function, Caetano-
Anollés says.  

Or did metabolism 
come first?

Smith also disputes what he terms the “radical
RNA-first view.” Though life may have gone
through a stage in which RNA was the main mole-
cule of both heredity and catalysis, he doesn’t believe
that RNA was the first mover. Rather, he says, me-
tabolism began as a system of chemical reactions that
did not involve RNA. Early metabolic networks
could have arisen spontaneously and been catalyzed
by minerals or perhaps simple small-molecule/metal
complexes. “For early chemistry, we’re not looking

for something that undergoes Darwinian adaptation,
because the early chemistry is universal stuff that’s
never changed. We’re just looking for stuff that will
transduce energy, fix carbon, do the same things over
and over again, and provide an ordered framework—
out of which more molecular complexity comes
later,” Smith says.

In the metabolism-first view, the chemistry that
eventually became life must have included methods
for carbon fixation—converting inorganic carbon to
organic carbon. Two carbon fixation pathways—the
reductive citric acid cycle (also known as the reverse
Kreb’s cycle) and the Wood-Ljungdahl pathway—
are believed to be the most ancient. But scientists
have long debated which of these two evolved first.

Smith tackles these types of history-of-life ques-
tions by focusing on chemistry. “When you talk
about the low-level chemistry, you don’t need to refer
to the genomic era of modern cells because whatever
preceded them was also using low-level chemistry,”
Smith says. The metabolic networks that organisms
use today are highly conserved. For example, modern
autotrophs (organisms that can fix carbon and thus
make their own food) use one of only six different
pathways for carbon fixation. “This suggests that
even the long-range evolution of complicated organ-
isms has been strongly constrained by the principles
of very low-level chemistry,” Smith says.

To reconstruct the evolutionary history of biolog-
ical carbon-fixation, Smith teamed up with Rogier
Braakman, PhD, a fellow at the Santa Fe Institute.
Braakman developed a novel computational tech-
nique called phylometabolic reconstruction, which
integrates phylogenetics with flux-balance analysis,
a type of metabolic analysis. In flux-balance analysis,
researchers derive a series of equations to represent
all the inputs and outputs in a metabolic network;
then they simulate the flux of metabolites through
this network, assuming constraints such as conserva-
tion of energy and mass. Braakman and Smith added
the further constraint that early life must have been
self-sufficient—able to make all its own building
blocks. This limit confines the sequence-based phy-
logenetic reconstruction to a set of allowed configu-
rations. “What we’re doing here is saying: One thing

that we know about autotrophs is that they made
everything that they needed.” 

Their paper, published in PLoS Computational Bi-
ology in 2012, surprisingly concluded that neither the
reductive citric acid cycle nor the Wood-Ljungdahl
pathway evolved first; instead, primordial life con-
tained both pathways. This redundancy may have

“For early chemistry, we’re not looking for something that
undergoes Darwinian adaptation, because the early chemistry is
universal stuff that’s never changed. We’re just looking for stuff

that will transduce energy, fix carbon, do the same things over and
over again, and provide an ordered framework—out of which

more molecular complexity comes later,” Smith says.



been an important failsafe since early life forms were
probably fragile, Smith explains. Braakman and
Smith also showed that further innovations in car-
bon-fixation were driven by the invasion of specific
chemically novel environments (e.g., alkaline or ox-
idizing environments) more than by chance innova-
tions in the genome.

Is there a fourth 
domain of life?

When it comes to reconstructing the history of
life, viruses have traditionally been ignored. After all,
it’s not clear that viruses are even alive, given their
lack of a cellular structure and dependence on cellu-
lar organisms. But with the recent discovery of giant
viruses—which are as large and complex as some
bacteria—viruses have suddenly taken center stage
in evolutionary debates. Some researchers even argue
that viruses comprise a fourth domain of life. 

In 2003, French scientists identified the first giant

virus, which they named Mimivirus, short for “mi-
crobe mimicking virus.” The Mimivirus, which in-
fects amoeba, can be seen under a light microscope
and has more than 1000 genes, including some in-
volved in protein translation and metabolism (hall-
marks of cellular organisms). “This was a challenge
for the classic paradigm of viruses,” says Claverie,
who was involved in the discovery. Since then,
Claverie’s team has uncovered several other giant
viruses, including the Megavirus in 2011 and the
most perplexing, the Pandoravirus, in 2013. The
genome of Pandoravirus is twice as large as that of
other giant viruses; and 93 percent of its genes re-
semble nothing ever sequenced before.

Mimivirus and Megavirus share certain protein
translation genes, but are also highly genetically dis-
tinct. Claverie’s explanation: giant viruses descended
from an ancient, cell-like common ancestor (one
that has no modern cellular descendents). Over time,
they lost genes and became parasitic. “We believe:
the bigger the viral genome, the closer you are to the
origin,” Claverie says. In phylogenetic reconstruc-
tions, Mimivirus and Megavirus wind up either at the
base of the eukaryotic branch of life or on a com-
pletely new branch distinct from eukaryotes, archaea,
and bacteria. Pandoravirus is so dissimilar to any
known organism on Earth that its existence also
challenges Woese’s tripartite tree of life. “It is an in-
creasingly complicated story,” Claverie says. 

Others strongly dispute this view, however. They
believe that giant viruses are the ultimate gene rob-
bers, and that their genomes are growing rather
than shrinking. Giant viruses could have picked up
their large and crazy genomes through horizontal
gene transfer with their amoebal hosts (or other
amoebal parasites). These looted genes may then

World’s Biggest Virus. Electron microscope image of
Pandoravirus salinus (above) and a diagram of its genome
(right). With nearly 2.5 million nucleotides (nt’s), the
genome of Pandoravirus is as large as some eukaryotic cells
and twice as large as any other known virus on Earth. But
93 percent of its genes resemble nothing ever sequenced
before—opening up a Pandora’s box of questions about
the history of life. In the genome picture, CDS=putative
protein-coding sequences; CDSs on the direct (blue) and re-
verse (red) strands of DNA are indicated in the outermost
circle. In circle 2, CDSs that match known genes or motifs
are indicated in orange, green, purple, and white; CDSs
with no match are shown in gray. Photo courtesy of: Chan-
tal Abergel and Jean-Michel Claverie. Genome picture re-
produced with permission from: Pandoraviruses: Amoeba
Viruses with Genomes Up to 2.5 Mb Reaching That of Par-
asitic Eukaryotes. Science 19 July 2013; 341:281-286.



have evolved rapidly within the viruses, creating
their puzzling genetic diversity. Using alternate mod-
els that account for such possibilities, other research

groups have published phylogenetic reconstructions
that place giant viruses squarely within the three do-
mains of life, next to their ameobal hosts. 

