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g u e s t  e d i t o r i a l

In this issue of Biomedical Computation Review, we
feature a look at the NIH Roadmap National Cen-
ters for Biomedical Computing (NCBC) program.

The NCBC program was a response to the recommen-
dations of a pivotal report1 entitled Biomedical Infor-
mation Science and Technology Initiative (BISTI). In
that report, the authors recognized the need for NIH to
support the creation of “an intellectual fusion of bio-
medicine and information technology” and support
“ways to discover, encourage, train and support the new

kinds of scientists needed for tomorrow’s science. In
their prescient report, they called for four interventions:

1To establish between 5 and 25 National Programs of
Excellence devoted to all facets of this emerging dis-

cipline, who will play a major role in educating biomed-
ical-computation researchers.

2 To make the growing body of biological data available
for study and use.

3 To provide resources for basic research in computa-
tional methods.

4 To foster a scalable national computer infrastructure
to support biomedical research.

The many payoffs from the NCBC program are de-
scribed in the cover story of this magazine. But I think that
the program’s most important legacy is its impact on
human capital. Each NCBC center has created an intel-
lectual home where a new generation of biomedical com-
putational scientists has been created and nurtured. The
centers have created a heretofore absent ecosystem that
allows scientists skilled in informatics and computation to

GuestEditorial
BY RUSS B. ALTMAN, STANFORD UNIVERSITY

thrive. The web of people in this ecosystem includes: 
• Faculty leaders striving for methodological innovation

to solve big problems in biomedical science;
• Graduate students in interdisciplinary programs inter-

acting with other students who share their passion for
computation, biology or both;

• Post-doctoral fellows working in rich intellectual envi-
ronments and defining the new questions and new
methodological directions that will drive the field in
the next 10 years;

• Professional software engineers who’ve found a career
path in biomedicine that offers rewards not available in
more traditional areas such as finance, entertainment,
social networking, and defense;

• Scientific staff who are training biologists and physi-
cians to use powerful new software tools, and who have
learned how to disseminate the fruits of their centers
effectively and globally.

And, perhaps most significantly:
• NIH Program and Scientific officers who have helped

lead the NCBC program and begun to learn the special
features of this field—the ways in which it is similar to
the other science at NIH, and the ways in which it re-
quires special consideration because of its special tech-
nical content, its focus on methodological innovation,
and its tendency to engineer artifacts (software, data-
bases, novel hardware architectures) that require ongo-
ing support. A well-informed and experienced set of
research administrators is absolutely critical for the suc-
cess of this endeavor.

As NIH leadership ponders the end of the first 10 years
of the NCBC program, and considers how to evolve the
NIH mission in biomedical computation, one priority
must be the continued nurturing of an intellectual ecosys-
tem for the field. It is this ecosystem that will ensure the
success of biomedical research in the digital era. nn

The NCBC Centers:
Incubators for the Next Generation

of Science and Scientists

1 http://www.bisti.nih.gov/library/june_1999_Rpt.asp
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O penSim, the neuromuscular
modeling and simulation soft-
ware, is now available in a new

digit: 3.0. The change (up from 2.4) re-
flects significant improvements that
make this open source tool more intu-
itive and efficient for typical users as
well as advanced developers, says Jen
Hicks, PhD, OpenSim’s research and
development manager.

“We want it to do easy things easily
and hard things gracefully,” says Matt
DeMers, a graduate student of mechan-
ical engineering at Stanford University
who is both a developer and user of
OpenSim. With this version, that hope
has become a reality, he says. 

In OpenSim, users develop models of
musculoskeletal structures and create dy-
namic simulations of movement using ei-
ther a graphical user interface (GUI) or,
for more advanced developers, an appli-
cation programming interface (API).
Version 3.0 includes numerous improve-
ments to both the GUI and the API as
well as performance improvements. “The
OpenSim development team is always
looking for better, faster, more accurate
ways to calculate things,” DeMers says.

GUI Usability
The biggest advance in OpenSim 3.0

is the ability to edit and iterate models
quickly and intuitively in the GUI.
“When someone is creating a model and
simulation, there’s a lot of tweaking that
happens,” Hicks says. Often, modelers
are adjusting a model to better match a
particular person’s geometry—the length

BY KATHARINE MILLER

of bones and muscles, the size of the
torso, the angle of the joints. In earlier
versions of OpenSim, making such
changes was somewhat cumbersome:
Users had to close the model in Open-
Sim, edit and save a new text file of the
model, then navigate to that file in
OpenSim and re-open it. But now, right
in the GUI, when users click on a muscle,
bone, body or joint, they can see its prop-
erties (where it’s located, what it looks
like, how strong it is), change a number,
hit “enter,” and immediately see the up-
dated model, providing instant feedback
on whether the change is a good one.
“And you can do that over and over to it-
erate very quickly,” DeMers says. “That’s
the big gain with OpenSim 3.0.”

It helps that the GUI now also pro-
vides improved visualization tools as
well. “You can look at forces, positions
and vectors in a file all day long and not
know what it really means,” DeMers
says. “But when you can see it in the
GUI, you can tell whether it looks rea-
sonable or resembles something physical
as you’d expect it to appear.” 

It’s also now possible to fine tune
functions—the math behind how a joint
or muscle moves—right in the GUI.
”Our bodies have messy geometry; they
translate and rotate at the same time;
they move in strange ways,” DeMers
says. It’s handy to be able to adjust a
function to fit a particular scenario, right
in the GUI. 

The GUI also features a number of
other usability improvements, Hicks says,
such as the ability to drag and drop mod-

els and motions; access a help
button relevant to the tool
you’re currently using; and show
a list of recently opened files.
“These small usability improve-
ments are big productivity boost-
ers,” she says.

The importance of these
GUI changes shouldn’t be un-
derestimated, DeMers says. “At
the end of the day, you’ll send
your model through a fancy nu-
merical pipeline, but the stuff

s i m b i o s  n e w s
SimbiosNews

OpenSim 3.0 makes it easier for users to add
new model components, such as the muscle
reflex controller used in this simulation of a
drop landing with an ankle brace. The con-
troller activates muscles based on how fast
they are lengthening. The 3.0 GUI also lets
users quickly edit parts of a model such as
the weight of a backpack, the strength of
the model's muscles, or the stiffness of the
ankle brace. Courtesy of Ajay Seth, Matt
DeMers, and John Rogers. 

The Ease and Grace 
of OpenSim 3.0

DETAILS

OpenSim 3.0 is available for download at
https://simtk.org/home/opensim). It is funded
by Simbios; the National Center for Simulation
in Rehabilitation Research; and the DARPA
Warrior Web Program. 

The lead OpenSim application architect is
Ayman Habib, PhD. The lead API architect is
Ajay Seth, PhD. See the full OpenSim team at
http://opensim.stanford.edu/about/people.html.
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that takes a lot of time is the nitty-gritty
stuff—changes and modifications and
checking that you’ve configured every-
thing correctly. Those front-end tasks
all happen in the GUI, and in 3.0 it’s a
much nicer experience.”

MATLAB and GUI Scripting
OpenSim provides ample core func-

tionality and out-of-the-box tools for
creating models of bodies, joints, and
muscles. “And that’s what most people
use,” Hicks says. But researchers might
want to do something a little bit differ-
ent that they can’t do with the core
tools, such as make a new type of mus-
cle. Or they might want to do the same
set of operations over and over again

(batch operations). Until
now, such things could only
be done with tedious parsing
of text files or using C++
programming in the Open-
Sim API. But C++ has a
steep and often frustrating
learning curve, Hicks says. 

To address that limitation,
OpenSim 3.0 now offers two
other options: writing scripts
with a Python interface in
the GUI or writing scripts
that call the OpenSim tools
and edit models from MAT-
LAB. Because most engineer-
ing students are familiar with
using MATLAB or Python,
this will be a welcome change
for many OpenSim users. 

A Sleeker API
For advanced developers

and researchers who want to
work in C++, OpenSim 3.0
also offers a cleaner, more
intuitive API where they
can add new features that
know how to talk to Open-
Sim. “By providing a library
of muscles, joints, and other
components,” DeMers says,
“OpenSim’s API gives other
researchers a jumping off
point to create new and in-
teresting components.” 

But the challenge in cre-
ating an API is to make the
interface clean and intuitive
to use. That’s where Open-

Sim 3.0 has made a big leap. “Every iter-
ation of OpenSim has tried to refine that
interface and now it’s finally crossing a
threshold where you don’t have to be an
expert in OpenSim to program anything,”
DeMers says. “So if someone wants to
make a fatiguing muscle,” Hicks says, “the
developer has to think about the science
of it and not so much the bookkeeping
side of things.”

Revamped 
Muscle Models

As part of the 3.0
upgrades, OpenSim’s
muscle models were
revamped to improve
accuracy and perform-

ance. Muscles are the primary driving
force in a simulation of walking, run-
ning, or any other movement. “Having
models of muscle that are robust and
also easy to fine tune and extend for

new uses is a huge improvement not
only for developers, but also every
OpenSim user,” Hicks says.

A New License
Earlier versions of the OpenSim

GUI were freely available to any re-
searcher or nonprofit user; and the
source code was accessible to any user
who asked for it. Now, the GUI and
API are also available to commercial

users and the API has
a certified open-source
license. “Now people
can get it without hav-
ing to ask,” Hicks says.
“This further consoli-
dates OpenSim as a
common biomechan-
ics platform for all.”  nn

Simbios (http://simbios.stanford.edu) 
is the National Center for Physics-
Based Simulation of Biological Struc-
tures at Stanford.

Improvements in
OpenSim 3.0
1. Users can edit and iterate 

models in the GUI

2. Improved visualization tools

3. New and improved 
muscle models

4. New probe model component

5. Performance upgrades

6. Function editing in the GUI

7. Drag & Drop 
models and motions

8. MATLAB and GUI scripting

9. An intuitive, more efficient API

10. Apache 2.0 open-source 
license for the API
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Embedded medical devices that both de-
tect symptoms and treat them have ex-

isted for decades. Take, for example, the
heart pacemaker. But a new generation of
implants could soon emerge to do some-
thing far more useful and daunting: These
devices will learn from and adapt to chang-
ing human physiology and behavior. Proj-
ects as diverse as the artificial pancreas and
closed-loop systems for deep brain stimula-
tion are developing cutting-edge treatments
for diabetes, epilepsy, and Parkinson’s Dis-
ease (PD). At the heart of these efforts are
machine-learning approaches: Computa-
tional algorithms that learn from patient-
specific data.

Through it all, researchers are grappling
with several fundamental questions: How
smart do these devices need to be? Should
we rely on simpler algorithms (which may be
more predictable) or complex ones (which
may be more robust)? And how do we make
these devices failsafe? 

The Artificial Pancreas: 
How Smart is Smart Enough?

Medtronic has run feasibility trials of an
artificial pancreas in which sensor informa-
tion is used in real time to modulate insulin
delivery as blood sugars vary up and down.
Their closed-loop system is pretty straight-
forward: The algorithm uses what’s called
a proportional–integral–derivative (PID)
controller that looks for deviations from a
set point and then makes adjustments to
bring glucose levels back to that point.
“Most of the commercially available con-
trol systems use that approach,” says John
Mastrototaro, PhD, chief technology offi-
cer at Medtronic Diabetes. The PID algo-
rithm is quite robust over a wide range of
insulin needs for a patient, Mastrototaro
says. “It doesn’t have to learn so quickly.”
But it does gradually learn. “We program in
various parameters to model the sensitivity
of the patient for our algorithm and then
the machine will learn and change and
drift as the patient’s needs change and drift
over time,” he says. For example, pregnant
women and growing children have changes
in insulin needs.

Initially, Mastrototaro says, the learning

can all be done manually and offline. As
the patient wears the system, it gathers data
that he or she can upload to online software
provided by Medtronic, which recalculates
and optimizes the parameter settings and
feeds them back to the embedded system for
use the next week. “And you can repeat
that iterative process on an ongoing basis
so it’s analogous to machine learning in the
device,” Mastrototaro says. In the future,
data will be uploaded and parameters ad-
justed automatically while the patient
wears the device, he says. 

Mastrototaro also envisions doing the
machine learning outside the device. “With
wireless technology, the device can talk to
central computers like a cell phone can, so
it doesn’t really have to be in the device to
behave as if it is,” he says. Moreover, the pa-
tient can benefit from software modifica-

tions and updates without having to buy a
new device. 

As simple and effective as the PID con-
troller seems to be, other groups are instead
exploring a model predictive controller
(MPC). Frank Doyle, PhD, professor of en-
gineering at the University of California,
San Diego is one of the pioneers of the
MPC school. MPC controllers are used in
everything from flight controllers to auto-
mobile controllers to the control of petro-
leum refineries. “Basically the high priority
control loops in industry use more sophisti-
cated algorithms, like MPC,” he says.

