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this national infrastructure is being created from the
CTSA—an aggregation of Biomedical Informatics
Programs of the National Center for Research Resources
(NCRR) Roadmap initiative. This more than $500 mil-
lion per year program currently supports 38 sites  and is
projected to go to 60 sites within 2 years. This Roadmap
program is intended to truly transform the way academic
health centers do clinical and translational research.
Interestingly, like the Big P of the NCBCs, the CTSA has
its “Informatics Consortium.” Its first annual All Hands
Meeting is scheduled for October 16, 2008, at NIH with
more than 180 participants expected to attend.

To build a national biomedical computation infra-
structure, it is also important to make good use of exist-
ing computational resources. To that end, three NCBCs
(CCB, NCBO, and NCIBI) have recently been award-
ed administrative supplements by NIGMS to collabora-
tively support the creation of a “Biositemaps” protocol
to address the issues of (i) locating, (ii) querying, (iii)
traversing, (iv) composing or combining, and (v) min-
ing biomedical computing and computational biology
software tools and information resources on the
Internet. This is a joint project of the “Yellow
Pages/Resourceome” and Software Ontologies Working
Groups, part of the NCBC Software and Data
Interchange Working Group (SDWIG). This effort
builds from the earlier, productive NCBC collaboration
that created the “iTools” resource to organize and make
web-accessible the NCBC software tools and data
resources (published in PLoS ONE in 2008).

The CTSA Informatics Inventory and Resources
Workgroup (IRWG) and the Biomedical Informatics
Programs at the University of Pittsburgh Medical
Center and the University of Michigan have also
received an Administrative Supplement from NCRR to
use the iTools and Biositemaps capabilities to organize
the growing list of tools and data emanating from other
CTSA working groups. This will lead to more effective
and efficient communications for the CTSA
Consortium overall, as well as produce useful tools for
use at local CTSA sites.

These highly visible and potentially high-impact
national collaborations bode well for the eventual ful-
fillment of one of the NIH Roadmap’s promise:  to
develop and sustain the nation’s capacity to perform bio-
medical research in the digital age. ■■

GuestEditorial
g u e s t  e d i t o r i a l

BY BRIAN ATHEY, PhD

F or major team-based Roadmap initiatives, National
Institutes of Health (NIH) officials expect grantees
to look beyond the focus of their individual proj-

ects to build bridges not only among funded projects but
also between themselves and the research community as a
whole.  These collaborations are an important part of cre-
ating a national biomedical computing infrastructure.
And the National Centers for Biomedical Computing
(NCBCs) and the Clinical and Translational Sciences
Award Informatics programs (CTSA Informatics) are
stepping up to the plate.

In August 2008, the leadership of the NCBCs held a
third successful “all hands meeting” in Bethesda, MD.  It
is a tremendous credit to the vision of the NCBC
Roadmap initiative (as specified by the Botstein-Smarr
Report to the Biomedical Information Science
Technology Initiative) that each of the Centers is now
launched and productive. Direct feedback from NIH
Director Elias Zerhouni and National Institute of General
Medical Sciences Director Jeremy Berg points to the
NCBC program as a “crown jewel of the NIH Roadmap.”

A major highlight of the all hands meeting was the
talk by Simbios co-principal investigator Russ Altman,
who described the many collaborative activities of the
NCBC “Big P” (where P=“Program”). To the NIH, these
additional activities constitute evidence that the NCBCs
are helping to create a “national biomedical computing
infrastructure.”

Meanwhile, another complementary component of

DETAILS

National Centers for Biomedical Computing:
www.ncbcs.org 

Clinical and Translational Science Award:
(http://www.ctsaweb.org/) 

Brian Athey, PhD is an associate professor of bio-
medical informatics at the University of Michigan
and director of the Michigan Center for Biological
Information. In addition, he is principal investigator
of the National Center for Integrative Biomedical
Informatics, which is one of the NCBCs, and co-chair
for the CTSA Informatics Consortium.

Fulfilling the Promise of the NIH Roadmap
Through National Engagement by the

National Centers for Biomedical
Computing (NCBC) and the CTSA Informatics 
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NewsBytes
A Viral Closeup

The phi29 bacteriophage is an effi-
cient infection machine—it fires its
genome into a host bacterium, hijacks
the host’s cellular equipment, and assem-
bles an army of new viruses for its next
mission. For the first time, scientists have
produced sub-nanometer resolution pic-
tures of the virus, revealing some striking
new details—including an unexpectedly
tight twist of DNA suggestive of how the
virus springs into action. The results
appear in the June issue of Structure.

“We use structure as a way to try and

understand how viruses function,” says
Timothy Baker, PhD, professor of
chemistry/biochemistry and molecular
biology at the University of California,
San Diego who led the collaboration
between UCSD and the University of
Minnesota. “The more we can learn
from structure, the better we’ll under-
stand the whole infection process and
perhaps ways to circumvent it.”

Using computer reconstruction, Baker
and his colleagues aligned roughly 12,000
electron microscope images of frozen
viral particles at different angles and
fused them into a 3-D picture of the
assembled phage—including its head
(either full of DNA or empty), its tail,
and the head-tail connector. “You have
to go through an iterative process of look-
ing at all 12,000 images with respect to a
model which is a cube of data that’s 900
pixels on a side. So the computational
challenges are pretty severe,” Baker says.
“This couldn’t have been done even a

few years ago, not without really dedicat-
ed supercomputer power.” 

The resolution achieved—8
Angstroms—was two-fold higher than
ever before for an asymmetric virus (where
researchers cannot exploit symmetry to
reduce complexity). At this resolution,
individual alpha helices (in the proteins
that make up the head-tail connector
piece of the virus) become distinguishable
as tube-like structures. Baker’s team com-
pared their picture of the viral head-tail
connector with atomic-level models of
this structure that were available from X-
ray crystallography, and showed that the
alpha helices matched up. “It helped us
verify that what we were seeing in our
map was in fact believable,” he says. 