But Claverie isn’t convinced by these arguments.
“The thing is, if those viruses are picking up genes

from the environment, where are those cells? Be-
cause what has characterized those new viruses that
we keep sequencing is that they don’t look like any-
thing else,” he says. “They appear to steal genes from
cells we haven’t sequenced yet. And I don’t think
many people are prepared to believe that there is
such a big loophole, such a big [set of] missing data.”

Phylogenetic reconstructions are highly sensitive
to models and assumptions, especially when dealing
with viruses, as this debate reveals. But Caetano-
Anollés also performed a structural reconstruction of

evolutionary history including giant viruses and
other DNA viruses. And, like Claverie, he found
that viruses clustered into a separate domain of life

that either predated or coexisted with the last uni-
versal common ancestor. “Until now, the universal
tree is a tree of cellular lineages, not a tree of every-
thing. From my point of view, that’s an omission,”
Caetano-Anollés says. 

How have proteins 
evolved since life began?

The earliest proteins to evolve were
likely versatile but not optimized. Many re-
searchers are trying to understand how pro-
teins became optimized over the course of
evolution. For example, what drove the evo-
lution of different protein folds and of multi-
domain complexes?

Frauke Gräter, PhD, an expert in pro-
tein folding, has long wondered about the
evolution of folds. Her team made use of a
model for predicting protein folding times
for all proteins structurally known to date,
based on the distance between contact
points—amino acids that touch in the
folded molecule—in the unfolded sequence.
Contact points that start farther apart take
longer to come together. To add an evolu-

tionary perspective to this concept, she teamed up
with Caetano-Anollés. “His way of mapping proteins
structures on a timeline from four billion years ago to
today was exactly what was needed to combine with
our proteome-wide prediction of folding times,” says
Gräter, who is a group leader at the Heidelberg Insti-
tute for Theoretical Studies in Germany.

In a 2013 paper in PLoS Computational Biology,
Gräter and Caetano-Anollés showed that protein
folding became progressively faster from 3.8 billion
to 1.5 billion years ago. (After this, alpha but not

A Fourth Domain? The discovery of
giant viruses has raised the possibility
that viruses comprise a fourth do-
main of life. Gustavo Caetano-Anol-
lés’ team built this evolutionary tree
by comparing protein fold structures
from the proteomes of archaea, eu-
karya, bacteria, and viruses/giant
viruses (50 organisms each). They
conclude that viruses are a distinct
form of life that either predated or
coexisted with the last universal com-
mon ancestor. Reproduced from:
Nasir A, Kim KM, and Caetano-Anol-
lés G. Giant viruses coexisted with
the cellular ancestors and represent a
distinct supergroup along with su-
perkingdoms Archaea, Bacteria and
Eukarya. BMC Evolutionary Biology
2012, 12:156.

“Until now, the universal
tree is a tree of cellular
lineages, not a tree of
everything [including

viruses]. From my point of
view, that’s an omission,”

Caetano-Anollés says. 



beta folds continued to fold faster.) “Proteins were
apparently folding faster and faster for most of the
time during evolution. So there was pressure for ef-
ficient folding over time,” Gräter says. Faster pro-
tein folding likely prevents diseases that are caused
by protein misfolding and aggregation, such as
Alzheimer’s, she explains. “Once proteins are in
their native fold, they are not prone to aggregation
anymore.” Her team is now exploring evolutionary

trends in other protein proper-
ties, such as floppiness and me-
chanical stability. 

To achieve complex functions,
proteins have evolved to work in
multi-domain complexes that as-
semble after protein translation.
Sarah Teichmann, PhD, program
leader in genome evolution at
the EMBL-European Bioinfor-
matics Institute and Wellcome
Trust Sanger Institute in the
United Kingdom, wondered if
the order of assembly is under se-
lective pressure. 

To test this theory, her team
first developed a mathematical
model that predicts the order in
which protein complexes assem-
ble based on 3-D structures and
the surface area at the interfaces
of different subunits. Then they
looked for gene fusion events be-
tween genes encoding different
subunits of the same protein com-
plex. A gene fusion occurs when
separate genes are shuffled into
the same open reading frame, and
thus become translated together
in the order in which they appear
in the genome. Teichmann rea-
soned that if the order of assembly
of protein complexes is under se-

lection pressure, then only certain gene fusions—
those that preserve this order—would be favored in
evolution. “The neat computational trick here is
that we are combining the structural bioinformatics
with genomics. We go from the 3-D protein level to
the 2-D genomic arrangement,” she says.

Indeed, she showed that fusion events that pre-
serve the mathematically predicted order of assembly
appeared statistically more frequently in the genome
than those that did not. The results were published
in Cell in 2013. “It’s intuitive in the sense that you
want to have the subunits of a protein complex find
each other quickly; you don’t want to have them
floating around the cell in an unbound state for a
long time,” she says. Unbound proteins could aggre-
gate and cause disease. 

Why did introns evolve?
One of evolution’s biggest puzzles is the intron.

These extra pieces of DNA interrupt genes and have

to be spliced out before protein translation. When,
why, and how did they evolve in the history of genes?

The question of “when?” has largely been solved,
says Scott Roy, PhD, assistant professor of cell and
molecular biology at the University of California, San
Francisco. Though a few reputable naysayers argue
that introns are as old as the genetic code itself (and
helped make genes possible), “the consensus perspec-
tive is that a large number of introns arose for the first
time in the last common ancestor of all eukaryotes,”
Roy says. This would be about 1.5 billion years ago.

More perplexing is the why question. In higher eu-
karyotes such as humans, introns help create protein
diversity through alternative splicing to produce more
than one protein from a gene sequence. But until re-
cently, scientists believed that alternative splicing was
rare in lower eukaryotes and thus couldn’t be their
raison d’être. “That turns out to be at best a gross sim-
plification and in some cases just completely wrong,”
Roy says. For example, recent microarray analyses
showed that almost all of yeast’s 200 intron-contain-
ing genes are alternatively spliced, Roy says. 

His team is hunting for examples of functional,
evolutionarily conserved alternative splicing in
fungi. Functionally important variants may represent
only a fraction of transcripts, “so you have to se-
quence the heck out of the transcriptome,” Roy says.
Analyzing the data is a major computational chal-
lenge because the transcripts have already had the
introns removed, and the algorithm has to guess
where these splicing events happened. “You get these
short reads—about 100 nucleotides. And then you
have this huge genome and you need to figure out
where does this 100 nucleotide read come from in
the genome,” Roy says. “There are a lot of programs
out there that do it, but they’re not very consistent.”
His team uses multiple programs as well as in-house
software to arrive at a consensus. 

They have found some alternative splicing events
that appear to be conserved over long timescales and
in different species; but “it remains to be seen
whether it’s true conservation or just coincidence,”
he says. “I don’t even know where my money is at
this point. Which is exciting, actually,” he says.