The Doyle group’s MPC algorithm
doesn’t target a single set point or number.

Instead, it creates multiple zones along the
continuum from hypo- to hyperglycemia.
Within each zone, all measurements are con-
sidered equally good—allowing the algo-
rithm to ignore sensor noise. “It’s consistent
with how a doctor analyzes data,” Doyle says. 

MPC acts on a time scale of minutes.
“Every 5 minutes or so the forecast is for
the next 30 to 60 minutes,” Doyle says.
This means the controller can respond
quickly to changes in glucose. For exam-
ple, Doyle’s group developed a meal detec-
tion algorithm that can spot a sharp rise in
glucose (such as might occur during a
meal) and take appropriate action (pro-
vide fast-acting insulin). “Most other
groups let patients interact with the pump
to give a priming bolus [large injection] of
insulin at lunchtime.” Because children
sometimes forget to bolus, he says, “we’ve

sought results that don’t require that.”
Other algorithms might detect and re-
spond to exercise or illness.

Doyle’s group is also adding a layer of it-
erative learning control (ILC) that would
learn over a longer time scale. He compares
MPC to cruise control in a car, which works
well on a scale of fractions of a mile but
struggles a bit when it comes to a hill that it
didn’t expect. “If you know the hill is coming
you can anticipate,” he says. In diabetes, the
hills might be exercise days or days when a
patient is sick or anxious. ILC can anticipate
these on a longer time horizon. “It’s our hy-
pothesis that we will get information to in-
form a long-term control program,” he says.

SMART EMBEDDED DEVICES:
Here They Come

“Most other groups let patients mess with the
pump to give a priming bolus [large injection] of

insulin at lunchtime,” Doyle says. Because children
sometimes forget to bolus, he says, “we’ve sought

results that don’t require that.”    
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“It could be punched in (by the mom of a
sick kid) or it could be something the algo-
rithm could learn from.” For example, a
woman’s monthly menstrual period might
change sensitivity and could be learned.  

To make it possible for the algorithm to
function in an embedded device, Doyle’s

group reduces the equation to an analytic
solution. “We enumerate all the possible so-
lutions and store it as a memory table,” he
says, “So it’s a memory operation rather
than a calculation.”

No clear winner has yet emerged be-
tween PID and MPC. “It’s a bit of a con-
troversy,” Mastrototaro says. Currently ,
based on the clinical data produced using
different algorithms, “the PID algorithm is
performing every bit as well if not better
than the MPCs,” he says. 

But Doyle says the two algorithms have
yet to be compared head-to-head in a clinical
trial under the same conditions. In the year
ahead, his group has been funded by the Ju-
venile Diabetes Research Foundation to con-

duct that very study in collaboration with the
Sansum Diabetes Research Institute.

Mastrototaro concedes that as the MPC
folks add more parameters and learning to
their algorithm it will get better and better.
“At the end of the day, to be quite frank, I
think both of them will do a good job. The

goal ultimately is to have phenomenal out-
comes in managing diabetes.” 

Closing the Loop on the Brain
Deep brain stimulation (DBS), which

uses electrodes implanted in the brain, has
been approved to treat Parkinson’s disease
(PD) tremors since 2002 and epileptic
seizures since 2010. Current DBS devices
have fixed settings that are manually ad-
justed by medical experts during physical
exams, and the stimulation is continuous.

Ideally, say researchers, DBS would be a
bi-directional system: Electrodes would
sense an imminent seizure or the onset of a
PD symptom, which would signal the same
electrodes to provide an appropriate level

of stimulation. But because the brain’s sig-
nals are complex and vary among patients,
machine learning could play a role in mak-
ing such systems a reality. 

So far, there’s been a lot of work on algo-
rithms that detect or attempt to predict
epileptic seizures, and some pilot work is
now exploring similar detection schemes for
PD and other disease states. In general, bi-
directional systems are still in an investiga-
tional stage of maturity, says Tim Denison,
PhD, engineering director in Medtronic’s
Neuromodulation business. “We are still on
the journey, not yet to the destination. De-
tection systems with high sensitivity and
specificity are challenging; prediction sys-
tems are even more difficult.” 

Among those working on predicting
seizures are Mushfiq Saleheen and Homa
Alemzadeh, graduate students in Ravi
Iyer’s engineering group at the University
of Illinois at Urbana Champaign. They
used neural networks to train a device to
predict seizures. The device relies on mul-
tiple parameters—not only electro-en-
cephalogram (EEG) readings, but also
oxygen saturation and body movements.
And it’s a flexible device that can also
work for detection of traumatic brain in-
jury, cognitive decline, and heart attack
prediction. “The math underlying making
these predictions is not that different, but
the device would be configured differently
for each disease,” Iyer says. Iyer and
Alemzadeh’s goal is to design a flexible de-
vice that can predict the onset of a trau-
matic event such as seizure or heart attack
several minutes in advance, but the inten-
tion is to set off an alarm rather than pro-
vide treatment. “With an alarm, patients
can take action to prevent the worst of
the consequences.”

Medtronic hopes to use similar types of
machine learning to distinguish seizure
from non-seizure events but with an eye to
using DBS as a closed-loop treatment. This
presents unique challenges. For example,
when DBS starts (say in response to brain
signals suggesting a seizure is imminent),
the large stimulation pulses could immedi-
ately drown out the brain signals needed to
assess the patient’s state. Denison and his
colleagues have found a way to teach the
algorithm to distinguish this noise from the
valuable background signal. It’s a key step
toward making a bi-directional system a
practical reality. 

Creating a bi-directional system for
DBS treatment of PD presents additional
challenges. PD signals aren’t very strong
compared to seizures. “They’re about 1000
times smaller than what cardio pacemakers

In Europe, Medtronic currently sells this device, called a Paradigm Veo, which is a first baby step
toward an artificial pancreas.  It automatically suspends delivery of insulin for a period of time
when a continuous glucose monitor starts to read lower than a certain level. In June 2012,
Medtronic applied for approval to use the device in the United States.  Courtesy of Medtronic.
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detect today, and usually about 10 to 100
times smaller than a seizure,” Denison says.
So it can be tough to get robust measure-
ments. And unlike seizures, many of PD’s
brain signals appear to be embedded as

variations in normal rhythms. “The chal-
lenge is to discover what’s normal and
what’s disease related when designing a ro-
bust classifier,” Denison says. 

Eduard Bakstein, a PhD student at the
department of cybernetics at Czech Techni-
cal University in Prague, is using neural net-
works to discover features of PD tremor. “I

look at the signal and I know when tremor
was present or not, and then I extract differ-
ent features from the data,” he says. This
process involves applying various transfor-
mations to the data—Fourier transform;
wavelet transform; standard deviation of the
signal—to observe how the features behave
during the on- and off-tremor periods. The
goal is to identify the features that change
most when the tremor is starting. “Then I

use these in the machine learning to iden-
tify the on and off periods,” he says. In a
small pilot study of his model, it worked well
for some patients and not so well for others. 

Medtronic has access to more patient

data than Bakstein, and has therefore ap-
plied its machine learning approach to large
datasets of EEG data both across subjects
and over time. Although there’s a particular
signal that they believe seems to correlate
with the presence of symptoms in an animal
model, Medtronic researchers are still try-
ing to clarify when it appears and whether

it can be used to titrate stimulation as part
of a closed-loop therapy. “We might really
want something that gently coaxes the
brain, rather than responding as it would to
a large-scale event,” Denison says. Previous
thinking about responsive stimulation in
the brain evolved from a defibrillation
mindset—applying a very strong stimulus as
is done with cardiac devices. “That might
not be the right approach,” Denison says,

“And we are now exploring other schemes
more in the spirit of a circadian or homeo-
static feedback concept, based on first-prin-
ciples measurements of physiology.” 

Medtronic is also trying to simplify its
machine learning approaches so that they
don’t require too much power. “The therapy
today to provide DBS is on the order of 100
microwatts—about a million times less
than an incandescent light bulb,” Denison
says. This limits the amount of power avail-
able for sensors and detection algorithms.
“We can only get a budget of 10 percent of
the therapy power,” he says. Using what’s
called the reduced sets method and other
schemes, Medtronic systematically seeks to
simplify its detectors and algorithms to re-
duce the energy needed. “Frankly, a lot of
detectors draw too much power for the per-
formance that is achieved,” Denison says.
“You’re not doing anyone any favor if you
can’t implement the technology practically
in an implant.” 

Denison’s team spends a lot of time op-
timizing algorithm methods that are simul-
taneously accurate and low power. As an
example, Medtronic uses a posture re-
sponse algorithm in its RestoreSensor de-
vice, which uses stimulation to treat
chronic pain. “We customized an ac-
celerometer and algorithm to build a reflex
into the device, drawing only microwatts
of power,” Denison says.

Safety is Everything
For an embedded medical device to

succeed, it must not only do what it’s de-
signed to do but also do it in a failsafe way.
That’s one of Medtronic’s big concerns
now with the artificial pancreas. Because
an incorrect dose of insulin can be deadly,
putting decisions in the hand of a tiny de-

vice with a detector and a learning algo-
rithm is a bit scary. One option, says
Mastrototaro, is for the machine to learn
the patient’s normal cycle of blood sugar
variation and then use that information
to send an alarm or suspend closed loop
control when there’s something unusual
going on—when the pump or detector
aren’t working correctly. “That’s where
our focus is now,” he says.  nn
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A stimulator and leads used for deep brain stimulation surgery. Courtesy of Medtronic.
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This past June, 200 members of the NIH-
funded Human Microbiome Project

(HMP) Consortium published a slew of pa-
pers offering fresh insights into the role mi-
crobial communities play in the human
body—including how changes in the vagi-
nal bacteria of pregnant women affect the
health of their babies, and how gut microbes
influence inflammatory bowel disease. 

But the research was only possible
thanks to a team of experts in computa-
tional biology and bioinformatics. 

HMP participants sequenced thousands
of metagenome samples—which contain
genetic material from hundreds of diverse
microbes—from up to 18 body sites in 242

healthy individuals. State-of-the-art tools
for analyzing individual genomes aren’t well
suited to analyzing metagenomes, as the
data are much more massive and messy. So
a team of researchers from the Department
of Energy’s Joint Genome Initiative (JGI)
joined forces with software engineers and
computer scientists from the Biological
Data Management and Technology Center
at Lawrence Berkeley National Laboratory
to develop and maintain a suite of novel
tools, including a quality control filter, a cu-
ration and annotation pipeline, and meth-
ods for analyzing and integrating the data. 

These efforts culminated in a one-stop
shopping data management and analysis

system for microbial metagenomic studies,
the Integrated Microbial Genomes and
Metagenomes (IMG/M) system; and an HMP-
specific web interface known as IMG/M-HMP
that supports comparative analysis of HMP
genomes and metagenomes against the vast
pool of microbial data in IMG/M. 

HMP scientists can come to the IMG/M-
HMP—which is neck-deep in genomics
tools and annotated microbiome data—
knowing that they will find much of what
they need. The IMG/M tools can do a range
of analyses, including identifying microbes
and genes within a metagenome; predicting
gene function; and comparing populations
of microbes across metagenomes. According

Using data that was processed by the HMP team, researchers created this
global interaction network showing the associations among phylotypes
(the nodes in this plot) within and across 18 body sites (colors), with edges
representing significant relationships between the phylotypes, whether

positive (green—co-occurence) or negative (red—co-exclusion). The net-
work shows significant niche specialization.  Reprinted from Faust, K, et
al., Microbial co-occurrence relationships in the human microbiome, PLoS
Comput Biol. 2012 Jul;8(7):e1002606. Epub 2012 Jul 12.

THE MICROBIOME:
Dealing with the Data Deluge
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to JGI functional annotation group leader
Natalia Ivanova, PhD, HMP researchers as-
semble their sequences and perform struc-
tural annotation, or gene prediction; while
JGI scientists perform functional annota-
tion—assigning the predicted genes to con-
served protein families—and provide data
integration and the user interface.

Finding Known 
Genes and Microbes 

HMP researchers must find protein-cod-
ing genes and determine what bugs they
come from. The process typically starts with
comparing a set of metagenomic data to
millions of genes in the IMG reference
database in hopes of finding a match. Using
this process, the HMP has harvested ap-
proximately 200 million genes from its
metagenomic samples. “And that requires
a lot of computations,” says JGI computa-
tional genomics group leader Konstantinos
Mavrommatis, PhD. 