Their reconstruction revealed a sur-
prise: the DNA in the tail of the phage
bends into a tight coil—a toroid, or
donut-like, shape. DNA isn’t expected
to bend so tightly over short distances.
“It turns out if you talk to people who

know something about
DNA, they say it is
possible,” Baker says.
“They just haven’t
seen it in a biological
system like this
before.” 

“In terms of shock
value, that was amaz-
ing,” comments John
E. Johnson, PhD, pro-
fessor of molecular
biology at The Scripps
Research Institute who
occasionally collabo-
rates with Baker. The
bacteriophage must
pack its DNA into a
tiny space against
tremendous forces, and
Johnson speculates that
the toroid may act as a
plug to hold the DNA
inside until it’s ready to

be injected into the host. “It’s so sugges-
tive when you look at how this thing is
wound up in this little cavity,” he says. 

Prior to this work, Johnson’s team
had published one of the highest resolu-
tion reconstructions of an asymmetric
virus to date (17 Angstroms—as report-

A 3D rendition of the phi29 bacteriophage particle recon-
structed to 7.8 Angstrom resolution from cryo-electron
micrographs reveals a tightly wound donut-shaped toroid of
DNA (red section inside of dotted box) wedged in the tail of
the phage.  Reprinted from Duda, RL, and Conway, JF,
Asymmetric EM Reveals New Twists in Phage, Structure 16
(2008), with permission from Elsevier.
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ed in Science in 2006). “We saw a lot of
interesting things,” he says. “But this
paper has pushed it to a higher level.”
—By Kristin Sainani, PhD

An In Silico
Time Machine

In biology, many exciting events hap-
pen on the millisecond timescale—pro-
teins fold, channels open and close, and
enzymes act on their substrates. Atomic-
level simulations of this duration are
beyond the reach of current technology,
but a new specialized computer called
Anton—described in the July 2008 issue
of Communications of the ACM—may
change all this. Slated to be operational
by the end of the year, the machine is
projected to speed up molecular dynam-
ics simulations 100-fold. 

The basic goal is to be able to visual-
ize, at the atomic level of detail, an
entire biological trajectory, such as an
anti-cancer drug (like Gleevec®) inac-
tivating its target enzyme, says David E.
Shaw, PhD, chief scientist of D.E. Shaw
Research, the independent research 
laboratory that is creating Anton, and
a senior research fellow at the Center
for Computational Biology and
Bioinformatics at Columbia University.
Because it provides what might be
thought of as a computational micro-
scope, Anton is named after 17th centu-
ry scientist Anton van Leeuwenhoek,
known as the father of microscopy.  

“Our machine only does molecular

dynamics. It does it blindingly fast, but
it’s pretty brittle and isn’t designed to do
anything else,” Shaw explains. In molec-
ular dynamics simulations, time is bro-
ken into discrete steps, each a few fem-
toseconds (10-15 of a second) of simulated
time. At each step, the computer calcu-
lates the force exerted on each atom in
the system (typically 25,000 to 100,000
atoms) and updates its position and
velocity. The various time steps cannot

be executed simultaneously since each is
dependent on the previous, but Anton
uses 512 highly specialized chips working
in parallel to speed up the massive calcu-
lations within each step. 

“They’ve done a beautiful job, and
there are a lot of intellectually interesting
aspects to the approaches they’ve taken,”

says Vijay Pande, PhD, associate profes-
sor of chemistry at Stanford University
and director of the protein folding distrib-
uted-computing project Folding@home.
Still, Pande advocates a different
approach. Rather than simulating one
long trajectory, which could take a mil-
lion days on one general purpose comput-
er, he simulates a large number of shorter
trajectories and then merges them togeth-
er with a clever algorithm. This may take

just 10 days on 100,000 computers. “The
approach not only gives access to long
timescales, but having many trajectories
allows you to do statistical testing, which
you cannot do on a single trajectory,”
Pande says. “Most of the questions that
people in the field are interested in are
inherently statistical questions,” he says. 

But according to Shaw, “The two
approaches are very complementary
and I think they may turn out to be use-
ful for solving very different types of
problems.” Combining many smaller
trajectories is more efficient, he says.
“But there are some cases in which
you’d like to have confidence that what
you’re seeing is one continuous, unbi-
ased, physically realistic trajectory.”

Though other groups have previous-

Anton is designed for a specific task:  molecular dynamics simulations. Here is one of the first
Anton application-specific integrated circuits (ASIC), which arrived in January 2008.  Reprinted
from Anton, a special-purpose machine for molecular dynamics simulation, David E. Shaw, et al.,
Communications of the ACM 51:91-97 (2008) with permission from the ACM.

Anton, slated to be operational by the end of the year, is projected
to speed up molecular dynamics simulations 100-fold. 
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ly attempted to develop specialized
computers for molecular dynamics sim-
ulations, most efforts have failed to stay
ahead of Moore’s Law, which says that
the speed of general purpose computers
doubles every 18 months.

“The Shaw group’s effort has been one
of the most exciting examples of trying to
do that to date,” says Pande. “Since the
machine isn’t out yet, it’s too early to say
whether they have succeeded or not. But
they’ve got a reasonable shot.” 
—By Kristin Sainani, PhD

Bacteria Prepare
Themselves 

When we see dark clouds, we might
grab an umbrella before heading out-
side.  We’ve long believed that showing
such foresight requires a brain and
complex information-processing capa-
bility. It turns out, though, that even
microbes, which do not have brains or
a nervous system, can learn to use cues
from their surroundings to anticipate
future events, according to a new
research study based on both experi-
mental and computational techniques. 

“What we have shown is that
microbes too have the intrinsic capaci-
ty for predictive behavior,” says Saeed
Tavazoie, PhD, an associate professor
of molecular biology at Princeton
University who published the study in

the June 6 issue of Science with co-
authors and Princeton colleagues Ilias
Tagkopoulos, PhD and Yir-Chung Liu,
PhD. “Indeed, this may be essential for
their survival.” The findings could
have implications for infectious disease
treatment and microbial applications
in industry.