The purpose of introns may also be related to the
3-D genomic architecture of eukaryotes, says Liya
Wang, PhD, a research scientist at Cold Spring Har-
bor Laboratory. In eukaryotes, DNA is organized into
nucleosomes: 140-base-pair stretches of DNA are
coiled around proteins called histones. The DNA
coiled around a histone is more likely to be an exon
than an intron, suggesting that this 3-D structure
helps to prevent introns from interrupting a func-
tional stretch of DNA, Wang explains. 

To study the mechanisms of intron gain and loss,
he and Lincoln D. Stein, PhD, program director of
informatics and bio-computing at the Ontario Insti-
tute for Cancer Research and a professor at Cold
Spring Harbor, came up with a computational model
that could recreate the distribution of exon sizes for
the genomes of 14 different species. Surprisingly,
their model predicted that the probability that an

Folding Faster and Faster. By coupling a com-
putational model that predicts protein folding
times with a structural reconstruction of the his-
tory of different folds, Frauke Gräter’s team was
able to trace how protein folding times have
changed since the beginning of life. They found
that protein folding became progressively faster
from 3.8 billion to 1.5 billion years ago, at which
time there was an explosion in protein fold di-
versity. After this, alpha folds continued to fold
faster, but beta folds did not. Reproduced from:
Debès C, Wang M, Caetano-Anollés G, Gräter F.
Evolutionary Optimization of Protein Folding.
PLoS Comput Biol 2013; 9(1): e1002861. 



exon will gain an intron is proportional to its size to
the third power, suggesting a 3-D volumetric rela-
tionship rather than one based just on sequence.
“One hypothesis is when the introns try to attack,
they are attacking a ball that the exon occupies by
its dynamic motion; the larger the ball, the higher
the chance,” he says. The results were published in
BMC Evolutionary Biology in 2013. 

Wang and Stein are now modeling whether CG
content (the frequency of cytosine/guanine nucleotide
pairs, which is related to methylation), also affects in-
tron insertion. Their work reflects a growing recogni-
tion of the importance of higher-order features, such
as epigenetics and morphology, in shaping evolution. 

What drives the 
evolution of form?

The first multicellular organisms appeared about
565 million years ago, followed by an abrupt explo-
sion of body plans from about 550 to 530 million
years ago (visible in the fossil record). Nearly all
modern shapes appeared then; and there have been
few innovations since. This observation has long puz-
zled scientists; how could gradual, Darwinian evolu-
tion result in such rapid changes in form?

Stuart Newman, PhD, professor of cell biology
and anatomy at New York Medical College, believes
that the answer lies in physics. In a 2012 paper in Sci-
ence, Newman argues that genes that evolved for
other purposes in unicellular organisms (such as
those for adhesion), suddenly found new roles in the
physical landscape of multicellular organisms. “You
have a way through physics of generating radically
new forms by very small genetic changes,” he says.

“If you look at the logic of the Darwinian perspec-
tive, it says you can’t have abrupt change. But this is
a 19th century view. We now know with 20th cen-
tury advances in the physics of materials that things
like tissue masses can change abruptly and discon-
tinuously,” he says. Physical laws also limit what mor-
phological motifs are possible, which explains why
there’s been little diversification in form in the past
half billion years. 

Newman’s team simulates limb development
using a finite-element model. When they virtually
evolve limbs, they end up with a variety of shapes
that never existed in any animals, but that still re-
semble natural limbs. “So there’s both a great plas-
ticity but then there’s also a constraint in that. With
the Darwinian paradigm you can in principle get
from anywhere to anywhere by adaptation, but this
kind of mathematical modeling approach shows that
there are really deep constraints in the kinds of forms
you can come up with. You can’t get just anything.”

Isaac Salazar-Ciudad, PhD, a senior researcher at
the University of Helsinki and the Autonomous Uni-
versity of Barcelona in Spain, also looks beyond Dar-
win to study the evolution of form. His team has
developed a computational model of tooth develop-
ment. “We have a set of cells and those cells have
genes inside; those genes affect each other in gene

networks,” Salazar-Ciudad says. “Then at the same
time, those cells are actually moving and interacting
mechanically with each other.” This is one of the first
models to combine these two components, he says.

In a 2013 paper in Nature, Salazar-Ciudad used his
model to explore the relationship between genotype
and phenotype in the evolution of morphology. He

virtually evolved teeth by gradually mutating them,
and then explored the resulting 3-D phenotypes.
“We found that the mapping between genotype and
phenotype is so complex that natural selection can-
not fine tune every aspect of morphology,” he says.
“We say that natural selection is indeed acting all the
time and it is very important, but there is a restriction
on what kinds of things it can do.” 

And more puzzles remain…
History-of-life puzzles spur passionate debate pre-

cisely because the scientific questions are so tied to
existential ones—who we are, where we came from,
why we’re here. But answering these questions isn’t
just about satisfying deep-seated human curiosity; it’s
also about practical ends. “Obviously there’s just a
big curiosity behind it. People want to know where
did we come from, where did it all start?” Hordijk
says. “But, besides that, I think great medical things
will come out of this. If we understand how life
started, that automatically gives us a better under-
standing of how life works. That will certainly have
a lot of important medical implications.”  nn

A Model with Teeth. Isaac Salazar-Ciudad’s team created a morphological
model of seal tooth development and evolution. Panel (a) shows the cellular
and genetic parameters included in the model. Panel (b) shows how tissue
morphology is modeled in three dimensions; cells are allowed to move and
interact with each other, creating shape. Panel (c) shows how the tooth shape
evolves from the initial conditions until 10,000 time points. Salazar-Ciudad’s
uses the model to study the evolution of teeth as well as their development.
Reproduced with permission from: Salazar-Ciudad I, Jernvall J. A computa-
tional model of teeth and the developmental origins of morphological varia-
tion. Nature 2010; 464: 583-586.
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By their nature, ABMs would seem to be a perfect
fit for biology. First developed in the 1940s, they sim-
ulate complex systems by having autonomous virtual
agents (cells, anyone?) interact with each other and
their environment according to preprogrammed rules,
often with a degree of built-in randomness. Yet when
agent-based programming languages and modeling
software came along in the 1990s, they were slow to
gain traction in biomedical circles. Representing the
many cells in a biological system using ABMs can be
expensive compared to running biological simulations
based on differential equations, and the mathematical
techniques used to analyze and optimize equation-
based models do not necessarily work on ABMs.

Yet ABMs do carry advantages for biomedical re-
search. Among other things, they are intuitive, work
well in three dimensions, and can reproduce complex
behaviors with just a few simple (even incomplete)
rules. Moreover, progress toward hybridizing ABMs
with other approaches, such as differential equations,
is making them more powerful than ever. These
plusses, along with increased computing power, are
helping biomedical applications of ABMs take off, as
scientists use them to investigate everything from
tumor formation to bacterial growth.