For decades, researchers have used an al-
gorithm called BLAST (Basic Local Align-
ment Search Tool) to search for similarities
between nucleotide sequences. But BLAST
alone is too slow and computationally ex-
pensive to handle the metagenomic sifting
required by the HMP. So Mavrommatis and
his colleagues incorporated novel computa-
tional approaches into IMG/M. 

At first, the team at JGI investigated alter-
natives to similarity-based pattern searches,
but those produced too many false results.
So they turned instead to new similarity-
based algorithms, such as USEARCH, ca-
pable of producing results similar to those of
BLAST, only faster and more efficiently.
USE ARCH looks for a small number of
good matches rather than trying to identify
all homologous sequences, cutting down on
search time without affecting sensitivity.

Finding Novel Genes and 
Predicting their Functions 

Matching a microbe buried inside a
metagenome to a genome in a reference
database is akin to finding a needle in a
haystack. But identifying the genes from a
microbe that hasn’t previously been se-
quenced and figuring out what those genes
actually do is even more challenging. 

To enable researchers to find novel genes,
the IMG/M includes gene-predicting algo-
rithms that rely on generic features of nu-
cleotide sequences rather than relying on
comparison to known sequences (as similar-
ity-based algorithms do). The mathematical
methods used in gene prediction, such as
hidden Markov models, “work quite well,”
says Ivanova. As a result, even when they are

fed radically new content, their error rate re-
mains below 10 percent. “It’s still not per-
fect,” says Mavrommatis, “but considering all
the other sources of error, it’s not the worst.” 

These algorithms in the IMG/M were
the basis for characterizing the diversity of
the microbiome in many of the papers pub-
lished by the HMP. 

Teasing out the function of a novel gene
is similarly demanding. In general, Ivanova
says, gene function is determined by com-
paring unknown genes to ones whose func-
tion has been verified experimentally.
Function can be confirmed by analyzing
the distribution of similar genes in known
genomes, or by looking at a gene’s chromo-
somal neighborhood, since “genes that are
next to each other are more likely to be
functionally related.” 

Few genes in the HMP database have been
characterized to the point where scientists can
say precisely what they do. And while perhaps
75 percent of the genes in IMG have been at
least broadly characterized, that figure falls by
half for genes within the HMP pool. 

Yet considering the number of genes in-
volved, that’s still an awful lot of information.
And the methods that Ivanova describes can
be used to create clusters of microbial se-
quences that might be worth examining in
the lab, where researchers can learn more
about them through experimentation. The
gene prediction and annotation pipeline de-
veloped by JGI has already led to the creation
of the HMP Gene Index, a collection of 690
annotated sequences from 15 different body
sites. And this past September, a group of
users attending a Microbial Genomics &
Metagenomics (MGM) workshop run by the
JGI used the data in an attempt to identify
potential antibiotic-resistance genes in dif-
ferent metagenome samples.

Human Health 
One of the grand challenges of the mi-

crobiome project is to discover new infor-
mation that could help to diagnose or treat
disease. This is a huge challenge computa-
tionally for several reasons. First, differences
in the diversity and complexity of the mi-
crobial communities found in different
body sites (e.g., the skin, the mouth, the
gut) make it difficult to do comparisons be-
tween them, Ivanova says. As a result, re-
searchers tend to focus on comparisons of
populations at the same body sites but in
different individuals. 

Perhaps even more significantly, due to
privacy restrictions, the HMP metagenome
datasets themselves come with very little
metadata attached. Such metadata, which
might describe the sex or dietary preferences

of the human donor, is crucial to determin-
ing which metagenomic datasets might be of
interest. Scientists at JGI have manually ap-
plied their own five-tiered classification
scheme to the data, moving from the general
(e.g., “host-associated” versus “engineered”)
to the specific (“respiratory system,” “diges-
tive system,” “skin and appendages”), but the
approach has its limitations. 

“It has to be much more granular,” says
Ivanova. “There are some scientific ques-
tions that you won’t be able to answer be-
cause of the lack of metadata.” 

Information Overload 
The IMG/M helps researchers access

and manipulate microbiome data in useful
ways, but the sheer volume of data contin-
ues to present challenges. 

For example, standard methods of storing
and retrieving data from relational databases
are no longer sufficient. The JGI-BDMTC
team is exploring options such as nonrela-
tional or NoSQL databases, and while they
have yet to find a one-size-fits-all solution,
they continue to explore alternatives. 

And then there’s the question of how to
provide access to the data and distribute the
information. “We are struggling with the
challenge of devising tools that don’t over-
whelm our scientific users,” says Victor M.
Markowitz, DSc, head of the Biological Data
Management and Technology Center. 

Giving scientists tools that are easy and
efficient to use is critical because these tools
drive research as much as they support it. 

“In our experience most researchers don’t
have a clear idea of what they really want
and how to achieve it until they start getting
the data,” Mavrommatis says. “For good or
for ill, there is frequently no prior design of
the analysis; we generate the data, and then
the researcher starts trying to address ques-
tions based on what tools are available.” 

Which is all the more reason to ensure
that those tools are the best possible ones
for the job.  nn
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When the ill-fated space shuttle Columbia launched on January 16, 2003, a large piece
of foam fell off and hit the left wing. Alerted of the impact, NASA engineers used a

computer model to predict the possible consequences. Their conclusion: It will likely be okay.
But, in fact, the foam had catastrophically exposed the shuttle’s thermal protection system,
causing Columbia to disintegrate during reentry and killing all seven crew members.
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Better Validation Is the Key to
Progress in Biomedical Computing

By Kristin Sainani, PhD 
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Investigators later concluded that the disaster
might have been averted. One of the key failures:
The computer model got it wrong. The model

had been validated for small pieces of foam, not
“huge hunking pieces,” says Jerry Myers, PhD, chief
of the Bio-Science and Technology branch at
NASA’s Glenn Research Center. “Because it had
been well-validated down in the low end in that op-

erational scheme, everybody took it at face value that
it would work in the upper scheme.” (In fact, one
simulation did predict catastrophic failure—but en-
gineers distrusted that particular simulation.) The as-
sumptions and uncertainties of the model were never
fully presented to higher-ups, who consequently
made the wrong decisions. This chain of failures led
NASA to implement a comprehensive standard
(NASA 7009) for vetting models and simulations.

Models can be extremely valuable: They comple-
ment experimental studies by providing additional in-
sights in a cost-effective way. But the value of a model
depends on rigorous validation, as the Columbia ac-
cident tragically shows. Modelers in high-stakes
fields—aeronautics, nuclear physics, bomb making,
and weather prediction, for example—understand

this well. But “in the biomedical sciences, there hasn’t
been such a culture of holding people to the fire of
validation,” says Peter Lyster, PhD, program director
in the Division of Biomedical Technology, Bioinfor-
matics and Computational Biology at the National
Institute of General Medical Sciences (NIGMS) of
the National Institutes of Health (NIH).

This laissez-faire ethos is going to have to change.

Biomedical modeling has now entered a high-stakes
era: Models are increasingly being used to make di-
rect clinical decisions, with life-and-death conse-
quences, such as choosing between cancer drugs. At
the same time, there is a brewing crisis of confidence
in bioinformatics and biomedical computing (see:
Meet the Skeptics, in the Summer 2012 issue of this
magazine). Scores of papers have been published
claiming “success”—for everything from disease sig-
natures to drug targets—but practical applications
have been few, and some models have been de-
bunked (see: Errors in Biomedical Computing, Fall
2011 issue of this magazine). These factors are fueling
an intense discussion on validation in biomedical
modeling circles.

The point of validation is to help modelers and
model consumers decide: Does the model get close
enough to reality so that they can use it with confi-
dence in a particular scenario? Perfect validation isn’t
always the goal; sometimes a less costly validation
might suffice if the costs of making a mistake are low.

High-Stakes Consequences. Streaks of burning debris from the U.S. space shuttle
orbiter Columbia as it broke up over Texas on February 1, 2003. The accident killed all
seven astronauts aboard the craft. A poorly validated model played a role. Credit: Dr.
Scott Lieberman—AP Photo/Tyler Morning Telegraph. 

The point of validation is to help modelers and model consumers decide:
Does the model get close enough to reality so that they 

can use it with confidence in a particular scenario?
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The problem is that current validation schemes for
biomedical models are often inadequate given the
stakes. This article describes several common pitfalls
of current practices, as well as several efforts to rem-
edy these issues by innovating or standardizing vali-
dation for biomedical models. 

The Status Quo
When biomedical modelers talk about “valida-

tion” currently, they may mean many different
things. Some researchers may confuse verification—
checking that the code does what it’s supposed to—
with validation; but verification is only a prerequisite
to validating a model. Some researchers also confuse
peer review with validation. “We had a long discus-
sion with a couple of researchers a while back as to
what constituted validation. And their response was,
‘publication in the general literature,’” Myers says.

“But that is just not right.” At most, peer review pro-
vides a very low-level, “do-my-concepts-look-good”
validation, he says. Peer review is simply not
equipped to vet high-throughput data and complex
models in a meaningful way. 

Researchers who go beyond verification and peer
review will typically validate their models against ex-
isting data. Using a kind of statistical validation, they
fit the model on one set of data while holding out
some of the data for subsequent “independent” test-
ing. For example, in the old days of predicting pro-
tein structure from sequence, people used to fit an
algorithm to one set of known structures and then
test it on a separate set of known structures, says John
Moult, PhD, professor of cell biology and molecular
genetics at the University of Maryland. In theory,
this could provide reasonable validation—but in
practice, there’s good evidence that it simply doesn’t
work. “In practice, we’re all rather fallible. It’s very
hard if you know the answer not to be unconsciously
biased by it,” Moult says. 

“I don’t mean that people deliberately cheat,”
Moult says. “I think it’s a lot subtler than that. In the
field that I’m familiar with, there are a lot of very,
very smart people and they’re very honest people by
and large. But somehow we fool ourselves.” Informa-
tion inevitably “leaks” from the training set to the
test set; for example, if the model doesn’t fit quite
right on the test set, researchers go back and tweak
the algorithm a little, Moult says. Or the training and

test set may contain such similar samples that the al-
gorithm works well on both, but does not generalize
to other problems. 

Researchers do better when they get beyond sta-
tistical validation and benchmark their algorithms
against truly new experimental data (or data that
they were blinded to during algorithm develop-
ment). However, even in this situation biases slip
in. Researchers may selectively report the most op-
timistic validation results, for example. “We call it
the self-assessment trap,” says Gustavo Stolovitzky,
PhD, manager of functional ge-
nomics and systems biology at
the IBM Computational Biology
Center. “You want to publish your
paper and, therefore, at the end of
the day, some of the objectivity of
the scientific enterprise is lost.” 

In a 2011 paper in Molecular
Systems Biology, Stolovitzky and
colleagues surveyed 57 modeling
papers—within a few specific
areas— in which authors assessed
their own methods. Sixty-eight
percent of authors reported that
their method was best for all met-
rics and all datasets; and 100 per-
cent reported that their method
was among the best. But, of
course, this is impossible—all
these methods cannot be the best. 

Another problem with the sta-
tus quo is that most researchers
view validation as a one-time,
one-size-fits-all endeavor. “The
word ‘validated’ can get slipped in
very, very easily,” says David M.
Eddy, MD, PhD, founder and
medical director of Archimedes, a
healthcare modeling company in
San Francisco. “A team can vali-
date the model in one population
for one outcome for one treat-
ment, and then they’ll attach the
word ‘validated’ to the model as
though it’s a property of the
model, that goes with the model
wherever the model goes—to any
treatment, to any outcome, to any
population, to any time period,”
he says. This, of course, leads to
the kind of dangerous extrapolation that happened
with the Columbia disaster. Plus, if you only validate
a model once, that model is going to be out of date
in a few years, Eddy says. 

Finally, most prevailing validation efforts omit a
critical element: error bars. Since a model can never
match reality perfectly, “validation is mostly about
knowing what the errors are and accounting for
them,” Lyster says. The uncertainties in the model
and data need to be quantified by putting error bars
around model predictions. “It’s not just a matter of

At most, peer review
provides a very low-level,
“do-my-concepts-look-
good” validation, Myers says.

Researchers may
selectively report 
the most optimistic
validation results. 
“We call it the self-
assessment trap,” 
says Stolovitzky. 
“You want to publish
your paper and,
therefore, at the end
of the day, some of
the objectivity of 
the scientific
enterprise is lost.”



Using online marketplaces—such as ScienceEx-
change.com, AssayDepot.com, and Biomax.us—
modelers can find exactly the services or samples
they need. It’s a lot like shopping on Amazon.com.

Need high-quality serum from
breast cancer patients treated
with Tamoxifen? Just drop them
in your shopping cart. Need to
test a drug in a rat model of in-
flammatory bowel disease? Here
are 15 companies that can do it
for you. “This is the most amazing
thing for us in informatics and
computational biology. If we want
to do this kind of translational
work, all this is here waiting for
us,” Butte says.