Escherichia coli (E. coli) normally
adjusts its breathing to match the
ambient oxygen level: In the open, the
bacterium breathes oxygen; inside an
animal's oxygen-poor gut, it doesn't.
According to prevailing notions, this
switch from aerobic to anaerobic respi-
ration is a purely reflexive response to
the drop in oxygen level. 

But Tavazoie and his colleagues sus-
pected the microbes wouldn’t survive if
they responded only when they were
already oxygen-deprived. They pro-
posed that, instead, E. coli senses
warmth when it enters an animal's
mouth, and uses this as an early cue to
switch to anaerobic breathing. In labo-
ratory experiments, the researchers
found this to be the case: When the
temperature rises, E. coli turns off many

genes needed for aerobic respiration.
“By anticipating the subsequent lack of
oxygen, it improves its chances of sur-
vival,” says Tavazoie. “This is clearly
predictive behavior.” Moreover, when
the researchers caused oxygen levels to
rise shortly after an increase in temper-
ature, E. coli evolved (over about 100
generations) to disregard warmth as a
cue. “It rewires itself to forget the old
association,” says Tavazoie. 

To explain how a microbe could
evolve such complex behavior, the
researchers devised a computational
framework that mimics the essential
aspects of microbe ecology. Modeled as
a network of genes and proteins, a vir-
tual bug in this virtual ecology lives and
breeds when it has enough energy, or
dies when it runs out of it. To gain ener-
gy, it has to be ready to eat, biochemi-
cally speaking, when “food” is available.
But if it gets ready to eat and no food
arrives, it wastes precious energy.  

To help the virtual bugs, the
researchers gave them different patterns
of cues to indicate that food is coming.
In one experiment, the bugs were fed

Predictive behavior of a simulated microbe species at different points
along an evolutionary trajectory. The resource (food) is always given
shortly after giving either, but not both, of the two signals (environ-
mental cues). Initially (subplot 1) the response seems random relative
to the food and cues. Eventually, however (subplot 4), guided by the

pattern of cues, the microbe evolves its feeding response to make it
synchronize with the food availability. Courtesy of Ilias Tagkopoulos.
Reprinted from the supporting online material for Predictive Behavior
Within Microbial Genetic Networks, Ilias Tagkopoulis, et al., Science
320, 1313 (2008).

“What we have shown is that microbes
too have the intrinsic capacity for 

predictive behavior,” says Saeed Tavazoie.
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of medical informatics at Erasmus
University, both in the Netherlands. 

“WikiProteins is more than just a
Wiki; it has the whole knowledge space
hovering over it,” Mons says. Using
text mining, WikiProteins imported
structured content (adhering to com-
puter-readable, controlled vocabular-
ies) on 1.2 million unique biomedical
concepts from existing databases, such
as PubMed, Swiss-Prot, and Gene
Ontology. The system also created pro-
files for about 1.6 million authors in
PubMed, who are expected to serve as
the knowledge guardians. “If you have
1.6 million people in PubMed publish-
ing today and you have 1.2 million
concepts in the Wiki, then roughly
everyone could take one concept and
make sure the page on that concept is
correct. That’s doable,” Mons says.

Gene Wiki operates within Wikipedia
and, in contrast to WikiProteins, empha-
sizes unstructured content, such as free
text and images, “more akin to a review
article,” says Andrew Su, PhD, of the
Genomics Institute of the Novartis
Research Foundation, who leads the
effort. Using data from Entrez Gene, the
system added or amended about 9000
Wikipedia “stub” entries on human
genes, which anyone can edit. “Being
part of the larger Wikipedia community
is certainly an advantage of this system.
The people there are experts at welcom-
ing newcomers, fighting vandalism, and
formatting things correctly,” Su says. 

Su and Mons have plans to collabo-
rate. WikiProtein and Gene Wiki entries
will be linked through a common “entry
page” (likely hosted in WikiProteins),

shortly after they got one of two differ-
ent cues—but not if they got both cues
at once. “To predict mealtimes accu-
rately in this case, the microbes would
have to solve a complex logic problem,”
says Tagkopoulos, an electrical engineer
associated with the Lewis Sigler
Institute for Integrative Genomics. Sure
enough, after a few thousand genera-
tions, a gastronomically savvy—and
ecologically fit—strain of microbe
emerged. The feeding response of such a
fit bug (see figure) illustrates how inter-
acting genes and proteins could evolve
complex behavior. 

According to David Reiss, PhD, a
computational biologist at the Institute
for Systems Biology in Seattle, the
researchers' computational framework
is notable for incorporating more bio-
logical mechanisms than prior models
did. He cautions, however, that even
this model oversimplifies the behavior
of real microbes.  Nevertheless, Reiss
says, the study is interesting and novel
for showing that anticipatory behavior
is not restricted to higher systems with
decision-making capability.
—By Chandra Shekhar

Molecular Biology 
Wikis Launched

If you build it, will they come? That’s
the question on everyone’s mind after
the launch of two pioneering initiatives
in community annotation: WikiProteins
and Gene Wiki, announced, respective-
ly, in the May 28 issue of Genome Biology
and the July 8 issue of PLoS Biology. The
efforts create a central repository of
information on genes and proteins and
call on the scientific community to keep
it up-to-date and accurate. 

“There’s no way we can handle the
current growth of knowledge with cen-
tral annotation only,” says Barend Mons,
PhD, who leads the WikiProteins effort.
“I’m a big fan of the authoritative data-
bases like UniProt, but we have to
make them grow faster. So what we
need is a shell around them of commu-
nity annotation.” Mons is associate
professor of human genetics at the
Leiden University Medical Centre and

making it easy to navi-
gate between the sys-
tems. “This will allow
users to take advantage
of whichever system
they feel comfortable
with,” Su says. 

Getting bench sci-
entists to participate
will be a challenge,
Mons says, but he
believes the incen-
tives are high. The
WikiProteins system

mines PubMed for new information
daily, finds new explicit and implicit
associations—such as predicting pro-
tein-protein interactions—and alerts
scientists of all edits and updates to
concepts in their purview. “I hope it
becomes a daily part of their knowledge

discovery process,” Mons says. Since its
launch, WikiProteins has also received
requests to enable users to enter data as
unstructured, free text, which should
lower the barrier to participation. 