Soap to Cells
As a doctoral candidate in physics in the late

1980s, Glazier, who now directs the Biocomplexity
Institute at Indiana University Bloomington, studied
the evolution of bubbles in soap froth. The surpris-
ingly broad implications of that work led him to col-
laborate with a group of researchers at Exxon who
were using computational models derived from sta-
tistical physics to investigate the related phenome-
non of grain formation and growth in metals. A few
years later, while working as a post-doctoral fellow in
Sendai, Japan, in the laboratory of Yasuji Sawada,
PhD, Glazier met François Graner, PhD, who was
studying the microscopic fresh-water creatures
known as hydra. Hydra are renowned for their regen-
erative capabilities—chop them into hamburger, and
the cells will rearrange themselves to form a whole

n the early 1990s, when James A. Glazier, PhD, first 
became interested in using agent-based modeling to simulate
biological phenomena, the field was so new that he had 

to borrow ideas from the study of metal and soap. 

Times have changed: Over the last 10 years, 
agent-based models (ABMs) have become an important
component of the biomedical researcher’s toolkit. 
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new organism—and Graner wanted to test
the hypothesis that cell adhesion allowed a
hydra’s two main cell types to sort them-
selves into larger structures during regener-
ation. Glazier realized that a modified form
of the model that he and the Exxon re-
searchers had been using could also simu-
late cell-sorting by treating each cell as an
individual unit subject to basic physical

forces and constrained by a few rules.
Paulien Hogeweg, PhD, a Dutch theoreti-
cal biologist at the University of Utrecht
who helped coin the term “bioinformatics”
in the 1950s, later elaborated on Glazier
and Graner’s initial modeling efforts,
adding biological mechanisms like cell dif-

ferentiation and chemotaxis to create what
became known as the Glazier-Graner-Hog-
weg (GGH) model. 

The GGH model was one of the first
agent-based models designed specifically

for biological purposes. Over the past two
decades, scientists have used increasingly
sophisticated forms of it to simulate multi-
cell phenomena as diverse as wound heal-
ing, stem-cell differentiation, and skin
pigmentation. Often, they have relied on
CompuCell3D, an open-source modeling
environment that Glazier and his collabo-
rators Mark Alber, PhD, and Jesus Iza-

guirre, PhD, at the University of Notre
Dame began developing in 2000 and whose
development is currently led by Maciej
Swat, PhD, at Indiana University. 

    CompuCell3D is meant to help re-
searchers concentrate on the biology be-
hind their simulations rather than on the

nuts and bolts of model building. To that
end, the software allows users to select the
cell types and behaviors they want from a
series of drop-down menus. It also lets them
add modules that use partial differential

equations to describe the chemical fields
that influence cell migration and differen-
tiation, or ones that use ordinary differen-
tial equations to describe the dynamics of
biochemical networks inside cells and the
distribution of chemicals at the whole-body
level. (Such hybrid models, which combine
agent-based and equation-based methods
for greater efficiency and multi-scale capa-
bility, are becoming increasingly popular.)
Once users have made their selections, the
software generates draft code that can be
manually edited. 

Despite its user-friendly interface, some
very sophisticated computation is taking
place under the hood. Most cell properties,
behaviors, and interactions are bundled to-
gether in a single function, called the “ef-
fective energy” (the terminology harks back
to the model’s roots in physics), which in-
corporates all of the forces acting on what-
ever agents are being simulated—cells,
parts of cells, environmental features—and
the rules that govern how they will respond.
The cells live in regular 2-D or 3-D lattices,
like pixels in a digital microscope image—
a feature that links the GGH model to sim-
pler cellular automata that represent cells
as points on grids. Unlike automata, how-
ever, cells in the GGH model have volume,
are deformable, and are affected not only by
their immediate neighbors but by a host of
other factors. They can also move about in
three dimensions, providing a degree of spa-
tial realism that is extremely valuable for
tissue simulations.

The GGH model is also inherently sto-
chastic: cells move about by randomly ex-
ploring their environment, responding to
whatever forces have been programmed
into the simulation, and moving on aver-
age towards a state of least energy. That
randomness, says Glazier, is what gives
cells the freedom to reorganize themselves.
It also gives rise to very complex and even
unexpected aggregate behaviors—behav-
iors that could not necessarily be predicted
from the underlying rules. This quality,
known as emergence, is both the hallmark
of agent-based modeling and the secret to
its success. “That complexity is the reason
that this kind of modeling works,” says

Glazier, who adds that modelers can sim-
plify many of the rules governing the indi-
vidual agents in an ABM and still generate
realistic global behaviors, so long as they
include the key biological mechanisms—

Glazier and his colleagues have used ABMs to simulate sprouting angiogenesis as shown here,
where an initial cluster of adhering endothelial cells forms a capillary-like network over the course
of 18 hours ((A) 0 h; (B) ~2 h; (C) ~5 h; (D): ~18 h). Reprinted from Shirinifard A, et al., 3D multi-
cell simulation of tumor growth and angiogenesis. PLoS ONE. 2009; 4:e7190.
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an especially handy trick in cases where
quantitative data (e.g., rate constants, phys-
ical forces) remain spotty, if only because
“no one thought to try to measure it.”

Emergent Rules
According to Gary An, MD, the ability

to generate complex emergent behaviors in
the absence of comprehensively detailed
knowledge makes agent-based modeling ide-
ally suited to testing hypotheses and con-
ducting in silico trials.

An, associate professor of surgery at the
University of Chicago, first came to agent-
based modeling while working as a trauma
surgeon at Cook County Hospital in the
1990s. Frustrated by the lack of medica-
tions he and his colleagues had for treating
sepsis, a potentially fatal condition that oc-
curs when the immune system’s own re-
sponse to injury or infection triggers
inflammation throughout the body, An
began building agent-based models of sep-

sis using SWARM, a software platform for
multi-agent simulations of complex sys-
tems developed by the Santa Fe Institute.
Since then, he has continued to use ABMs
to investigate acute inflammation, often in
collaboration with his friend and colleague
Yoram Vodovotz, PhD, an immunologist
and professor of surgery at the University
of Pittsburgh. He has also helped others
apply similar models in their own research.