In 2011, Butte’s team pub-
lished back-to-back papers in Science Translational
Medicine that highlight the value of outsourcing
validation. Butte’s team devised an algorithm that
mines publicly available gene expression data to
find new uses for old drugs. The model predicted
that cimetidine, an antiulcer drug, would be effec-
tive against lung cancer. Butte hired the Transgenic
Mouse Research Center core facility at Stanford to
test this prediction; the result: the drug indeed
slowed the growth of lung cancer in mouse models.
Butte’s algorithm also predicted that topiramate, an
anti-seizure drug, could be used to treat inflamma-
tory bowel disease. Butte collaborated with scien-
tists at Stanford to test the prediction in rats and
additionally hired two companies that he found
through AssayDepot.com to perform independent
replications. All three experiments gave strong ev-
idence of the drug’s efficacy. One of the companies
even provided colonoscopies of the rats, something
that his Stanford collaborators couldn’t do. Statis-
tical validation doesn’t resonate much with physi-
cians and biologists, but “when you show them the
colonoscopy from the rat, that’s huge value-added
for your model,” Butte says. 

Using outsourced validation, Butte has reposi-
tioned one drug—moving it from computational pre-
diction to cell and mouse models and then to clinical
trials (which are about to begin)—in the span of
eight months. “It is getting to be too trivial to get just
a simple bioinformatics paper published. Those kinds
of papers are slowly losing their impact, especially
with non-computational scientists,” Butte says. “I
think if you want to find and show something big,
this is how you’re going to do it.”

Are the data trustworthy? Sure, it’s a worry, Butte
admits. “But that worry lasts maybe about 48 hours—
the time it takes you to get the samples that you
would have otherwise waited months or years to get,”
he says. And because companies send Butte the raw
samples as well as the data (he has the formalin tissue
slides on his shelf), he can look at them himself and
even seek a second opinion. (For example, a pathol-
ogist might read slides for a dollar apiece, he says.)
And, if the price is low enough, one can always send

having a forecast; it’s a matter of knowing accurately
how fat the error bars are,” Lyster says. “You’ve got
to know that you’ve got good error bars so that peo-
ple can go to the bank with them.”

Outsourcing Validation
Many modelers resort to statistical validation on

existing data because they don’t have the expertise,
time, or resources to generate new experimental data.
But it’s becoming increasingly easy to outsource vali-
dation experiments, says Atul Butte, MD, PhD, as-
sociate professor of pediatrics at Stanford University.
Outsourcing validation doesn’t mean assays performed
on-the-cheap in China or India. Rather, modelers can
hire companies or university core facilities—experts
in a particular research technique—to run the specific
experiments needed to test their model predictions.
“I’m a big fan of this approach,” Butte says. 
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Outsourced Validation. Using modeling, Atul Butte’s team predicted
that topiramate, an anti-seizure drug, would be effective against in-
flammatory bowel disease. Butte outsourced the experimental vali-
dation to companies he found through AssayDepot.com. One of the
companies was able to provide colonoscopies of the rat, pictured
here. Reproduced with permission from: Dudley, JT, et al. Computa-
tional Repositioning of the Anticonvulsant Topiramate for Inflamma-
tory Bowel Disease, Sci Transl Med 17 August 2011; 3: 96.

“It’s not just a matter of having a prediction or
forecast; it’s a matter of knowing accurately how
fat the error bars are,” Lyster says. “You’ve got to
know that you’ve got good error bars so that
people can go to the bank with them.”



help to “break that vicious circle of self-assessment
traps and lack of sufficient rigor,” Stolovitzky says.
Competitors are also blinded to solutions, which fur-
ther reduces bias. For example, in CASP, organizers
gather unpublished data from X-ray crystallographers
and NMR spectroscopers who are on the cusp of
solving a structure. “The key thing about CASP is

that one doesn’t know the answers; one is doing gen-
uine blinded prediction,” Moult says. 

After each competition, results and data are made
freely available to the community so that everyone
can learn from the successes and failures. Competi-

tions systematically reveal where people are “fooling
themselves”; they also give a field insight as to which
problems have been effectively solved. “As partici-
pants in a field, we’ve got much better feedback on
what the real issues are and where we should focus our
efforts,” Moult says. DREAM organizers also aggregate

the same experiment to two or more vendors, for
maximum independent validation, Butte says.

Outsourced validation experiments may actually
be more robust and of higher quality than experi-
ments done by the computational modeler, says Eliz-
abeth Iorns, PhD, the cofounder and CEO of
Science Exchange in Palo Alto. Science Exchange
is a marketplace for university core facilities. “If you
have one person who is doing all the experiments,
no matter how hard they try, subconsciously they’re
looking at the data in a way that matches what they
want it to say. So, distributing the experiments across
multiple investigators is a way to eliminate the indi-
vidual investigator bias.” Plus, the core facilities tend
to be extremely specialized in a particular experimen-
tal technique. So the quality tends to be higher than
if an inexperienced postdoc or graduate student is
running the experiment, she says. 

To promote the cause of validation, Science Ex-
change recently launched the Reproducibility Ini-
tiative. Scientists may apply to have previously
published research (including models) independ-
ently tested through the Science Exchange network;
then they can publish the results in a special issue
of PLoS ONE. Even if a validation study refutes a
computational model, Iorns points out, it’s better to
publish this failing yourself rather than for someone
else to discover and publicize it. 

Crowdsourcing Validation
One of the most successful innovations in valida-

tion is the use of collaborative competitions. These
competitions engage the community in an ongoing,
cyclic model of validation that helps the field progress,
Lyster says. The first of these competitions, CASP
(Critical Assessment of Techniques for Protein Struc-
ture Prediction), began in 1994 and is now in its tenth
round. Others quickly followed, including CAGI
(Critical Assessment of Genome Interpretation),
CAPRI (Critical Assessment of PRedicted Interac-
tions), the American Society of Mechanical Engineers
(ASME) Grand Challenges, and DREAM (Dialogue

on Reverse Engineering Assessment and Methods)—
which is now in its seventh round. 

Teams work on the same challenges, so it is possi-
ble to directly compare their performance; and inde-
pendent judges evaluate the methods using several
well-defined metrics. These objective assessments
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Competitions systematically reveal where people are 
“fooling themselves”; they also give a field insight as to 

which problems have been effectively solved.  “As participants 
in a field, we’ve got much better feedback on what the real 

issues are and where we should focus our efforts,” Moult says.

Safety in Numbers. This picture shows 354 predictions (in gray) of the structure of a tar-
get protein (3dsm) from the eighth CASP competition. The actual structure is shown in col-
ored ribbons. Reprinted from Keedy, DA, et al., The other 90 percent of the protein:
Assessment beyond the C�s for CASP8 template-based and high-accuracy models, Pro-
teins: Structure, Function, and Bioinformatics, 77:S9:29-49, 2009. 
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the best solutions—yielding a collaborative algorithm
that often outperforms the best single method. “This
is the wisdom of crowds,” Stolovitzky says. 

Competitions also increase confidence. “In the area
of protein structure, before CASP got established, we
were sort of a laughing stock with the experimental-

ists. They all knew that we were exaggerating,”
Moult says. That’s completely changed, he says. “In
terms of people in the broader protein structure com-
munity having more confidence in the methods, it’s
had a huge impact.” 

Industry can benefit from competitions as well—
as evidenced by the Netflix Prize for successfully pre-
dicting a person’s taste in movies—but the rules need
to be slightly different, Stolovitzky says. He and col-
leagues have pioneered a collaborative competition
model for industry, called IMPROVER (Industrial
Methodology for Process Verification of Research).
IBM and Philips Morris codeveloped the first set of
IMPROVER challenges in systems biology. They
aimed to verify that computational approaches can
use transcriptomic data to classify clinical samples
into diseased and non-diseased (for specific illnesses,
including multiple sclerosis, lung cancer, and chronic
obstructive pulmonary disease). Entries were assessed
using gene expression data from unpublished cohorts
of cases and controls. Data, gold standards, and scores
are available at sbvimprover.com

Predictive and 
“One-Click” Validation

In crowdsourced validation, the participants are
blinded but the answers are known to the organizers.
“Predictive validation” takes blinding one step fur-
ther: predictions are made while an experiment is on-
going—in other words, when the answers are truly

unknown. This type of prophetic validation has a
certain “wow factor” that is particularly useful for
convincing skeptics. 

For example, in 2004, the American Diabetes As-
sociation asked David Eddy (CEO of the company
Archimedes) if his healthcare model could predict
the results of an ongoing clinical trial called the Col-
laborative Atorvastatin Diabetes Study (CARDS).
The trial was testing whether atorvastatin could re-
duce the chance of heart attack or stroke in people
at risk, especially diabetics. Months before comple-
tion of the study, Eddy’s team simulated the trial,
sealed the resulting predictions in an envelope, and
FedExed them to the American Diabetes Associa-
tion, the principal investigators of CARDS, and
Pfizer (the drug’s sponsor). 

Their predictions were “right on the money” for
three of four outcomes, Eddy says: they closely pre-
dicted the actual rates of heart attack and stroke in
the control group and heart attack in the atorvas-
tatin-treated group. They underestimated the drug’s
ability to prevent strokes, but even that “error”
turned out to have value, Eddy says. In the absence
of data, the modelers had assumed that atorvastatin’s
effects on stroke would be similar to that of other
statins; but it turns out that atorvastatin may, in fact,
be more effective. “The mismatch between our
model and the real results was what alerted Pfizer to
that fact. So that’s opened up other research av-
enues,” Eddy says. 

The success of the predictive validation won over
modeling skeptics at the American Diabetes Associ-
ation, which went on to commission considerable
work from Archimedes, Eddy says. 

Modelers at the company have also pioneered a
“one-click” validation tool that addresses the need to
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The Wisdom of Crowds. Performance of models from the top 11 teams from one of
the DREAM2 challenges. The challenge consisted of predicting transcriptional targets
of the transcription factor BCL6; both “area under the curve” metrics measure how
well the prediction matches reality (where 1 is perfect prediction and 0.5 is no better
than chance). Even as the performance of the individual teams decreases (black line
and circles), the integrated prediction of the best performer and runner-up teams (red
line and diamonds) outperforms the best individual team. Reproduced with permis-
sion from: Figure 1 of Norel R, Rice JJ, Stolovitzky G. The self-assessment trap: can we
all be better than average? Molecular Systems Biology October 2011; 7:537.

Right on the Money. The Archimedes model accurately
predicted three of four primary results of the CARDS trial
months before the trial finished. Pictured here are the pre-
dicted rates of stroke in the control and treatment groups
(from two separate simulations run on 3/23 and 3/25), as
well as the actual rates of stroke observed in the trial. The
model was right on the money for the control group, but
overestimated the rate of stroke for the treated group.
This “error” actually revealed novel insights into the
drug’s function. Courtesy of: Archimedes Inc. 
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continually update and revalidate models. With vali-
dation, “there’s no end point. It’s not as though some
hand comes down from the sky and says ‘you’ve got it;
you can rest, relax.’ It’s a constant process,” Eddy says.
One-click validation provides an automated way to

revalidate models every time new medical evidence
comes out. “With this one-click validation, we’re get-
ting much, much more efficient. We don’t have to set
up each new trial every single time,” Eddy says. 

Regulating Validation
Companies are increasingly using biomedical

modeling in regulatory submissions for medical prod-
ucts, making validation a hot topic at the Food and
Drug Administration (FDA).

Currently, decisions about validation are made on
a case-by-case basis—and, correspondingly, what com-
panies report to the FDA is highly variable. “What we
get from manufacturers is just such a range in terms of
defining their models, defining the limitations, defin-
ing what they’re using the model for—the things that
you think would be in any test report. We’re not nec-
essarily even getting those basics,” says Donna
Lochner, associate director for scientific outreach at
the FDA’s Center for Devices and Radiological Health.  

So, the FDA is working to develop standards. “We
want to promote greater use of computational mod-
els. One of the ways we can promote their use is to
come out with clear expectations with respect to val-
idation. That’s where we are now,” Lochner says.

Standardizing validation for biomedical models is
a challenge. “The models in this space are very com-

plex, particularly when talking about long-term inter-
actions between a device and a patient,” says Tina M.
Morrison, PhD, a mechanical and biomedical engi-
neer at the FDA’s Center for Devices and Radiological
Health. Though validation standards exist for hard-

core engineering and physics-based fields,
these don’t necessarily transfer well to bio-
medical models—because data from living
systems are harder to come by and highly
variable, Morrison says. 