Another factor that may boost par-
ticipation is the development of ways
to trace authorship for each entry, so
that authors can get credit for their
work and readers can assess the reliabil-
ity of content. A recent proof of this
possibility was demonstrated in

Each unique biomedical concept in WikiProteins is attached to a
“knowlet” or concept cloud, illustrated here. A concept (depict-
ed as a solid blue ball) is associated with other concepts through
facts (established relationships, depicted as solid green balls), co-
occurrences (co-occurrences in sentences in PubMed, depicted as
green rings), or implicit associations (overlapping concepts in
their Knowlets, depicted as yellow rings). Reprinted from
Barend Mons, et al., Calling on a million minds for community
annotation in WikiProteins, in Genome Biology 2008, 9:R89. 

“I’m a big fan of the 
authoritative databases

like UniProt, but we
have to make them

grow faster. So what
we need is a shell

around them of 
community annotation,”

says Barend Mons.
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“WikiGenes,” (not to be confused with
the GeneWiki!) a project described in
Nature Genetics in September 2008.
WikiGenes was developed by Robert
Hoffmann, PhD, at the Massachusetts
Institute of Technology. It’s part of his
Mememoir project, which has, he says,
“the ambitious goal to create a free col-
laborative knowledge base for all of sci-
ence—where authorship matters.”

Though the creators of the various
Wikis have not yet formally quantified
participation, Su says that there’s been
an uptick in Gene Wiki activity since
the PLoS Biology paper came out. “It
gives me hope that the system is right
and that the framework is there, so if we
are tapping into a desire in the commu-
nity to share knowledge and harness
community intelligence, then we have
the structure to do it now.”

More information is available at:
www.wikiprofessional.org (WikiProteins)
and http://en.wikipedia.org/wiki/Portal:
Gene_Wiki (Gene Wiki).
—By Kristin Sainani, PhD

Predicting Brain
Response To Nouns

Thinking of a noun—a peach,
train, or bird, for example—activates
specific parts of the brain.  Now, scien-
tists have trained a computer to predict
such activation patterns. The achieve-
ment represents a step toward under-
standing language processing and
could one day contribute to treatments
for cognitive decline. 

“If we had a better model of how the

brain represents language, we’d be bet-
ter able to make sense of disorders like
dementia,” says Tom Mitchell, PhD, a
professor of computer science at
Carnegie Mellon in Pittsburgh and lead
author of the research published in the

May 30 issue of Science. 
Functional magnetic resonance

imaging, or fMRI, registers changes in
blood flow within peoples’ brains as
they are asked to do a specific task—

such as thinking of a specific word.
Since 2000, Mitchell and Marcel Just,
PhD, professor of psychology at
Carnegie Mellon and co-director of
the Pittsburgh Brain Imaging Research
Center have collaborated to train a

computer to produce fMRI images like
those generated by humans. The train-
ing process uses two sources of data:
fMRI images collected from nine peo-
ple viewing 60 nouns; and a database

(derived from a trillion words of text
from the Internet) describing pairings
of nouns and the verbs that accompa-
ny them most frequently in written
text. Noun-verb pairings are the basis
of language, as anyone knows who has

Brain activation patterns in response to nouns: The computer algorithm predicted the
response to newly encountered words with 77% accuracy. Courtesy of Tom Mitchell.
From Mitchell, TM, et al., Predicting Human Brain Activity Associated with the Meanings
of Nouns, Science, 320 (5880): 1191 (2008 ) DOI: 10.1126/science.1152876. Reprinted with
permission from AAAS.

The computer model was able to produce a pattern of brain 
activity in response to words it had never before 

encountered with greater than 70 percent accuracy.
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raised a toddler, Mitchell notes.
Once trained, the computer model

was able to produce a pattern of brain
activity in response to words it had
never before encountered with greater
than 70 percent accuracy.  “We now
have a model that is capable of extrap-
olating beyond the data on which it
was trained,” Mitchell says. For exam-
ple, after training, the model could pre-
dict that a food noun would provoke
activity in the area of the brain mediat-
ing eating sensations, the so called gus-
tatory cortex: “peach,” for example, fre-
quently occurs in English paired with
the verb “eat.” Similarly, a noun will
activate motor areas of the brain to the
degree that it co-occurs with the verb,
“push,” or cortical regions related to
body motion to the degree that it co-
occurs with “run.” 

Harvard cognitive psychologist
Alfonso Caramazza, PhD, cautions
that the model may be imperfect. He
says it fails to capture an area of the
brain that is damaged in semantic
dementia, one form of brain damage in
which people cannot understand the
meaning of words. “Our understanding
of concepts, and representation of this
information in the brain, is not only
sensory-motor,” Caramazza says.
Evolution likely has sculpted our
brains to react appropriately to inani-
mate things that may be either poten-
tially dangerous or pleasurable.
Emotional areas of the brain respond
differently to a hammer than to a dog,
he points out. 

“These are deep questions to which
no one has the answers, so one should
be cautious,” Caramazza says, adding, “I
think (the Pittsburgh team) would
agree, these tools are in their infancy
and we are only beginning to know
how to use them.”
—By Roberta Friedman, PhD

A Finer
Fat Model

When it comes to heart disease
risk, “bad” and “good” cholesterol—
also known as low density lipoproteins
[LDL] and high density lipoproteins

[HDL]—do not tell the whole story.
These particles that carry fat through
the blood can be broadly classified
based on their density, but they actu-
ally vary widely in their composition
and clinical risk. A new computation-
al model, described in the May issue of
PLoS Computational Biology, allows
scientists to see this diversity for the
first time, providing additional infor-
mation to aid in diagnoses and treat-
ment planning. 