An was first attracted to ABMs because
he found them to be more intuitive than
equation-based models. “I wasn’t a math
guy,” he says. “I didn’t think in terms of dif-
ferential equations and calculus. I thought in
terms of things doing things”—i.e., cells in-
teracting with other cells—“and things
doing things is agent-based modeling.” But
he has come to appreciate ABMs as tools for
dynamically embodying what we know (or
think we know) about biological systems and
processes, and as platforms for testing hy-
potheses that can yield unexpected insights

CompuCell3D can be used to simulate cell sorting using various rules for cell adhesion. These
snapshots show the dynamics of cluster formation during a 5000-cell aggregate simulation with
five different levels of cadherins (represented by the five different colored cells). Reprinted from
Zhang Y, et al., Computer Simulations of Cell Sorting Due to Differential Adhesion. PLoS One
2011; 6(10):e24999. doi: 10.1371/ journal.pone.0024999. 
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into biomedical problems.
Recently, An helped a group of re-

searchers at the University of Chicago build
an agent-based model—the Ductal Epithe-
lium Agent-Based Model (DEABM)—to
simulate how cancerous tumors form in

breast tissue. The agents in the model con-
sisted of the various cell types found in the
mammary duct epithelium (luminal and my-
oepithelial cells, fibroblasts, stem and pro-
genitor cells), all of them programmed with
rules defining how they grow and differenti-
ate, mutate and die. Drawing on data from
textbooks and review articles, the Chicago
group also equipped their agent-cells with
variables representing internal, molecular-
level components, including seven genes
known to play a role in both cell function
and tumor formation. The simulations used

three virtual populations of 500 individuals
and ran for 15,000 time steps, correspon-
ding to approximately 40 years. Genetic
mutations were allowed to accu-
mulate over time, ultimately im-
pairing cell function and resulting
in cancer.

The first version of the model
did a good job of accurately sim-
ulating normal cell population
dynamics and breast physiology.
But it could not generate estro-
gen receptor-positive (ER+) tu-
mors, which are in fact the most
common kind. This “huge fail,”
An says, not only indicated a se-
rious flaw in the model (because
the rules governing the agents
were based on the best available
knowledge concerning breast cancer), but
also pointed to a serious gap in re-
searchers’ understanding of the pathogen-
esis of ER+ tumors.

The clue to solving this mystery lay in
the model itself. Since ER+ cells are nor-
mally prevented from proliferating by the
suppression of the receptor c-Met, the agent
rules specified that ER+ cells were not al-
lowed to divide. That, in turn, meant that
mutations to the cells couldn’t accumulate
to be passed on to future generations and
lead to cancer. So An and his colleagues
began looking for something that would
allow ER+ cells to proliferate—something
that would ordinarily be responsible for sup-
pressing c-Met, but that could be impaired.
A literature search identified the gene
RUNX3 as a possible candidate; and once it
was incorporated into the model and per-
mitted to mutate, ER+ cells acquired the ca-
pacity to replicate and accumulate damage,
resulting in the appearance of ER+ tumors.

The discovery that RUNX3 might play
a role in breast cancer by regulating ER+
cell proliferation could be clinically useful.
For example, An raises the prospect of one
day screening for decreased expression of
RUNX3 as a warning sign of increased risk
for ER+ tumors. But the discovery process
also highlights one of the advantages of
agent-based modeling. An equation-based
model, An says, might simply have been de-
signed to reproduce the rates of ER+ tumor
occurrence seen in the real world, and
would therefore have masked the underly-
ing mechanism. The agents in the
DEABM, however, could not reproduce
those rates without having the proper
mechanism written into their rules in the
first place—making the absence of that
mechanism painfully clear. As Glazier says,
“An agent-based model is constructive—it

includes only what you put in. If you leave
out a key mechanism, you will never repli-
cate the biology.”

If It Grows Like Skin, 
and It Looks Like Skin…
Even when the underlying rules for a

model are incomplete, researchers can use
ABMs to test hypotheses “before killing rats
or growing cells,” An says. Robert Isfort,
PhD, and his colleagues at Procter & Gam-
ble have made the most of this capability.
Working together with researchers at the
University of Sheffield in England, the Proc-
ter & Gamble group employed agent-based
modeling to test no less than three compet-
ing theories of how epidermal tissue main-
tains and renews itself over time. In the
process, they resolved a central question in
skin biology and helped advance the field of
stem cell research.

According to the oldest hypothesis,
known as asymmetric division, stem ep-
ithelial cells drive epidermal regeneration
by dividing either to form new stem cells,
or to form progenitor cells that go on to
produce the differentiated progeny that
make up the outer layers of the skin. An-
other, more recent hypothesis, known as
population asymmetry, holds that progeni-
tor cells are primarily responsible for skin
renewal through stochastic differentiation,
with stem cells playing only a secondary
role. The third and latest hypothesis, pop-
ulation asymmetry with stem cells (PAS),
contends that stochastic differentiation of
both stem cells and progenitor cells is re-
quired to maintain and regenerate skin tis-
sue. With experimental data to support all
three, the question remained: which hy-
pothesis was correct?

Using a modified form of a human skin
model that the Sheffield group had devel-
oped with an agent-based modeling plat-
form called FLAME, the international team

This ABM, created using SPARK, simulates how
liver inflammation caused by a hepatitis C infec-
tion accelerates the progress of tumor forma-
tion from a patch of a few hypothetical cancer
stem cells in black (a) to the formation of a hy-
poxic core in the center of a growing tumor (b),
as well as tumor angiogenesis (red dots).
Reprinted with permission from An, G, et al.,
Agent-based models in translational systems bi-
ology, Wiley Interdiscip Rev Syst Biol Med. 2009;
1(2): 159–171. doi:10.1002/wsbm.45.
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of researchers translated all three hypotheses
into separate, stochastic ABMs, each with
slightly different rules for cell division and
differentiation; the probability of stem cell
division, for instance, changed from model
to model. They then ran each simulation for
the equivalent of three years. In addition,
the virtual skin in the PAS model was
wounded at the three-year mark, and the
simulation was run for the equivalent of an
additional year to see how it would respond.

Although the physical forces acting on

the cells as they adhered to the lower level
of the epidermis or migrated to the upper sur-
face of the skin remained the same in all
three models, variations in cell division and

differentiation produced strikingly different
outcomes. Most surprisingly, says Isfort, the
models derived from the first two hypotheses
were unable to produce colonies of mother
and daughter cells that behaved realistically
over the long term. Consequently, while all
three models yielded mature epidermal layers
with similar cellular organization after three
years, only the model instantiating the PAS
hypothesis, according to which both stem
and progenitor cells divide and differentiate
stochastically, was able to generate tissue

that acted “like the real stuff.” In addition to
fueling future experimental research on stem
and progenitor cells, this work could lead to
new therapies for repairing skin that has

been wounded, or suffered damage through
the normal aging process.

Hybrid Vigor
Despite its strengths, agent-based model-

ing can, at times, be slower and less efficient
than equation-based models. That is why
some researchers are creating hybrid ap-
proaches that combine the two methods.