Morrison and colleagues at the Center
for Devices and Radiological Health have
begun drafting a guidance document specific
to medical devices. Though in its early
stages, some of the essentials are clear: “first
and foremost, good documentation,” Mor-
rison says. We need companies to document
“what they did, why they did it, what their
results are, how confident they are in those
inputs, and the use history of those models,”
she says. Secondly, validation will have to
be more quantitative. It’s not sufficient to
say that the prediction and the data match

by 20 percent and that’s “close enough,” Morrison
says. Companies might need to perform formal uncer-
tainty analyses (adding error bars) and sensitivity
analyses, where they tweak the parameters and the
assumptions in the model and see how much that af-
fects their predictions. Finally, the FDA is creating an
innovative scheme to risk-stratify validation require-
ments, so that the level of validation depends on how
the model is being used in the regulatory submission. 

For example, imagine a computational model that
predicts which commercial hip implant would be
best for a given patient, based specifically on his or
her anatomy, bone density and activity level. If that
model gets it wrong, the stakes are high: the patient
could experience a bone fracture and require repeat
surgery. So, validation will need to be rigorous. But
if a company is just using a model to justify which
sizes of its device it needs to evaluate with bench
testing, the risks are lower and, thus, a less rigorous
validation strategy might suffice. 

“Right now, we’re not making big decisions based
solely on the computational models; therefore, the
level of validation isn’t high,” Morrison says. “But if
we start shifting where we make more important reg-
ulatory decisions based on the computational outputs,
the amount of information that’s going to be needed
to support that model’s credibility is going to change.” 

With validation, “there’s no end
point. It’s not as though some
hand comes down from the sky
and says ‘you’ve got it; you can
rest, relax.’ It’s a constant
process,” Eddy says.

The FDA is working to develop standards. “We want to promote greater
use of computational models. One of the ways we can promote their
use is to come out with clear expectations with respect to validation.
That’s where we are now,” Lochner says.
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The FDA is also developing reference problems to
attempt to benchmark model performance. For exam-
ple, they challenged 28 labs to simulate flow out of a
simple nozzle. The variability they see in the compu-
tations helps the FDA and the researchers understand
how underlying assumptions affect the model’s preci-
sion. Lochner says. “By validating the result for a ref-
erence problem, we can then gain confidence in the
outcomes as more complexity is added to the model.”

Comprehensive Validation
In the wake of the Columbia disaster, NASA de-

veloped a standard (7009) for assessing the credibility
of models and simulations. The goal: to help deci-
sion-makers know if they can trust a model’s predic-
tion when it counts.

“When we talk verification and validation [V&V]
at NASA these days, we’re really pointing to some-
thing that’s a little more globally inclusive, which is
what we call the credibility score,” says DeVon Grif-
fin, PhD, project manager of the Digital Astronaut
Project (DAP), which uses simulations to evaluate
various risks to human health that arise during long-
term space travel. “We always did V&V prior to
7009, but the standard provided a systematic way to
do it. More importantly, the standard provided a ve-

hicle to communicate with managers so they under-
stand the requirement to do V&V.” 

When Myers (who is DAP technical lead) first
joined NASA’s human research program the question
of validation came up immediately, he says, “because
we were getting very grandiose statements about what
people’s models could do.” After Griffin identified
and provided the standard to him, Myers says his re-
action was: “This is like the greatest document I’ve
ever read. It is a culmination of 50-plus years across
NASA of understanding computational modeling.”
But the standard was designed for models in general
and did not address the unique challenges of biomed-
ical models. So Myers and his colleagues set about

adapting the standard for their human research mod-
els. They are now writing up a formal guidebook on
how to apply 7009 to biomedical models. 

7009 is a synthesis of eight factors: verification,
validation (comparison with experimental, simula-
tion, or real world data not used to develop the
model), input pedigree (how good are the input
data), uncertainty quantification (error bars), model
robustness (sensitivity analyses), use history, model-
ing and simulation management, and people qualifi-
cations. The eight categories are scored on a scale of
0 (lowest) to 4 (highest). The scores encompass both
internal and external assessments. Though NASA
currently uses the lowest of the eight scores as the
overall score, NASA’s Human Research Program is
working to establish a process for calculating the
overall score as a weighted average of the eight indi-
vidual scores. The goal isn’t necessarily to achieve a
perfect 4.0, but rather to get as high as is reasonable
for a particular modeling application. For example,
a score of 2 or 3 might be the highest score that can
be reasonably attained for certain biomedical mod-
eling problems but may well be sufficiently high to
meet customer requirements, Griffin says.

“I make it my business to look out into the field to
see what’s happening in V&V and credibility, and I still
haven’t found anything that’s as comprehensive as
7009,” says Lealem Mulugeta, DAP project scientist. 

Most validation efforts only ask: how well does
the model match the validation data? But 7009 ad-
ditionally asks: how good are the data? “I think a
lot of people just make the assumption that just be-
cause you have data, it’s good data,” Mulugeta says.
“We go through the process of actually vetting our
data to make sure that the data are credible and ap-
propriate to use.” 

For example, the Digital Astronaut team created
a model of an astronaut exercising on the Advanced
Resistive Exercise Device (ARED)—the exercise de-
vice that astronauts use on the International Space
Station to prevent muscle and bone loss. To verify
and validate their model, they have to use data on
joint torques and forces that were collected on earth
or from other exercise models. So, when the models

Digital Astronauts. To maintain bone and muscle health while spending time on the
International Space Station, astronauts exercise on the Advanced Resistive Exercise
Device (ARED). Researchers at the Digital Astronaut Project create simulations, such as
those pictured here, to predict the forces that the device places on muscles, bones, and
joints in microgravity. These models and simulations are validated using the 7009 stan-
dard. Courtesy of: NASA Digital Astronaut Project.

“When we talk verification and validation
[V&V] at NASA these days, we’re really
pointing to something that’s a little more
globally inclusive, which is what we call
the credibility score,” says Griffin.



Published by Simbios, the NIH National Center for Physics-Based Simulation of Biological Structures 17

were extended to exercise simulations in micrograv-
ity, this resulted in a relative reduction in the overall
credibility score of the models by about 25 percent.
This lower score tells you that you will need to sup-
plement the simulation results with other evidence
to inform research or decision-making, Mulugeta says.

7009 also weighs people’s qualifications and a
model’s use history—two features that can help in-
crease confidence. “People I work with in the bio-
medical community will say, ‘oh, this model doesn’t
take into account this parameter, so it’s no good to
me,’” Myers says. But then they look at the use his-
tory—what others have used it for—and that “tends
to win people over pretty quickly,” he says.

7009 has helped boost confidence in the Digital
Astronaut Project. The models are now being used for
completely unanticipated problems, sometimes with-
out the modeling team’s knowledge, Mulugeta says. 

Another critical feature of 7009 is that it gives
explicit weight to uncertainty and sensitivity analy-
ses. “These two things are the keystone,” Myers says.
“Everyone worries about validation. But even if you
get your validation close to perfect matching, you’ll
always have a cone of uncertainty that surrounds the
data in your model.” For decision-making, you have
to understand uncertainty and sensitivity, because
these are what indicate how far off the model’s an-
swer could be from the truth. “Uncertainty and sen-
sitivity also imply how the model can be interpreted
when used ‘near’ where it is validated, but not di-
rectly at the state in which it was validated,” Myers
says. This is particularly helpful when decision-
makers have to make a decision involving multiple
scenarios, factors, and mission goals, he says. 

Uncertainty and sensitivity analyses can also clarify
a model’s weaknesses. For example, an allied team
working on the Integrated Medical Model (IMM)
modeled the risk of astronauts getting a hip fracture
in space (a concern because astro-
nauts experience accelerated bone
loss) while wearing a cushioned
spacesuit. Without data on how
much a spacesuit actually reduces
impact from a fall, Myers built his
model using data on the cushion-
ing effect of medical hip protectors
(worn by the elderly to prevent
fracture). But because the commer-
cial systems they tested varied
widely in terms of their abilities to
dissipate and disperse an impact,
the model produced large error bars
around the risk estimates. So,
NASA agreed to pay for a more
appropriate dataset gathered using
actual spacesuit material. This
greatly reduced the uncertainty
and improved the credibility score, Griffin says. 

This is a good example of how, when done cor-
rectly, validation not only builds confidence in a
model, but actually drives scientific research. “Val-
idation tells you where to put your money and helps

you make intelligent decisions about where to drive
the science,” Lyster says.

He adds: “I have been saying that validation is the
organizing principle for scientific computing. A bold

assertion, but I think it is that important. It’s not
about building a perfect model (there isn’t one) but
rather about seeking to quantify how imperfect your
model is. In doing that you also understand more
about the underlying science.” nn

Credibility Revealed. The NASA 7009 standard is a synthesis of eight domains. This radar
plot shows the detailed credibility breakdown for a hypothetical example. The threshold
score for each domain represents the highest score that can reasonably be obtained for a
given model and application—an acknowledgement that a 4.0 is often not possible for
biomedical models. The Credibility Assessment Scale (CAS) score is the actual score ob-
tained for the same model and application; some of the domain scores combine both in-
ternal and external assessments. The overall credibility is defined as the minimum of the
eight domains (here 1.2—for Results Uncertainty), but  NASA’s Human Research Program
is working to establish a process for calculating a weighted overall score based on the rel-
ative importance of each CAS factor for a given application. Courtesy of: Jerry Myers,
Lealem Mulugeta, Marlei Walton, PhD, Integrated Medical Model Project Scientist, and
Emily Nelson, PhD, senior research engineer at the Digital Astronaut Project.

“I have been saying that validation is the organizing
principle for scientific computing,” Lyster says. “A
bold assertion, but I think it is that important. It’s
not about building a perfect model (there isn’t one)
but rather about seeking to quantify how imperfect
your model is.  In doing that you also understand
more about the underlying science.”
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The Payoff From 
National Centers 

The NCBCs were established with an
ambitious goal: to build a national infra-
structure for biomedical computing. Such
a mission requires investment and organ-
ization on a scale that goes beyond what
a small entity can provide, says Ron
Kikinis, PhD, Director of the Surgical
Planning Laboratory, Department of Ra-
diology, Brigham and Women’s Hospital,
Harvard Medical School, and PI for the
National Alliance for Medical Image
Computing (NA-MIC). Kikinis com-
pares the need for large, complex centers
to the need for complex organizations to
build superhighways and bridges. “A do-
it-yourselfer might be able to build a
room partition, but building a six-lane
highway and a bridge across a river is not
really something that’s DIY,” he says. 

Moreover, the success of bigger, more
complex projects must be measured dif-
ferently from smaller ones: a partition
need only stay put and look good; a six-
lane highway and a bridge should carry
traffic and take people somewhere—be-
cause it will be something large numbers
of people rely on.

Thus, whereas some research proj-
ects are rightfully judged by whether
they produce publications in high im-
pact journals, the NCBC-built infra-
structure must be evaluated by whether
it is doing something bigger—creating
computational environments and tools

that could not have been created oth-
erwise; and providing resources re-
searchers and clinicians can—and
do—rely on.  

The NCBCs have done both. They
have accomplished a number of things
that would not be achievable with unco-
ordinated investigator-initiated R01-type
research (the bread-and-butter of NIH re-
search grants), says Isaac Kohane, MD,
PhD, professor of pediatrics at Harvard
Medical School and a principal investi-
gator for the NCBC called i2b2—Infor-
matics for Integrating Biology and the
Bedside. And researchers everywhere are
relying on NCBC resources. 

“Big projects have huge benefits per
dollar added,” says Art Toga, PhD, pro-
fessor of neurology at the University of
California, Los Angeles and PI of the
Center for Computational Biology
(CCB). “With a coordinated effort, peo-
ple complement each other in terms of
specialties and disciplines. And collec-
tively they create a whole that is bigger
than the sum of its parts.” 

Here, we describe some of the major
payoffs of the NIH investment in the
NCBC program. 

• Efficient Production of Hardened,
Professional-Grade Software 
“The NCBCs have produced a bunch

of hardened, high quality software at pro-
fessional or near-professional levels of
quality that wouldn’t exist without the
NCBC program,” says Russ Altman,

. . . . .
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MD, PhD, professor of bioengineering,
genetics, and medicine at Stanford Uni-
versity and a PI for Simbios, the National
Center for Physics-based Simulation of
Biological Structures. “And people all
over are downloading [NCBC software]
and using it.” As a fairly conventional
measure of NCBC success, Altman says,
this one is huge. 

And it’s novel: Academic centers,
built around educating graduate students,
aren’t typically set up to create such pro-
fessional products. “Software typically
doesn’t outlive an R01,” Kohane says.
That’s because there’s an 80/20 rule with
software, he says: 80 percent of the suc-
cess comes with a 20 percent effort, “but
if you want anyone else to use it, you have
to work on the hard side of the rule: use
80 percent effort to achieve the last 20
percent of the work.” 