“We look at lipoprotein profiles in
greater detail in order to find possibly

relevant abnormalities in the lipid val-
ues that would remain undetected by
looking only at LDL or HDL,” says lead
author Katrin Hübner, PhD, a post-
doctoral research fellow at the
University of Heidelberg who complet-
ed much of the work while a PhD stu-
dent at the Charité University hospital
in Berlin. The model has several poten-
tial clinical applications. 

Unlike previous models of blood
lipid metabolism, which considered
just four lipoprotein density classes
(very low, low, intermediate, and

high), Hübner and colleagues modeled
the whole spectrum of individual
lipoproteins—by combining any of
three proteins (apoB, apoA, and
other) and three fat molecules (choles-
terol, triglycerides, and phospolipids)
in varying amounts. The particles
undergo 20 reactions, including parti-
cle birth from the liver, particle death
from cell uptake, and transfer of fats
between particles. 

In initial simulations, Hübner and
colleagues generated virtual blood
lipoprotein profiles that closely
matched experimental values from
healthy individuals. Then they
tweaked the parameters in their model
to mimic three known lipid disorders.
For example, to simulate familial
hypercholesterolemia, which involves
a malfunctioning LDL receptor, they
decreased the rate of cellular uptake of
apoB-containing particles (which are
recognized by the receptor) by 75 per-
cent. The simulations accurately
reproduced the characteristic lipid
profiles of the three diseases. 

The model could help pinpoint the
underlying molecular defect in patients
with abnormal lipid profiles of unknown
origin, Hübner says. It could also be used
to predict the impact of specific treat-
ments, such as drugs or lifestyle changes,
on a patient’s lipid profile. 

“This work addresses an important
issue in modeling lipoprotein metabo-
lism, which is the heterogeneity of
lipoproteins,” says Brendan O’Malley,
PhD, Project Leader of Systems Biology
of Lipid Metabolism at Unilever
Corporate Research in the United
Kingdom, who also works on lipoprotein
modeling (using a different approach). 

“This is one of the first works in this
area, so there’s still quite a lot of work
to be done,” he says. For example, the
model needs to be further validated
with high quality patient data. But, in
the future, it could lead to improved
diagnostics and personalized treatments
for cardiovascular disease, he adds. 

“It’s not ready for the clinic yet,”
Hübner agrees. “But we’ve made a
promising first step.”
—By Kristin Sainani, PhD ■■
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THE Golden Age OF

PUBLIC
DATABASES: 
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Speeding 
Biomedical Discovery

By Regina Nuzzo, PhD

T he setting: a scientific conference in January 2008. The

speaker, Bruce Ponder, MD, PhD, an oncology professor

at Cambridge University, is describing a previously

unknown link between a particular gene (FGFR2) and breast 

cancer. A prominent researcher in the audience, the late 

Judah Folkman, MD, raises his hand to propose a hunch: could

another gene (for endostatin) in the same network also be 

related to breast cancer? The speaker doesn’t know.

After the session, another audience member, Kenneth Buetow, PhD,

pops the question into a public database, the National Cancer

Institute’s Cancer Biomedical Informatics Grid (caBIG;

http://cabig.nci.nih.gov/), a web accessible collection of 

interoperable software tools and data sources. Voilá! The 

information highway kicks out a preliminary research result: 

variants of the endostatin gene are associated with breast cancer

and can be protective against the disease.  >
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as Science and Nature
are mandating that cer-
tain data be placed in
public repositories.

The Molecular Biology
Database Collection, maintained
by the journal Nucleic Acids Research,
this year lists 1,078 databases in its col-
lection—110 more than appeared in
2007. NIH’s National Center for
Biotechnology Information (NCBI)
maintains more than 40 of these data-
bases, storing molecular, genomic, and
scientific literature data. These databas-
es alone see roughly 2 million visitors
and 3 terabytes of downloads every day.

Advances in technology have
helped fuel this proliferation, says
George Moody, research staff scientist
in the Harvard/MIT Division of Health
Sciences and Technology. He is the
architect and caretaker of PhysioNet
(http://www.physionet.org), a growing
archive of freely accessible collections
of digitized physiologic signals and time
series measurements and related open
source software. “For the types of data-
bases that PhysioNet is mostly con-
cerned with, the instruments that gath-
er the data are almost invariably digital
now. Our databases are large, but stor-
age is cheap, and adequate network
bandwidth is also cheap. So we can
afford to collect them and make them
available, and users can download
them for little or nothing.”

There are also cultural changes
behind these trends, says Atul Butte,

In years past, such a research result
might have taken months or years
to obtain through diligent labora-

tory work. And this example illus-
trates the exciting potential for web-
based shared databases to transform
research, says Buetow, who founded
the caBIG project in 2003 as associate
director for biomedical informatics

and information technology at
the NCI. “First you can do in

silico discovery and hypoth-
esis generation, which
drives your experiment,”
Buetow says. “Then
after your experimental
discovery, you can per-

form in silico validation and extension.
Essentially, we can more meaningfully
join the beginning and end of an
experiment through information tech-
nology.”

The impact of public databases on
the research process is slowly becoming
known—with effects on not only how
the work is done but also on what kind
of research is done in the first place.
Before the golden age of public data-
bases will be able to fully translate into
innovative medical advances, however,
certain challenges will need to be over-
come. But those who work extensively
with databases say the benefits will out-
weigh the costs. “It seems like a no-
brainer that a portion of our invest-
ment in biomedical research should be
in the archiving, annotation and main-
tenance of the resulting data and
knowledge,” says Russ Altman, MD,

PhD, professor of bioengineering at
Stanford University. “This ensures that
we will maximize the availability of
previous discoveries, which will in turn
help us to maximize new discoveries.” 

DATABASE 
PROLIFERATION

The time is ripe for a database rev-
olution. High-throughput experi-
ments are generating unprecedented
amounts of data, which many
researchers believe will be valuable for
years to come—and should be shared
widely today. To that end, funding
agencies such as the National
Institutes of Health and journals such

www.biomedicalcomputationreview.org
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MD, PhD, assistant professor of medi-
cine at Stanford University, who uses
public web-based databases extensively
in his research. Increasingly, science is
influenced by new movements in
“openness,” he says—open-source soft-
ware, open-access publishing, and so
on. This coincides with an increased
culture of sharing what were previously
proprietary tools of the biomedical
trade, such as reagents and protocols.
Sharing data is a natural extension of
that movement, he notes.