Yoram Vodovotz, who has co-authored a
number of papers on agent-based modeling
with Gary An, says that while ABMs can
often be assembled more quickly than equa-
tion-based models, their stochastic and
emergent properties sometimes make it dif-
ficult to relate outcomes to specific causal
factors. In 2004, for example, Vodovotz and
An both published papers in Critical Care
Medicine on sepsis, with Vodovotz simulating
a population of patients using a deterministic
model based on ordinary differential equa-
tions, and An using an ABM. In that case,
says Vodovotz, the mathematical model al-
lowed him to trace individual patient out-
comes to particular configurations—to say
that patient X, for example, died because of
a specific pathogen load, or a genetic predis-
position to acute inflammatory response—
whereas the ABM could only indicate that
a certain percentage of virtual patients
hadn’t responded to treatment, without re-
vealing precisely why.

Emergence also makes it harder to set
and optimize parameters in ABMs than in
mathematical models. In an equation-based
model, for example, the modeler can simply
program parameters like rate constants,
which characterize the rates of biochemical
reactions in a system. In an ABM, however,
rate constants must emerge from the indi-
vidual interactions of the agents; one must
run the simulation first, then measure the
rate constants and tweak the model if the
numbers don’t match experimental data.
Vodovotz says that this makes parameter
optimization in ABMs “very nontrivial,”
adding: “It’s one of those grand challenge-
ish types of problems.”

Moreover, while equation-based models
can be analyzed using well-established math-
ematical techniques, the complex patterns
that emerge from ABMs can be difficult to
quantify and analyze with the same degree of
rigor. And while agent-based methods are
very good at simulating local interactions be-
tween heterogeneous populations of cells at
multiple scales and with a high degree of spa-
tial realism—e.g., simulating how different
kinds of cells migrate from place to place, ad-
here to one another, and arrange themselves
in the macroscopic patterns found in real-life
tissues—differential equations provide a

Isfort’s team used an ABM platform called FLAME to simulate the growing epidermis (skin) from
an initial seeding with just a few cells to maturity (at year three) under three hypothetical cell di-
vision scenarios—asymmetric division, populational asymmetry, and a combination called PAS.
The mature epidermis looked approximately the same (top), but that similarity belied some sig-
nificant underlying differences. For example, when the ABM followed the division and movement
of a single stem cell in the asymmetric division case, the offspring formed a column around the
stem cell with several progeny lingering in the basal compartment. In contrast, individual colony
shape changed dramatically in the PAS hypothesis, with substantial lateral movements. Reprinted
with permission from Li X, et al., Skin stem cell hypotheses and long term clone survival—explored
using agent-based modeling, Sci Rep. 3:1904 (2013). 
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more efficient and less expensive way of
modeling well-mixed systems and other phe-
nomena that can be adequately represented
at the continuum level, such as blood flow.

Just as Glazier and his team at Indiana
University have gradually expanded Com-

puCell3D to incorporate equation-based
models of the biochemical pathways inside
cells and the chemical flows between organs
and tissues, Vodovotz has also been building
hybrid models that offer the best of both
worlds. He and his colleagues at the Univer-
sity of Pittsburgh have developed an open-
source software package called SPARK
(Simple Platform for Agent-based Repre-
sentation of Knowledge) that can integrate
mathematical and agent-based modeling

techniques, and have used it to demonstrate
how basic inflammatory mechanisms can
lead to both positive and negative outcomes
in various kinds of tissue. In a paper pub-
lished in May 2013 in PLoS Computational
Biology, for example, Vodovotz employed a

hybrid model to simulate the formation of
pressure ulcers, or bedsores, on the skin of
patients with spinal cord injuries, a common
and potentially life-threatening occurrence. 

The model used ordinary differential
equations to simulate blood flow in the skin
based on non-invasive measurements taken
from injured individuals and an uninjured
control group; and a stochastic ABM to sim-
ulate the blood vessels, cells, and signaling
molecules (epithelial cells and macrophages;

pro- and anti-inflammatory cytokines) that
are involved in the formation of pressure ul-
cers. According to the rules governing the
agents in the ABM, damaged epithelial cells
released inflammatory cytokines that caused
further damage; but they could also be
healed by anti-inflammatory cytokines at a
rate that depended on the amount of oxy-
gen delivered by the blood. The simulation
produced realistic-looking pressure ulcers at
rates suggesting that people with spinal cord
injuries are more likely to form them than
people without such injuries, perhaps due to
changes in vascularity—a finding that could
lead to tools for predicting the risk of ulcer
formation based on non-invasive measure-
ments of blood flow.

Christian Jacob, PhD, a computer scien-
tist at the University of Calgary who has
used ABMs to simulate everything from ant
colonies to traffic congestion, has also built
a platform for constructing hybrid models,
albeit one that takes the whole body as its
canvas. Developed by PhD student Tim
Davison and other graduate students in
Jacob’s Evolutionary & Swarm Design Lab,
the software suite, which goes by the name
LINDSAY Composer, can be used to create
interactive 3-D simulations and visualiza-
tions of human physiological processes
across multiple scales, from systems and or-
gans to cells and sub-cellular structures.
Users can drag and drop objects into their
simulations from a component library that
contains templates for various agents (e.g.,
cells, pathogens), all of which come with
their own customizable sets of properties
and interaction rules. Like SPARK and
CompuCell3D, LINDSAY Composer can
also combine mathematical and agent-based
models—feeding data, for instance, from a
mathematical model of molecular concen-
tration gradients to an agent-based model of
cell development. Jacob’s ultimate goal is to
create a comprehensive 3-D interactive

model of human anatomy and
physiology, called LINDSAY Vir-
tual Human, which will enable
users to zoom seamlessly from the
whole-body scale right down to the
molecular level for both medical
education and research purposes.

Jacob’s introduction to agent-
based modeling came during the
1980s when he first encountered
computer simulations of flocking
birds. He was immediately im-
pressed with the method’s capac-
ity to handle mixed populations
of agents in three-dimensional
space—a capacity that proved
crucial to a project that Jacob and

ABMs for Biomedicine
Many possible ABM software programs
exist (including NetLogo, which might be
best for the ABM novice;
http://ccl.northwestern.edu/netlogo/), but
the five listed below are featured in this
story. Although they all accomplish
somewhat the same thing, they were
developed using different programming
languages, possess varying levels of
support and documentation, and have
been used to build different models.

Curious investigators are encouraged to
visit their respective websites to learn
more about them.