To take on that hard side of the ef-
fort, the centers had to create a new
kind of institution within academia—
an institution with an executive direc-
tor and professional programming staff.
Once they were up and running, the
professional products started to blossom
and take hold. “Hardened software cre-
ated over tens of man-years of effort has
a much better chance of being taken up
by others,” Kohane says.

By building hardened software tools
at large academic centers, the NCBC
program also enabled economies of scale.
For example, Altman says, a shared
programming staff built Simbios’ two
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main products—OpenSim (biomechani-
cal simulation software) and OpenMM
(software for accelerated molecular me-
chanics simulations on high-performance
computer architectures)—despite the
fact that they operate at very different

scales (musculoskeletal and molecular).
It’s an example of the NCBCs taking ad-
vantage of their size to produce infra-
structure efficiently. 

Moreover, says Lyster, “a lot of the soft-
ware that has been created has been done
in a mechanism where others could con-
tribute to the code and algorithms.” In
this way, work that might have been de-
veloped in a specific biomedical context
is being extended and enhanced to ad-
dress similar or even fairly unrelated ques-
tions in entirely new contexts, he says. 

For example, people who had nothing
to do with the core of i2b2 are now
building extensions, such as for natural
language processing components. And a
Canadian group has developed research
software for adaptive radiation therapy
based on the NA-MIC Kit. Similarly,
some broadly used software packages
have built NCBC products into their
back end. OpenMM, for example, is now
part of the widely used molecular dy-
namics packages CHARMM, TINKER
and GROMACS.

• Well-Established 
Open-Source Software
Repositories and Web Services 
Almost every NCBC created a soft-

ware repository using state-of-the-art soft-
ware management systems, says Peter
Lyster, PhD, program director in the Di-
vision of Biomedical Technology, Bioin-
formatics, and Computational Biology at
the National Institute of General Medical
Sciences. These allow developers around
the world to contribute to the develop-
ment process and include version control
systems to track the provenance of soft-
ware changes. “[This] gave developers the
confidence to know that there’s no mis-
take you can’t undo.” Lyster says. “And
these centers brought that to fruition for
biomedical computing.” 

Software repositories were also an area
where the NCBCs fulfilled their charge of
collaborating with and learning from one
another, Lyster says. When they were first
funded, he says, NA-MIC already had a
highly advanced repository whereas Sim-
bios was starting from scratch. “At work-
ing group meetings,” Lyster says, “we
would say: Take Kikinis’ chief software en-
gineer and have him tell Simbios how he
set that up.” And now Simbios has a
highly professional repository called
Simtk.org that looks and operates a lot
like NA-MIC’s original ITK/VTK reposi-
tory. “That’s an intangible advantage of
these centers: It’s very hard to quantify
that we had working groups to make sure
we all knew how to build professional-
grade software repositories,” Lyster says. 

Open-source repositories are valuable
for three different constituents, Lyster
notes. They facilitate the work of develop-
ers who create projects in the repositories;
they make software freely available to users;
and they empower a large in-between
group of user-developers—people who
want to see what they are getting and then

fiddle with it to create something new. 
In addition, says Lucila Ohno-

Machado, MD, PhD, associate dean for
informatics and professor of medicine at
the University of California, San Diego
and PI for iDASH, the NCBC for integrat-
ing Data for Analysis, Anonymization, and
Sharing, “The NCBC repositories benefit
small and mid-sized institutions that often
would not otherwise have access to bio-
medical data and computational infra-
structure, such as high performance
computing and processes to facilitate the
execution of data use agreements.” 

The NCBCs also created extremely
valuable web services such as the National
Center for Biomedical Ontology (NCBO)
BioPortal. This has become the go-to
place for finding ontologies—sophisti-
cated methods for annotating data to
maintain deep connections that assist in
revealing underlying knowledge. NCBO’s
Bioportal houses more than 350 biomed-
ical ontologies and controlled terminolo-
gies, and its web services receive upwards
of 3 million hits per month.

• A New Way to Locate 
Software Resources
To make it easier for people to reliably

locate, publish, and access both software
and data, the NCBCs created Biositemaps,
a tool that enables contributors to anno-
tate their software and data resources in a
standardized way. The Biositemaps anno-
tations are input into a web-based search
engine called the Resource Discovery Sys-
tem (http://biositemaps.ncbcs.org/rds)—a
joint creation of the NCBCs and diverse
biomedical researchers—in what Lyster
calls a “fascinating volunteer effort.” Here,
a user can, for example, search for “gene
expression” and find 46 relevant tools in-
cluding several from two different NCBCs
and several more hosted at Simtk.org. 

The NCBCs were uniquely positioned

“Surveying our users, many tell me that they’d 
have to abandon their research if our resource 
were to disappear,” Musen says. “They’d have 
the rug pulled out from under them.”
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to create such a tool because they covered
such a diverse set of biocomputational
areas. Despite the system’s breadth of cov-
erage and ease of use, Lyster says, “Getting
widespread adoption of any method for
locating resources is still challenging.” A
number of other options exist and there’s
no community consensus on the best way
to do it, he says. It’s a problem that’s ubiq-
uitous, and not specific to the NCBCs or
Biositemaps, he notes. “It’s just one of the
issues being tackled.”

• Inspiring the Next Generation 
of Computational Biologists
In addition to directly training more

than 400 computational biologists, the
PIs say, the centers have inspired many
others to consider the field as a career
and have built a sense of professional
identification with computational biol-
ogy. Indeed, Kohane says, by funding the
centers, the NIH sent a message to the
quantitative community that, “yes, there
are careers and support to be had in this
area and so it’s okay to invest your life in
this field. At the time, that was not obvi-
ous to computational individuals.” 

As Altman puts it, “The centers have

produced a cadre of ex-students and post-
docs who now have a professional identi-
fication with computational biology.”
This includes many who are now in
young faculty positions and have a re-
search program in academia, he says. Be-
cause of their past ties to the center, many
Simbios postdoc alums still use Simbios

resources, get seed grants from Simbios,
collaborate on Simbios workshops, use
Simtk.org for dissemination, and work
with the Center’s software developers on
enhancements to code they originally de-
veloped while at Simbios. 

Moreover, the Centers’ impact reaches
beyond the funded trainees, Altman notes.
“Simbios didn’t fund that many graduate
students, but students were affiliated with
all of the Simbios projects, so there’s this
deflected involvement. It made grad stu-
dents feel that computational biology was
something they could do.” 

The centers also provide a rare oppor-
tunity for graduate and postdoctoral stu-
dents to quickly turn new ideas into
practical applications. By creating this
setting and allowing trainees to be active
participants, the NCBCs promote inter-
est in industry careers for those who do
not necessarily want to pursue academic
positions, says Ohno-Machado. This ex-
pands the horizons for trainees and fills
an important gap in building capacity in
biomedical computing.

Leslie Derr, PhD, program director
for the NIH Common Fund, agrees that
the training component is one of the

NCBC program’s strengths. She also says
that the training influences not only
computational biologists but experimen-
tal biologists as well, the latter particu-
larly at the NCBC for Multiscale
Analysis of Genomic and Cellular Net-
works (MAGNet) which promotes a
close integration of the two fields. 

The NCBC program also helps
MAGNet attract top-level students, says
Andrea Califano, PhD, professor of
chemical systems biology at Columbia
University and PI for MAGNet. “Before
we had an NCBC, most of the students
we accepted went elsewhere (Harvard,
MIT, Stanford),” he says. “Now they
come here because of the effort to create
an integrative program.” 

• Scientific Productivity
Great publications can happen with

money in the absence of centers, Alt-
man says. But the substantial sums pro-
vided for the NCBCs certainly enabled
significant scientific productivity. All
told, more than 1750 papers mention
the eight NCBC grant numbers, and
35,000 others cite those.

Califano notes that about one-third
of his center’s publications are in jour-
nals with impact level above 15. He also
gives MAGNet credit for specific devel-
opments in biomedicine: “We’ve come
up with a new way of thinking of DNA
as a molecule; we’ve combined struc-
tural and functional biology; we have a
new ability to reprogram cells; the list

goes on. It’s a breadth of discovery that
a center allows you to have rather than
a single success story.”

Kohane says the critical mass of the
NCBC program also accelerated the ar-
rival of solutions, some of which were for-
tuitous rather than planned. For example,
i2b2 never had any ambition to do phar-

For Simbios, Altman says, “the big story is that GROMACS,
TINKER and CHARMM [several of the most widely used
molecular dynamics programs] now have OpenMM as 
their back end because it’s faster and better.” It means that
OpenMM is now at virtually every drug company in the world,
he says. “If that was the only thing Simbios did, it’s huge.”
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macovigilance, but once they had liber-
ated data from archived health records
(with the goal of doing genomic research),
they found that there were some amaz-
ingly low-hanging fruit in this
area. “We could easily see ap-
pallingly obvious signals of drug-
induced adverse events that had
gone unnoticed.” For example,
they mined electronic health
records to confirm the associa-
tion between heart attack deaths
and Vioxx and to identify a sim-
ilar risk from the drug Avandia—
information that is now on
the drug’s warning label. “The NCBCs
experienced lots of such examples where
in addition to the primary objectives, hav-
ing a critical mass of people led to unan-
ticipated progress,” Kohane says. 

As another example, the University
of California organized a system to per-
form federated queries on data derived
from electronic health records at its five
medical centers, which collectively rep-
resent over 11 million patients. The hub

of this system is provided by the iDASH
NCBC coordinated at UCSD. “The sys-
tem is designed to use software developed
by three different NCBCs and lessons
learned from all,” says Ohno-Machado.

It’s biomedical impacts like these that

really made the NCBCs a scientific suc-
cess story, the PIs say. And for that they
credit the driving biological problems
(DBPs) associated with each center. The

DBPs keep the computational scientists
focused on the science but also allow the
centers to create robust software that
can be extended and enhanced to ad-
dress novel questions, Derr says. 

• A Community and a 
Network of Leadership
Before the NCBCs came into exis-

tence, the field of biomedical computing
had pockets of spontaneous collaboration

in particular areas, but
not the strong sense of
community or common
purpose that were en-
abled by a common
fund and complemen-
tary expertise, Altman
says. By empowering a
disparate group of re-
searchers to work to-
gether on a national
infrastructure, he says,
the NIH changed that. 

“The NCBCs cre-
ated a critical mass of computationally
competent individuals working for a
common biomedical purpose,” Kohane
says. “The critical mass raises the overall
tenor and quality of the conversation.
Otherwise everyone is an island.”

And from that community a network
of leadership at the NIH and at NCBC
institutions emerged. “There is now a
functional group that can think about

and respond to issues of biomedical com-
puting at a policy level,” Altman says.
“Before, there was nobody to point to
and say, ‘they can help us.’ And now we
have a group of centers and a variety of
staff who researchers and administrators
can come to for help, advice, or counsel.”

INFRASTRUCTURE SUCCESS:
Galaxies of Reliance

In addition to providing the payoff
one can only get from large centers, the
NCBCs made significant strides toward
creating a national infrastructure for bio-
medical computing, says Mark Musen,
MD, PhD, professor of medicine at
Stanford School of Medicine and PI for
the National Center for Biomedical On-
tology (NCBO). 

It’s an infrastructure that can seem
ephemeral, Kikinis says, because it’s all
“executed as electrons” and virtualized
on computers. But he points to a map of
NA-MIC’s downloads as proof of a real
infrastructure. “This shows for me the
worldwide demand for what we are
doing,” he says. “In a nutshell: We are
addressing somebody’s needs.” 

And that’s true for all of the Centers.
After eight years, 84 hospitals rely on the
i2b2 platform; 22,000 researchers use

“The NCBC infrastructure is always on the web and always virtualized,

and so it’s invisible,” Kikinis says. “If NA-MIC were a supercomputing

center I would show you the room with the big servers. The map of our

many thousands of downloads is the equivalent of that, and it shows, for

me, the worldwide demand for what we’re doing. That’s in a nutshell

what we are accomplishing:  We are addressing somebody’s needs.”