And successful current-generation
databases can thank previous database
projects for blazing the path, says Teri
Klein, PhD, senior scientist in the depart-
ment of genetics at Stanford University,
and director of The Pharmacogenetics
and Pharmacogenomics Knowledge Base
(PharmGKB; http://www.pharmgkb.org/),
which integrates, aggregates and anno-
tates genotype and phenotype data,
pathway information and pharmacoge-
netics. “The database pioneers have
proven their value,” she says. “With bet-
ter understanding and acceptance of
databases comes greater usage.”

One of the oldest and most suc-
cessful of these pioneering data-

bases is NCBI’s GenBank
(http://www.ncbi.nlm.nih.gov/
Genbank/), which recently cel-
ebrated its 25th anniversary.
An annotated collection of
all publicly available DNA
sequences, GenBank con-
tains nearly 83 billion gene
sequences from more than

260,000 different species.  
One of the reasons for

GenBank’s success is its partnership
with journals, according to research by

Nathan Bos, PhD, senior staff research

scientist at the Johns Hopkins Applied
Physics Laboratory, whose chapter,
“Motivation to contribute to collaborato-
ries: A public goods approach,” will soon
appear in a book called “Scientific
Collaboration on the Internet.”  Most
genetics journals now require authors to
deposit their sequence data into
GenBank as a prerequisite for publication.
This partnership began in the late 1980s
as a way to encourage researchers to
deposit data directly, rather than rely on
GenBank’s staff to input pub-
lished sequences by hand. 

In fact, this system appears
to be the most effective in
solving the “public goods”
problems, Bos concludes. The
social dilemma around public
databases is that it is difficult
to motivate researchers to
freely give away their hard-
earned data—even though
such sharing is ultimately for
the greater good of the entire
community and, therefore,
beneficial for the researchers
themselves. The partnership
between journals and
GenBank works because it ties
rewards and sanctions together
for the researchers, Bos says.

Of course, not all databases
have such a clear mandate. In
some ways, biomedicine has
been slow to adopt informa-
tion technology, Buetow
says—even though the same
tools have already transformed
other sectors. 

Yet without having access
to integrated data resources,
Buetow says, “we in biomedi-
cine are going to hit a wall.”

Many biomedical phenomena are com-
plex and need a systems-level
approach, for which large shared data-
bases are a natural tool. “We already
are increasingly aware, for example,
that cancer emerges through complex
networks of alterations and we're going
to need combinatorial therapies,” he
says. “But it’s beyond the capacity of a
single human neural network to be
able to integrate all that information.
We need this complex network of
information sources.”

SPEED AND 
SYNERGY

Breakneck speed is one of web-based
databases’ biggest attractions. Data
tasks that would have previously
required researchers’ valuable time—to
track down, request, transport, and
enter—can now be accomplished with
a few clicks, even for a casual visitor.

For genetics researchers, quick and
easy research verification through data-
bases like GenBank is more than just a
luxury, says Nobel laureate Richard
Roberts, PhD, director of New
England Biolabs, Inc. and director of
the restriction enzymes database
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now we can start with public data. Then
we figure out a new, useful, and valuable
question we can ask and answer. And a
completely different question can be
asked of the data when it’s put together,
beyond the initial question asked. It’s a
shift in the scientific method.”

For example, in research currently
under publication review, Butte and his
team integrated and analyzed publicly
available data in the NCBI Gene
Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo/) and the Unified
Medical Language System (http://www.
nlm.nih.gov/research/umls/) to discover
a genetic similarity between Duchenne
muscular dystrophy and heart attacks.
This finding might have clinical value,
he says, because while there are no drugs
currently developed to treat muscular

REBASE (http://rebase.neb.com).  “It
is possible to check a new sequence
against all known sequences within a
very short time frame and know you
haven’t missed anything. This is very
important for avoiding duplication and
knowing when your data and infer-
ences truly are new,” he says. 

Big research projects can also be
accelerated through integrative databas-
es. For example, in 2006, the team of
Howard Fine, MD, chief of the Neuro-
Oncology Branch at NCI's Center for
Cancer Research, published a paper in
Cancer Cell showing that stem cell factor
(SCF) is critical in the genesis of malig-
nant gliomas, the most common form of
brain tumors. They had reached the con-
clusion through exhaustive in vitro and in
vivo studies, Buetow says. But today, he
points out, the same conclusion could
easily be reached through synthesis of
data in the Repository of Molecular
Brain Tumor Data (REMBRANDT;
http://rembrandt.nci.nih.gov), which
Fine launched in 2005 to archive infor-
mation on gene expression, copy num-

ber alterations and clinical information
from several thousand patients with
malignant gliomas.

In a broader sense, the right data-
bases can speed a researcher’s entire
career along, Moody says. “Simply
being able to begin a study with suit-
able data already in hand can mean
eliminating the first two years of what
would have been a three-year project,”
he says. “For a young researcher, gradu-
ate student, or researcher seeking to
broaden his or her experience, not hav-

ing to get a grant before beginning to
look at the data can mean the differ-
ence between doing a project or not.”

The best databases offer benefits
beyond simple speed, however. Exploring
multiple connections in the data can lead
to a unique synthesis of knowledge. For
example, a large, multi-national team of
scientists recently used the data available
in the Cancer Genome Atlas (TCGA;
http://cancergenome.nih.gov/), which
houses multidimensional molecular can-
cer data. The team found that the
molecular etiology of glioblastoma, the
most aggressive kind of brain tumor, was
characterized by a combination of fac-
tors: gene mutations, copy number
changes, epigenetic silencing, and
expression alterations. The work was
published in Nature in September 2008.
“If you could only look
at one dimension of
that data, and didn’t
have the other data
accessible in electronic
resources, you’d never
be able to see this,”

Buetow says. “The
conclusions are an
emergent property of
being able to see all
the pieces together.” 