CompuCell3D: www.Compucell3D.org

SWARM: www.swarm.org

FLAME: http://www.flame.ac.uk 

SPARK: http://www.pitt.edu/~cirm/spark/ 

LINDSAY Composer:
http://lindsayvirtualhuman.org/?q=node/59

In a hybrid model incorporating both differential equations of tissue ischemia and an ABM of sto-
chastic pressure ulcer formation in healthy controls (left) and people with spinal cord injuries (right),
Isfort and his colleagues predicted that, as expected, the latter population is more prone to pressure
ulcers. In these simulation snapshots after 2000 steps, green squares represent healthy epithelial
cells, red squares represent damaged epithelial cells, red circles represent blood vessels, blue circles
represent macrophages, and white squares represent dead cells. Reprinted from Solovyev A, Mi Q,
Tzen Y-T, Brienza D, Vodovotz Y (2013) Hybrid Equation/Agent-Based Model of Ischemia-Induced
Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with
Spinal Cord Injury. PLoS Comput Biol 9(5): e1003070. doi:10.1371/journal.pcbi.1003070.5
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a former student, Vladimir Sarpe,
MSc, recently undertook using
LINDSAY Composer.

In a paper published in BMC
Bioinformatics, Jacob and Sarpe de-
scribe how they used a three-di-
mensional ABM of the human
immune system to simulate and vi-
sualize the body’s response to in-
fluenza A virus, from the initial
infection of epithelial cells in the
lungs to the destruction of the virus
by lymphocytes. The model in-
cluded such agents as T cells, B
cells, viruses, and antibodies that
were programmed to interact ac-
cording to various rules in two dis-
tinct 3-D environments: within
the lung tissue, and inside a lymph
node. From a computational per-
spective, each environment was
treated separately—the lymph
node and lung tissue simulations
were in fact executed on different
computing nodes—but they com-
municated with one another via
“controllers” that shared informa-
tion as necessary. A dendritic cell
in the lung that encountered a
virus, for example, would engulf
the pathogen and transport it to
the lymph node to activate the T
and B cells. They in turn would
produce killer T cells and antibod-
ies that would travel back to the
lung tissue in order to neutralize

the virus and destroy the infected epithelial
cells. The simulation even generated “mem-
ory” T and B cells that stuck around after the
initial infection to enable a faster response
upon subsequent exposure to the virus. 

Getting ABMs 
Into More Hands

The high computational overhead in-
curred by ABMs remains a challenge. In
the case of their immune-system simula-
tion, Jacob and Sarpe sidestepped the issue
by relying on a relatively small number of

agents—a few thousand, far less than the
actual number of cells and viruses that
would really be involved—and used proba-
bilities (of becoming infected, of releasing
antibodies, of reproducing) to generate the
kinds of emergent behaviors that would
arise with more realistic numbers of moving
parts. As a result, the model was able to
produce outcomes that accorded both with
clinical data, and with the results of a ro-
bust equation-based model.

That approach might not always be
ideal, however; so for Jacob, driving down
the computational expense of agent-based
modeling has become an area of research
unto itself. In a paper published this year in
the journal Simulation, he and his colleagues
reported that they were able to reduce the
number of agents in a simulation by creat-
ing so-called “observers” that recognized
patterns in the behaviors of groups of
agents, and replaced those groups with sin-
gle meta-agents that subsumed their behav-
iors. When applied to a blood-clotting
simulation in which 12 different blood fac-
tors were represented as agents, average
run-time was cut almost in half.

By making agent-based modeling more
affordable, such advances could also help
put ABMs into the hands of more scientists.
And that would be good news for biomed-
ical researchers who do not necessarily
know much about machine-learning algo-
rithms or parameter optimization, but who
do find it easy to grasp a modeling tech-
nique that so faithfully reproduces the kinds
of objects, interactions, and behaviors that
they observe in nature. 

“They actually think of these agents,”
Jacob says, “without knowing it.”  nn

In Sarpe and Jacobs’ simulation of an
immune response to influenza A in-
fection over time, agent interactions
occur in both lung tissue (left column)
and lymph node (right column). Ini-
tially, when the virus infects the lung
cells (a) (with red cells representing
infected cells) there is not yet any im-
mune activity in the lymph node (b).
As the infection progresses, the im-
mune response can be observed both
in the tissue (cell-mediated) and in the
lymph node (humoral) (c). Eventually,
the initial infection is eliminated (d,e)
and the simulation reaches a steady
state (f). Upon reintroduction of the
virus (g), the immune reaction is big-
ger and faster (h,i) because the im-
mune system remembers the virus.
Reprinted from Vladamir Sarpe and
Christian Jacob, Simulating the decen-
tralized processes of the human im-
mune system in a virtual anatomy
model, BMC Bioinformatics 14(Suppl
6):S2 (2013).
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Cells have a limited repertoire of behaviors and inter-
actions. They grow, divide, die, stick to each other,
send and receive signals, change shape, polarize, dif-

ferentiate (change behaviors), form sheets, secrete, absorb,
pull on and remodel extracellular material, and migrate in
response to signals in their environment. Despite their lim-
its, cells nevertheless give rise to a wide range of tissue-level
processes including embryonic development; wound heal-
ing; regeneration of a severed salamander limb; degenera-

tion of bone in osteoporosis; cancer metastasis; and lethal
over-growth of the kidney in polycystic kidney disease. 

Even the most detailed introspective examination of
the properties of a single cell cannot reliably predict this
variety of behaviors at the tissue- or organ-level. More-
over, cells themselves do not usually behave idiosyncrat-
ically, as the common biological definition of cell types
indicates. And while the biochemical networks inside
cells are capable of highly varied behavior in principal, the
regulatory mechanisms active during particular develop-
mental stages or diseases are often quite simple. 

It turns out that emergent behaviors at the tissue level
result from feedback—the way an agent (or cell) acts in re-
sponse to its environment that in turn changes that envi-
ronment. Indeed, it is the emergent interactions among
classes of behaviors, rather than details of their control, that
often leads to complexity of pattern formation. 

These observations—that the
interactions among simple cellu-
lar behaviors drive the emergent behaviors of tissues, or-
gans and organisms—lie at the core of agent-based virtual
tissues. Their empirical validity is the reason we can build
predictive models using a limited number of relatively
simple, universal biological mechanisms. 