Annual downloads of 3DSlicer by region.
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62,000
downloads of  OpenSim by 9600+ 
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molecular
dynamics
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using Simbios’
OpenMM as their
back-end

22,000
members of  
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11 million
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page views of wiki.na-mic.org,
an open wiki for NA-MIC

2,000 daily downloads of CMake, a 
NA-MIC software process tool

1 nonprofit created 
by NCIBI to guide tranSMART code base and 

community development in collaboration with Pharma

1 million annual web hits
for NCIBI’s web services

1750+ 
papers in Google Scholar cite the
NCBC grant numbers (and 35000+
other papers cite these)

1
Biositemaps

Resource 
a national standard for storing,
representing and curating bio-

medical data, tools, and resources

400+ 
trained grad 
students and 

post-docs 
(and many 

others inspired)

3
million

calls per month 
for NCBO 

web services

350+
biomedical 

ontologies on 
NCBO’s Bioportal

15
billion
annotations 
in NCBO’s 

Resource Index

23,070
Downloads
of MAGNet software tools 
geWorkbench and Aracne

83Collaborative
projects

use MAGNet methods and tools

20
end-to-end 

computational 
pipelines 

implemented 
by CCB

10,000
downloads of CCB’s Pipeline 

Processing Environment
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Simtk.org; 3 million calls a month hit
NCBO’s web services; 83 collaborators
count on MAGNet methods and tools;
and daily, all around the world, upwards of

100 people grab the latest 3D Slicer from
NA-MIC’s web site and use it to analyze
images of patients with a whole range of
diseases. And then there are the thousands
of other downloads that demonstrate
widespread reliance on NCBC tools. A
sampling of these are shown in the
NCBCs by the Numbers chart on page 23. 

A worldwide community depends on
NCBC products. Perhaps this is the
best way to think about the success of
NIH infrastructure grants: While high
impact journal publications count for
something (and the NCBCs have pro-
duced more than their fair share as
mentioned above), perhaps, Altman
says, having a high impact in the world
of clinical and biomedical research is a
better indicator of whether the centers

are fulfilling their mission. 
The piece of infrastructure that can be

enhanced as the centers mature is inter-
operability. At present, Lyster says, “The

centers are like galaxies in that they are
separate and non-overlapping. There are
clumps of foci with some collaborations
in interstellar space.” As galaxies, he says,
“they’ve been stellar,” but the original
centers were hamstrung in this regard be-
cause NIH funding didn’t cover the wa-
terfront: many areas of computational
biology and medicine were not repre-
sented by the eight centers. Even with
the NCBC Collaborations program,
which created at least 33 spokes for the
hubs, opportunities for interoperability
only scratched the surface, Lyster says.
“We don’t know how much further we
could have gotten with interoperability if
we’d covered the waterfront better.” 

The June 2012 Draft Report of the
Data and Informatics Working group of

the Advisory Committee to the Director
of NIH (ACD DIWG) noted that the
problem was structural: “… due to the
limited funding of the NCBC program

and to the size of the overall re-
search area, there is virtually no
overlap of focus among the cur-
rent centers. As a result, there
has been less opportunity for
synergy and complementary ap-
proaches of the type that have
universally benefited the re-
search community in the past.” 

Kikinis says that the centers
naturally evolved into a hub
and spoke model with ecosys-
tems of collaborators. “It’s a bit
different from the way NIH en-
visioned it would be,” he says,
“but the way it evolved, the NIH
got a lot of bang for the buck.”
The centers really provided a lot
of enabling infrastructure for
NIH grantees, he says. “So from
my point of view, the program
accomplished what the RFA
[Request for Applications] in-

tended it to accomplish.”

What Might Have 
Been Done Differently 
• More Centers 

(and/or More Funds)?
When the NIH made the first an-

nouncement of NCBC awards in 2004, it
was clear that some areas would be well
served and others would not, Altman says.
Eight years in, that problem has only grown
worse as the importance of computation
swelled, leaving unserved areas behind. 

As examples, Altman cites genomics
and natural language processing. With
the advent of next-generation sequenc-
ing, genomics data has been confounding

“We never anticipated that there would be so much uptake
nationally of i2b2 software across medical centers,” Kohane says.
“The fact that there was—despite the existence of alternative
commercial offerings—told us in retrospect that there really was a
huge need that required a concerted effort by a group of
biomedically oriented computational researchers.”

Clinical & Translational Science Awards centers (CTSAs) adopting i2b2 platform

CTSAs evaluating i2b2 platform 

Academic medical centers adopting i2b2 platform 

Foreign medical centers adopting i2b2 platform

Map of Centers that have adopted 
the i2b2 platform for clinical research.
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biologists. “People are now scrambling to
handle that output,” Altman says. “A
center dedicated to handling and analyz-
ing genomic data would have been a
great idea.” And as for natural language
processing (NLP), “Guess what,” Altman
says. “Our entire understanding of biol-
ogy and medicine is really contained in
the published literature. And since peo-
ple write in natural language, if you can’t
get computers to turn that information
into databases and computable informa-
tion, you’re falling behind.” Had there
been an NCBC for NLP, he says, data-
base managers wouldn’t be hiring people
to read the literature and distill it for oth-
ers in computable format, which is what
they’re doing now.

The fact that the current NCBCs only
covered a small portion of what is needed
in terms of biomedical computing for the
country is also described in the ACD
DIWG Draft Report. It says: “the small
number of active [NCBCs] has not cov-
ered effectively all relevant areas of need
for biomedical computation or for all of
the active contributing groups.” The re-
port specifically cites the lack of coverage
for a number of grand challenges in bio-
medical computing such as multi-scale
modeling; methods for “active” computa-
tional scientific inquiry; and comprehen-
sive, integrated computational modeling/
statistical/information systems. 

• A Grand DBP
Kohane suggests that the NIH might

have asked centers to participate in one
grand driving biological project. “It’s a
sterile exercise to say ‘let’s share data,’”
he says, “but to say ‘let’s solve this prob-
lem together,’ that’s much more tangi-
ble.” He even has a problem in mind:
obesity. “It would have involved new
ways of imaging, new ways of doing ge-
netics, new ways of integrating different

modalities, possible simulations of the ef-
fect of weight on organs or the human
body,” he says. “It would have gotten in-
teresting conversations going.”

• Dedicated Training Funds
Knowing what they know now, the

NCBC mission could have been well
served by separate training grant funds or
a companion center for training, say
Musen and Altman. “Frankly, had we
had that, we would have had a larger im-
pact,” Musen says. NCBO and other cen-
ters took advantage of existing training
programs and leveraged those. “But if we
really wanted to train the next genera-
tion of computational biologists who
would inherit the work of our existing
centers and carry that on, there could
have been more dedicated training funds
associated with the NCBC program to
assure that,” Musen says. 

Lyster points out that, for the NIH,
it’s all about balancing competing needs.
“I think that given that we started out
with no centers and now have had eight
with hundreds of students graduated, it’s
hard to think that’s not a good thing,”
he says. “In fact, it’s a very positive thing
when a student is forced to confront
both the biological and the computa-
tional question at once.” 

PREPARING THE
CENTERS FOR
SUSTAINABILITY

In their first eight years, the NCBCs
made huge advances, but there is much
more to do. And the needs that motivated
funding for national centers haven’t evap-
orated, Ohno-Machado notes. So what’s
next for the current centers when they hit
their ten-year expiration date? 

As Derr sees it, “These centers have
always been aware that their funding ends
within ten years, so they know that they

need to think about sustainability.” The
center PIs need to think about what ker-
nels they need to sustain into the future
and how those might be funded, she says.
“There are certainly other programs
where they can compete for funds, and
they would certainly be competitive in
applying for them.” Each center also has
an external board helping them think
about sustainability. 

But the question remains: What can
the PIs do to make sure the centers stay
funded? Will there be a new program or
will they cobble together a number of
other approaches? As might be ex-
pected, the various PIs are each taking
their own approaches to the problem.
Califano, for example, plans to apply for
one of the systems biology programs.
And Kohane hopes that i2b2’s open
source repository will be taken over by
the Harvard Medical School’s Center for
Biomedical Informatics. 

Brian Athey, PhD, professor of com-
putational medicine and bioinformatics
at the University of Michigan and PI of
the National Center for Integrative Bio-
medical Informatics (NCIBI) says his
center, which was not renewed in 2010,
has always taken sustainability seriously.
They have already spun off two smaller
efforts—a regional metabolomics center
and a rare disease center—and are now
deeply involved in tranSMART, an in-
ternational effort to create a knowledge
management platform that integrates,
normalizes and aligns genetic and phe-
notypic data primarily for drug discovery.
For financial support, Athey is talking to
foundations, the FDA, the Veteran’s Ad-
ministration, and pharmaceutical com-
panies. “Anybody who wants to sustain
their efforts has to do that. And we are.
We are deeply involved in that.”

Kikinis and Altman point to the P41
Biomedical Technology Research Center

(BTRC) program established by
the former NCRR (National
Center for Research Resources)
as a good conceptual model for
how the NIH might continue to
support the NCBCs or portions
of them. Like NCBCs, BTRCs
support the development of
technologies that are then made
available to the research commu-
nity, but unlike NCBCs, the bi-
ological problems driving BRTC
technologies are funded sepa-
rately. As a model for what’s
possible, the BTRCs have two
additional features that Kikinis

“We have a huge emphasis on
patient privacy,” Ohno-Machado
says. “And you can’t get to a 
grateful patient without that.”
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says would work well for the NCBCs:
They have no set end date and are subject
to review by ad hoc study sections consist-
ing of people with appropriate expertise.
“To create innovative new infrastructure
for biomedical research, the P41s are a
good model,” Kikinis says. “If I were in
charge (which unfortunately, I am not!),
I would treat the existing centers as re-
source centers and then do a limited RFA
to capture a few additional cen-
ters—however many NIH is
willing to fund.” 

Toga says that discussing
whether P41s are a good model
for the NCBCs is putting the
cart before the horse. “The first
decision is whether a national
network of computational biol-
ogy centers is a worthwhile en-
deavor.” Answer that in the
affirmative, he says, and shoe-
horning NCBCs into BTRCs is not the
way to go.

Kohane is hopeful of a solution. “To
the extent each NCBC has friends and
supporters, I think there will be a lot of
creativity both in the public and private
domains to support continued efforts.”

THE POSSIBILITY 
OF A NEW PROGRAM

Toga hopes that before the NIH starts
designing a new program of national cen-
ters, it will conduct a meaningful pro-
grammatic evaluation of the current
centers as well as of its own role in man-
aging the centers. Just as Apple, Inc., re-
views the performance of the iPhone 4S
before designing iPhone 5, Toga says, the
NIH needs to investigate how the re-
search community benefited from the
NCBCs and what it wants from future
centers before designing the next itera-
tion. And because the NCBCs were run
as cooperative agreements, the NIH

needs to turn that same critical eye on it-
self: Did the NIH manage, evaluate, and
review the centers in the best way possi-
ble? Did their management impact the
centers’ success? 

In the meantime, the ACD DIWG
Draft Report is adamant that promoting
further development of biomedical com-
puting in a coordinated manner is critical
to justify large investments in “big data”

collection that will need computational
analyses. Without such computational in-
frastructure, data will remain underutilized
and stored in independent silos rather
than made available as a national re-
source. The DIWG suggests possible next
steps might include creating a larger num-
ber of national centers that are smaller in
size, complexity, and scope. 

BIG VS. SMALL
There is no definitive recipe for success

moving forward. Altman, who is part of
the DIWG, thinks smaller centers could
work. He suggests 20 to 25 centers with
smaller budgets—perhaps two million
dollars per year rather than the current ap-
proximately four million. “With 25 cen-
ters covering biomedicine more broadly,
you’re talking about an infrastructure that
would be really robust,” he says. And there
should be no official end date, he adds. 

In a new model with smaller centers,
Altman says, it’s possible that several

Simbios researchers would seek to create
centers—perhaps a national biome-
chanical simulation center (with ongo-
ing work on OpenSim) and a national
center for molecular modeling (with on-
going work on OpenMM). “The big
centers allowed us to have an umbrella
over these two physical programs,” he
says. “In a new approach, these would be
broken up, but they’d already have a

bridge between them.” 
As for the details of funding

smaller centers, several options
exist. For example, Altman says,
if the centers paid only for their
part of the DBP projects (rather
than for the biomedical research
itself), the centers’ budgets
would drop by about 25 percent.
“We can just say to application
scientists, ‘you already have
money to do x from regular re-

search grants, and we’ll get the money to
do the computational piece.’” 

Kohane and Musen, however, think
big centers are essential. “Big is good be-
cause of critical mass,” Kohane says.
Large centers attract good trainees, he
says. And they empower computational
researchers to produce durable soft-
ware—rather than just answer biologists’
question-of-the-day. If the centers were
smaller, Kohane says, the power relation-
ship between computational scientists
and biologists would return to business-
as-usual. “They’d just want their research
done and not be particularly interested
in us developing our software for others.”

Musen has some other concerns about
reduced resources for smaller centers.
“This recommendation is probably the
most pragmatic thing the advisory com-
mittee to the director could have recom-
mended,” he says, “but it will not in any
way allow the kind of large scale develop-
ment that the current NCBC program

fostered.” With fewer resources,
he says, “We’d be doing more
maintenance and less innova-
tion. That’s obviously not nearly
as exciting for us.” 