In some cases, data-
bases can upend the
typical research cycle.
“A lot of times, a scien-
tist starts with a ques-
tion, then collects data
and answers the ques-
tion,” Butte says. “But
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dystrophy, there are several available to
treat heart attacks. If the pathways are
similar, the heart attack drugs might be
helpful in treating muscular dystrophy.
And the conclusions were reached by
mining publicly available data. 

Databases can also divert where
researchers devote their efforts. “Public
data collections free us from the need
to recreate them many times over,”
Moody says, “and that means that pri-
orities shift to favor collecting novel
types of data, making better use of
scarce resources rather than replicating
existing databases.” Collections can be
expanded in ways that balance depth and
breadth, he says. “For example,
researchers can collect data from popula-
tions complementary to those already
well-represented, gather multidimension-
al data sets that can lead to insights about
relationships among variables, or else
make use of existing data in novel ways.” 

A ripple effect in other fields is
becoming clear, as the biomedical com-
munity taps into quantitative disci-
plines for help in dealing with the vast
amount of data generated. “This has
created unprecedented demand for
advanced computational tools and
interdisciplinary expertise to capture,
store, integrate, distribute and analyze
data,” Klein says.

The reach of databases extends
beyond the laboratory. For example, clin-
ical cardiac arrhythmia analysis has ben-
efited enormously from databases, includ-
ing the MIT-BIH (Massachusetts
Institute of Technology/Beth Israel
Hospital) Arrhythmia Database and the
American Heart Association Database
for Evaluation of Ventricular Arrhythmia
Detectors. “Nowadays it is taken for
granted that computers can do a reason-
ably decent job of detecting important
cardiac arrhythmias,” Moody says, which

is a task with utility in both the clinic and
the laboratory. “Without shared annotat-
ed databases, we wouldn’t have reliable
arrhythmia detectors.”

Databases are changing how people
work with each other, too. Perhaps
most importantly, shared data let
researchers in different centers and
countries collaborate in novel ways,
Klein says. For example, the interna-
tional warfarin pharmacogenomic con-
sortium (IWPC), which PharmGKB
helped broker in 2007, merged datasets
totaling more than 5,000 patients from
11 countries and four continents. Their
goal was to develop an algorithm for
dosing warfarin, an anticoagulant. This
merging of data had many benefits, she
says: an increased impetus for data shar-
ing, better quality control, and greater
statistical analysis power. To address
concerns about ownership, the consor-

tium first made the dataset available
only to consortium members, Klein
says; the entire dataset will be released
upon publication of the manuscript.

Being reviewed by many eyes can
also increase the value of data, in much
the same way that software is improved
through an open-source approach.
“When many motivated observers
examine the same data, their analyses
can be compared,” Moody says. “Not
only do we learn more about the data as
a result of peer review of the data, but
we learn more about the analytic meth-
ods themselves, about their strengths
and weaknesses.” 

Sometimes a new database can
ignite a new research focus, Moody
says. For example, in 2000, Moody and
his team created a public, annotated
database of polysomnography data and
issued an open challenge to the scien-
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distinct advantages, says Paul Clemons,
PhD, director of computational chemi-
cal biology research at the Broad
Institute of Harvard and MIT. 

For some researchers, however, the
issue of noisy data isn’t a crucial one.
Butte says his approach regarding data
accuracy is the same as President
Reagan’s during the Cold War: “Trust,
but verify.” In data mining studies, it’s
not hard to throw out data suspected of
having errors. Plus, having several labs
contributing similar data into a public
database will end up increasing their
reliability, he says. “Some people feel
current data are too noisy. I argue they
are good enough. As Voltaire said,
‘Perfection is the enemy of the good.’”

As mountains of data continue to
grow, helping researchers reach them in
practical ways will become increasingly
difficult. Data need to be both accessi-
ble and integrated into other data sets,
says Mark Ellisman, PhD, professor of
neurosciences and bioengineering at
the University of California at San
Diego and director of Biomedical
Informatics Research Network
(BIRN). “We need more effective ways
to bring data together on the fly in
ways that can be visualized and under-
stood by a researcher,” he wrote in Fall
2005 in The National Academies’
Issues in Science and Technology. One
approach is to prescribe the specific
meta-data entities to be used by all
sources, such as is done by caBIG. The

other is developing flexible methods
based on dissimilar standards, such as is
done in BIRN. Both approaches have
benefits and can provide fertile areas of
research, he says.

Yet many challenges facing data-
base use are cultural, not technical.
Adapting to the needs of clinical sci-

tific community: find ways to diagnose
sleep apnea using a single ECG sig-
nal—a cheaper and less intrusive tech-
nique than standard polysomnography
methods. “What surprised us was that
at least a dozen research teams from
around the world took up the chal-
lenge,” Moody says. Now clinicians
can diagnose sleep apnea with com-
mercially available, clinically certified
software that uses their methods, he
says, and researchers can also use open-
source software based on these meth-
ods in their own studies. Better yet,
Moody says, “because the researchers
had worked independently on a com-
mon problem with common data, new
collaborations among them formed
easily.” The challenge is now an annu-
al event with a different topic and data
collection each year.

Even beyond collaborations, freely
available data now means that a
broader universe of people—not just
well-funded labs—can join the
research process. Researchers in
developing countries have easy access
to the types of data they could not
afford to generate themselves, Buetow
says. For example, he points out, only
a little more than half of the usage of
GenBank stems from the United
States. “We are now able to tap into a
global biomedical community of
innovative thinkers, such as the bil-
lions of imaginations that are present

in India, China, Latin
America and in other places,”
he says. “Our capacity to
solve problems should grow
exponentially.” 

HURDLES, 
BOTH TECHNICAL 
AND CULTURAL

Still, many technical chal-
lenges remain in the wide-
spread adoption of databases.
The most prominent plague is
probably that of noise: inaccu-
racies in entries and annota-
tions can greatly reduce the
value of a dataset. “Some biolo-
gists think that there has been
a proliferation of databases
with low-quality information,”
says Altman, whose lab devel-
oped PharmGKB. “The quality
of annotations and curation is
absolutely key for the reliability
of the databases.”