Agent-based models abstract key behaviors and interac-
tions from the complexity of real biological components,

embody them as computational agents and then run sim-
ulations to observe the emergent phenomena. They are
especially useful in answering questions about the depend-
ence of emergent properties on specific agent behaviors or
environmental perturbations. For example, if we want to
understand the factors determining the trajectories of birds
in a flock, we can abstract the birds to motile boids, which
attempt to maintain a fixed distance and angle with re-
spect to their neighbors. To understand why antiangio-
genic chemotherapies can lead benign tumors to
metastasize, we can model tumor-cell agents that use nu-
trients to grow, mutate when they reproduce, and die when
they starve. These agents also consume diffusible nutrients
from the environment and, in the absence of sufficient
oxygen supply, secrete diffusible signaling molecules to
promote the proliferation of vascular endothelial cell
agents, which in turn supply diffusible nutrients and oxy-

BY MACIEJ SWAT AND JAMES A. GLAZIER

Under TheHood

Agent-Based 
Virtual-Tissue Simulations

This 3-D agent-based model of the onset of polycystic kidney disease
was created in CompuCell3D. It shows (left) the initial condition 
of the nephron and (right) a snapshot of a simulation with 
2 nascent cysts coming out of the tube. Created by 
Indiana University graduate student 
Julio M. Belmonte.
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gen to their environment. 
We might then compare how

the velocities of boids in a flock
correlate, or how the distribution
of cell motilities in the tumor
changes over time for an unper-
turbed tumor versus one in which
we temporarily kill off the nutri-
ent-supplying vasculature. Both

simulations make useful, experimentally verifiable predic-
tions: Increasing the inertia of the boids causes a transition
from gnat-like swarming to goose-like smooth flight, while
loss of vasculature causes a pattern of nutrient deprivation
which favors motile, potentially metastatic tumor-cell
phenotypes at the expense of the non-motile benign phe-
notypes favored by a steady nutrient supply. 

It is important to keep in mind, however, that we may
easily overlook important mechanisms—a successful
model shows sufficiency of mechanism, not necessity. As
a consequence, we are most likely to identify new mech-
anisms when simulation results differ from experiment.

Agent-based virtual tissues come in two main types—
multi-cell and continuum—that serve different purposes.
Multi-cell virtual tissues are useful for examining emer-
gent behaviors resulting from the movement and reorgan-
ization of hundreds of thousands of individual cells over
volumes of cubic millimeters, as in the organization of or-
gans in embryos. Continuum virtual tissues, in which the
agents are tissue volumes aggregating the behaviors of
tens of thousands to millions of cells, are useful for treat-
ing larger volumes, such as an adult heart or a multi-cen-
timeter brain tumor. Jump-up/jump-down (or hybrid)
virtual tissues combine continuum models with periodic
multi-cell simulations of representative tissue-volume
agents to update continuum model parameters.

The various multi-cell simulation methodologies (and
there are many) trade off the level of detail per cell against
the number of cells per simulation. Cellular automata, for
example, represent cells as single, fixed lattice points, al-
lowing the largest simulations but limiting the possible cell
movements and interactions. Center models represent
cells as point particles in 3-D space interacting via poten-
tial-energy fields, much like molecular dynamics simula-
tions, allowing cell movement, but neglecting cell shapes.
Sub-element models build individual cell agents out of
collections of tens or hundreds of center-model subcom-
ponents at proportionally greater computational cost. Cel-
lular Potts Model (or Glazier-Graner-Hogeweg) stochastic
models approximate complex cell shapes as collections of
pixels on a regular lattice and define their behaviors and in-
teractions through the local minimization of effective en-
ergies depending on cell and pixel configurations. And
finite element and immersed boundary models allow de-
tailed geometrical representation of the shapes and surface
properties and forces of cells, at much greater computational
load per cell. Ultimately, each simulation method should
give the same results for the same biologically determined
classes of objects, behaviors and interactions. 

Until recently, coding complex virtual-tissue simula-
tions required the creation of custom low-level computer
code for each model. Now, virtual-tissue simulation envi-
ronments simplify the construction, execution and analysis
of agent-based models by providing libraries of cells, sub-
cellular components, extra-cellular materials, intracellular
biochemical networks, and fluid and diffusing chemical
agents. Just as Matlab made sophisticated mathematical
modeling accessible to non-specialists, domain-specific
multi-cell simulation environments such as CompuCell3D,
Morpheus, Simmune and CellSys democratize virtual-tis-
sue simulations. By reducing the model-specification code
from tens of thousands to hundreds of lines, these environ-
ments allow researchers to concentrate on the difficult

problem of understanding the biology rather than on com-
putational details. In these environments, the modeler only
needs to specify high-level parameters, such as the agents
and their properties and how these properties change over
time; the modeling software then iteratively evaluates all
of the interactions present in the current model configura-
tion and updates the parameters of each agent. 

Such agent-based simulations, like modern vital 3-D
microscopy, produce cell-resolution 3-D time series re-
sults, which can then be compared against experimental
results through the identification of characteristic metrics.
While we are still learning how to extract biological
meaning optimally from these simulations, they remain
rich sources of information. nn

DETAILS

Maciej Swat is an associate scientist and lead developer of
CompuCell3D. James A. Glazier is professor of physics and
director of the Biocomplexity Institute at Indiana University
Bloomington. CompuCell3D (CC3D, www.compucell3d.org) is
an open-source, cross-platform, multi-cell simulation
environment that provides a platform for compact, high-level
specification of simulation agents and behaviors using
predefined Python templates in a language-aware template-
supporting editor (Twedit++), as well as simulation
execution, visualization, post-processing and results tracking.



30 BIOMEDICAL COMPUTATION REVIEW Fall 2013 www.biomedicalcomputationreview.org

Nonprofit Org.
U.S. Postage Paid
Permit No. 28
Palo Alto, CA

Stanford University
318 Campus Drive
Clark Center Room S221
Stanford, CA 94305-5444

s e e i n g  s c i e n c e
SeeingScience

The awe-inspiring journey from the
first cell some 3.5 billion years ago
to the remarkable diversity of

species we see today is now available in a
tabletop display called DeepTree. “For the
first time, people can explore the entire
tree of life in one interactive visualiza-

tion,” says Chia Shen, PhD, senior re-
search fellow in computer science at Har-
vard University’s School of Engineering
and Applied Sciences.

DeepTree is part of a larger museum ex-
hibit called Life on Earth that was put to-
gether by Shen’s team and is currently

stationed in four museums including the
California Academy of Science in San
Francisco and Chicago’s Field Museum. 

To create DeepTree, Shen’s team
merged vast public datasets of phyloge-
netic trees, common names and species
images, as well as estimates for the times
of divergence; selected a tree shape that
would accurately reflect the way species
diverge gradually over time; and studied
how multiple museum visitors interact

with the displays simul-
taneously to enable co-
operative learning. 

“Our project is very
carefully constructed so
people can learn,” says
Shen. Indeed, a research
study carried out in two
museum settings showed
that by using DeepTree,
young people have an
increased understanding
of common ancestry and
the relatedness of di-
verse species. 

Shen and her col-
leagues are also experi-
menting with rendering a
large tree in the cloud.
“Secondary school teach-
ers are interested,” Shen
says, “And we think we
can do it.” nn

BY KATHARINE MILLER

Digging Deep Into the Tree of Life

Using the touchscreen DeepTree display, museum visitors
(inset, left) can zoom through evolutionary history from
its roots to fungi, plants, birds, fish (pictured), and mam-
mals. Images courtesy of Life on Earth. For more infor-
mation, visit  https://lifeonearth.seas.harvard.edu/.