COVERING THE
WATERFRONT

If the NIH decides to fund
more and smaller centers, the
question remains: how to ensure
that the centers cover the water-
front? Should the selection be
top-down or bottom-up? Opin-
ions differ. “I think I would target
some areas of need instead of

“The value of the centers is not to
have one success story,” Califano says,
“but to have a major impact in terms
of the ability of other organizations 
to cooperate in areas that would
otherwise be impossible to address.”
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being a free call,” Ohno-Machado says.
“The NIH could identify the needs that
are most important and then highlight
those for reviewers.” 

Toga agrees. “Researchers’ computa-
tional needs might be better met by
identifying where the biggest needs lie
and developing clusters of opportunities
around those, rather than having an
open call,” he says. 

But Altman has a bottom-up view of
the program. “I think you should put as
much of the so-called decision-making
into the hands of the scientists on the
ground who write their best grant appli-
cations and let the chips fall.” There’s
plenty of opportunity for coordination
after the grants come in, he says. He has
another big fear: “Two million dollars and
a ton of mandates. To get the best people,
you need to give them substantial free-
dom to do what they should do.” 

Meanwhile, Califano would ensure
greater connectivity among the centers
by creating two programs—one for clini-
cal informatics and another for computa-
tional and integrative biology. “That
would create a set of constituencies that
speak the same language, where right now
we have cats and dogs in the same room.” 

But Musen disagrees with this di-
chotomy. “Most of the centers are creating
national infrastructure that’s applicable in
a variety of domains,” he says. “I2b2 is very
clinical and MAGnet is very molecular,
but other NCBCs are in the middle. Im-
aging applies to cells and to people;
physical simulation applies to molecules
and muscles; ontology work involves
data analysis from both clinical and life
sciences domains.” 

Where the answer lies—and how
NIH will respond to the DIWG—re-
mains to be seen. 

INCENTIVES FOR
INTEGRATION

More centers might also enable in-
teroperability by covering more of the
waterfront. That hope is specifically
stated in the DIWG Draft Report: “The
NIH should also encourage and enable
more overlap between centers, to facil-
itate collaboration.” 

Califano says that if the NIH launches
a new program and wants more interop-
erability among centers, it needs to have
more thematic overlap between them.
Altman concurs: “One of the lessons
learned is there needs to be a finer sam-
pling of computational space. The gaps
can still be significant but need to be

bridgeable with a reasonable amount of
effort.” He would also encourage the NIH
to provide incentives for integration, so
that it happens spontaneously. “In the
second generation, it might happen, but
it can’t come from top-down rules.” 

KEEP IT GOING
All of the PIs believe the current cen-

ters need to be sustained in some way. “If
they were to terminate abruptly and no
longer get any kind of funding, it would
be a shame because they have been
tremendously productive,” Califano says. 

Musen concurs: “Creating a national

infrastructure is not something that can
be done in 5 or 10 years. That kind of
goal needs a longer time horizon for the
development phase.” 

Kikinis points out that it takes five
years or more for a newly funded NCBC
to become fully functional. Now that the
centers are operating properly and are
past all the startup problems, he says, “In
my opinion it would be a waste of NIH
money to throw away these centers and
start from scratch.” Of course, he ac-

knowledges, there’s always a risk of com-
placency—but that’s the role of appropri-
ate and rigorous review and competitive
renewals. Kikinis admits that he has a
self-serving agenda, “but in all honesty,
it’s the right and proper thing; the centers
haven’t reached the point where they are
non-productive.” In the case of NA-
MIC, he says, “I can say without any
hedging that there’s a lot left to do.”

Kohane says, “Whether it’s us or oth-
ers, we need to have centers.” That’s be-
cause, he says, “Biomedical research is
underpowered with respect to its compu-
tational resources.” Investment in biomed-

ical computing, he says, “will lead to a big
multiple in terms of yield because there is
such a computational desert in terms of the
availability of skillsets and people.” 

There’s a need for centers because data
acquisition is outstripping data analysis,
Toga says. “I have hundreds of collabora-
tors who have no idea what to do with
their data.” Funds for analytic strategies
are needed, and large centers are the best
way to produce them, he says. 

Athey says there’s a role for continued
federal support of NCBC re-
sources. “There’s a growing de-
pendency on these things and the
government’s role in continuing
to sustain them is a legitimate
conversation to have.”

The 10-year sunset might
have been necessary for a
Common Fund program, Alt-
man says, but it’s not right for
science. “Nobody thinks bio-
medical computing is impor-
tant for these 10 years and then
becomes less important. This
program should become part of
the ongoing fabric of the NIH
with competitive renewals.”
Why? “Because the world needs
help—the regular biologists and
scientists with data are the ones
who need the infrastructure
we’re building.”   nn
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Having engineered several scientific software ap-
plications for public consumption, the authors
know from experience that the process offers

unique challenges. Typically, the algorithms being imple-
mented are complex; the process involves numerous de-
velopers with various backgrounds and skill sets; and it
all takes place in a fast-paced environment where new
methods must be prototyped and tested regularly. 

Set Clear Objectives
Our experience suggests that these challenges can be

overcome by establishing a clearly defined set of objectives
for the engineering process. First, there must be an inten-

tion to produce stable software releases for public usage on
a regular or semiregular basis. Second, the process has to
allow software designers to implement new experimental
methods without disrupting the release schedule or intro-
ducing bugs or destabilizing the software. Third, the process
must allow for regular, rigorous validation and testing of
the software to prevent the accidental introduction of bugs
and ensure ongoing confidence in the correctness of the
software under continuous development. And finally, the
process needs to be amenable to involvement by multiple
developers with varying backgrounds and skill sets as well
as different goals and priorities. 

To fulfill these objectives, we recommend and describe
here a development methodology that we’ve found to
work: the iterative model. Here, we also survey some tools
that we’ve found useful for implementing that process. 

Other development methods and tools do exist, but
many people don’t use any process at all. We hope this ar-
ticle will give people some new ideas, and encourage them
to both reflect on their process and research the options. 

Iterate Using Split-stream Engineering
A key step is to split the engineering process into two

concurrent “streams”—stable and unstable. The stable
version of the code forms the basis of regular releases; it
is the trusted code base known to be relatively bug-free.
Each release of the stable version is guided by a develop-

ment plan with well-documented features and goals.
Goals should be narrow enough to be accomplished in the
given timeframe and significant enough to warrant a re-
lease. And the plan should  include sufficient time for
testing to ensure that the release will be stable and trust-
worthy. If a desired feature or goal has unexpected large-
scale consequences or might otherwise hold up release, it
can be dropped or moved to the unstable stream. Other-
wise, we follow the development plan to its completion.

Meanwhile, the unstable version serves as a basis for de-
veloping prototypes and experimental features, as well as for
making large-scale changes.  Occasionally, it may be neces-
sary to “rebase” the unstable branch to the stable branch to

keep them in sync. As various changes mature and are
shown to be correct through rigorous validation and testing,
developers can create a copy of the stable branch to work
on as an extra unstable branch.  Once the feature is solidi-
fied, tested, and stable, developers can merge it into the sta-
ble stream as part of a future release. If conflicts develop
between the stable and unstable streams, developers resolve
them in the unstable branch. This is a continual process. 

Use Appropriate Tools
Hosting and release platforms such as Simtk.org,

SourceForge or GitHub can be used to facilitate develop-
ment and to disseminate releases to the public. The appro-
priate platform should be chosen based on what team
members are familiar with as well as available functionality. 

Use of a versioning and revision control system  (RCS,
e.g., Subversion, Git or Mercurial) is essential as it tracks
the history of a project’s source code. As programmers
reach various milestones, they can commit code to the
repository, which takes a snapshot of the current state of
the source code and determines line-by-line what changes
from the previous version have occurred. Such systems
also allow programmers to develop features independently
from the work of other programmers, synchronize any
changes, and resolve conflicts. 

RCS systems tend to follow one of two models: (1) cen-
tralized, where all commits immediately appear in a cen-
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tralized repository and (2) decen-
tralized, where all commits are
made to a local copy and are later
copied to the centralized reposi-
tory at the programmer’s conven-
ience. The decision of which
RCS to use can be based on a

balance among such factors as developer comfort, prefer-
ence for centralized or decentralized repositories, and
availability of support by the chosen hosting platform.  

Test and Validate
In many scientific software domains, software testing

and validation are also crucial. Testing refers to automat-
ically identifying any changes in output. Validation is the
process of determining if an output is correct, mathemat-
ically or scientifically speaking. Here, we do not further
discuss approaches to validation because they typically
depend on the specific scientific question being addressed.
However, the details of testing merit some discussion.

Complex scientific algorithms are not only sensitive
to small bugs but also susceptible to their introduction.
Testing can serve as an “early warning” system for acci-
dental bugs, help localize bugs to a specific function, and
give developers a chance to think through the correct-
ness of any changes. 

Testing can be done at two levels: unit and system.  Unit
testing assesses an individual unit of code (such as a func-
tion or class) by providing a bit of input data and com-
paring the output against expectations. Unit tests are
often written in conjunction with the code being tested
and they are used early and often to check code as it’s
being written. Because they test parts independently, the
developer should design the software as independent
modules and reduce concrete dependencies using tech-
niques such as abstract interfaces. In one approach, test-
driven development (TDD), the programmer actually
writes the unit tests before writing the implementation.
Unit testing can often be automated and made easier
through frameworks such as CppUnit (C++), JUnit
(Java), unittest (Python), or FUnit or FRUIT (Fortran).

System-level tests check the integrity of the entire
software system. These do not help localize bugs but can
be used to determine proper integration of components,
ensure dynamical run-time behavior has not changed, and
enable comparisons with other software packages. More-
over, they are capable of testing higher-level results such
as an entire simulation.

Document Assumptions
Developer documentation (which is distinct from user

documentation) is another key part of the development
process. It can help prevent mistakes by keeping everyone
aware of assumptions and expectations. Basic forms of doc-
umentation include the use of descriptive variable names;
clearly identified units; and other commentary. Document

generators such as Doxygen (C++, others), Javadoc (Java),
or Pydoc and Sphinx (Python), can automatically compile
all API documentation assuming properly formatted com-
ments. A more advanced documentation method, the de-
sign by contract methodology, provides a mechanism for
specifying formal requirements for input (pre-conditions),
guarantees for output (post-conditions), and maintained
properties (class invariants) and can be enforced program-
matically through language features such as assertions
(which are manually specified by the programmer) and in
more automated ways through preprocessors such as GNU
Nana (C/C++) and Contract4J (Java).

Producing high quality scientific software starts with
developing a culture or mindset that emphasizes quality.
Here, we’ve discussed how requirements and a clear
process can make a difference; described several types of
helpful tools; and offered suggestions for good practices.
We hope that these software engineering principles are
helpful to others facing the challenges of preparing sci-
entific software for public use. nn
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W hen a large research project
generates lots of data over a
long time, that data can tell

many different stories. Such was the case
when the ENCODE (Encyclopedia of
DNA Elements) project geared up to
publish its first wave of results. “They had
to decide which stories were the most
prominent and most complete to be told
within the confines of traditional re-

search papers,” says Magdalena Skipper,
the Nature editor who worked with the
ENCODE project’s authors. 

Unfortunately, by choosing a set num-
ber of topics, she says, “other stories be-
came fragmented and told across multiple
papers.” To address that problem, the re-
searchers created a set of “threads” that
pull together 13 of these otherwise frag-
mented stories. They then manually col-

lected the relevant portions of each
thread—a process akin to highlighting the
portions (including figures and tables) of
30 papers that relate to a specific topic. So,
for example, the tale of machine learning
approaches to genomics became one
thread; and three-dimensional connec-
tions across the genome became another. 

The threads don’t have a classic iden-
tity. “They aren’t indexed in PubMed.”
Skipper says. But they provide a tool for
exploring the published information
through a different lens. “In an ideal
world,” Skipper says, “one would be able
to generate these threads automatically
on any topic.” But current text-mining
tools lag a bit—they can’t, for example,
adequately extract relevant figures or
other display items. 

To maximize the utility of a group of re-
lated papers, Skipper says she hopes Nature
will do something like threads again. “Re-
searchers appreciate it—it’s visually ap-
pealing and the content is useful.”  nn
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To visualize the ENCODE Threads, Nature cre-
ated this graphic. When readers click on one
of the thirteen threads, the topic pops up
with lines connecting the topic to the specific
ENCODE papers that were extracted to form
the thread. “The graphic is a guide to explain
the relationship between the papers and the
threads,” Skipper says. Copyright © 2012 Na-
ture Publishing Group, used with permission.
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