In some cases, big (and
potentially noisy) repositories are
essential—and useful. But it helps if
small annotated collections containing
the same sort of information also exist.
For example, the Broad Institute’s
ChemBank and NCBI’s PubChem both
house small-molecule structures and
screening data. PubChem relies on sub-
mission of data and structures from out-
side sources; ChemBank data are gen-
erated and annotated internally.

ChemBank also adds value to its data
through the storage of other informa-
tion, such as plate locations, raw
screening data, field-based metadata
and standard experiment definition.
Although PubChem is tremendously
useful as a large repository, ChemBank’s
annotation and curation offers some
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entists is one such hurdle. Although
results of clinical tests are increasingly
being captured in electronic health
records, the incorporation of clinical
data into large public web-based data-
bases still lags, largely due to privacy
concerns and clinical researchers’
unwillingness to share. “We don’t
have an equivalent of GenBank for
de-identified patient records,” Butte
says, but he believes that could
change, as he wrote in a perspective in
Science in April 2008. For example, he
says, although clinicians and hospitals
might view clinical data as a trade
secret, health care networks can pool
de-identified data—thus de-identify-
ing the source of the data as well as
the individual records themselves.
There are projects currently under-
way to achieve an integrated clin-
ical database, Butte says, particu-
larly at Informatics for Integrating
Biology and the Bedside (i2b2), a
National Center for Biomedical
Computing based at Partners
HealthCare System in Boston,
Massachusetts. But, he notes,
more effort will be needed to
make this database available to
the entire research community.

Scientific competition is
another cultural obstacle.
“Given the way research is
funded, many researchers are
justifiably hesitant to share
their data,” Moody says. “They
worry about giving those who
compete with them for scarce
research funds a look at what they
themselves have had to spend some
of those scarce funds to develop.”
Funding agencies can help change
this culture, he says, by visibly
rewarding the responsible sharing of
data among researchers.

Funding agencies and the scientific
community can help boost the role of

the informatics field, Buetow says. “We
will need to recognize the true scientif-
ic benefit of creating, maintaining and
using these databases. That can’t be a
second-class activity if we want the
databases to be of high quality.
Hopefully there will be further recogni-
tion of the importance of biomedical
information as a full partner in the bio-
medical enterprise,” he says. “That’s
beginning to happen.”

QUIRKS OF FUNDING
In a time of increasing competition

for biomedical resources, the question
of money looms large. How can fund-
ing agencies know
the true value of a
database?

“There is an argument that the NCBI should have all

major databases since they are likely to last forever,”

Altman says.
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now being distributed throughout the
research community and not specifically
in the sponsor’s area of interest—cancer.

This instability might hurt some
databases more than others. “There is
an argument that the NCBI should
have all major databases since they are
likely to last forever,” Altman says.
Databases created by individual
research teams are more vulnerable,
since they must re-compete for grant
funding every five years. “Why would
someone put data in there if the exis-
tence is not guaranteed?” he says. On
the other hand, he acknowledges, a
competitive-funding system might be
the very situation that fosters innova-
tion in database technology.

One solution would be to have long-
term funding competitively but readily
available after a research team has
already established a useful database,
Roberts says. “It is unreasonable to
expect a database team to undergo the
vagaries of peer review every three years
or so.  One poor review and absence of
funding can wreck the database,” he

says, because a suspension of
even a year or two in data col-
lection and team continuity
severely harms the enterprise.
“Since factual databases like
GenBank are now critical to
modern biology, the govern-
ment needs to make sure they
continue without interrup-
tion,” he says. “I think it would
be a good idea to centralize
both the review and the fund-
ing of biological databases.”

New business models might
also help, Buetow says. For
example, many modern libraries
are starting to consider raw
databases to be primary infor-
mation resources in addition to
their collections of books. Also,
“groups like Google are actively
courting the immortalization of
key reference datasets” in non-
biologic fields, he says, and
they’re interested in hosting
some raw biomedical datasets.

As the technology and culture of
biomedicine continue to change, so too
will its practice of storing, sharing, and
synthesizing data. Teasing apart the
factors driving the evolution may not
be simple. “I think large public databas-
es are a symptom of changes in science
and they themselves are also changing
the face of science,” Klein says. ■■

The simplest method, perhaps, is to
examine the citations a database garners
in the scientific literature, which pro-
vides an indication of its level of use. For
example, the annual number of publica-

tions based on the MIT-BIH
Arrhythmia Database, which

has been available since
1980, continues to

increase over time.  But
in general, that’s not
enough, Altman says.
“The reliability of cita-
tions to various data-
bases is very low, and
often the citation is to

the paper whose results
are in the database, and

not to the database itself.”
Ironically, relying on cita-

tions would punish the most popu-
lar databases. “Widely used and well
known databases often don't get cited
anyway,” Roberts points out. “It
becomes assumed that people know
what they are and where to find them.”
And in general, statistics can be mis-
leading.  “It can be difficult for
funding agencies to assess the
worth of a database using tradi-
tional peer review mecha-
nisms,” Roberts says. “Often
the study sections or panels
that review database grants
lack the expertise to provide a
critical assessment.  I think
there should be a special
mechanism set up to review all
databases and one that mainly
uses expert assessments.” 

Rather than relying on tra-
ditional academic metrics,
funding agencies might also
do better to turn to commer-
cial metrics when evaluating
the worth of collaborative
databases, Buetow says. For
example, caBIG started when
NCI realized that each of its
63 designated cancer centers
was independently generating
its own information infra-
structure. Now with a com-
mon infrastructure, a direct return on
investment can be calculated, he says,
by measuring the difference between
the cost of caBIG and the costs of each
group collecting data and developing
tools individually.

Still, measuring the hypothetical
cost of each research team creating its
own database isn’t perfect, Moody says.

In some cases, it can even substantially
undervalue the database. That’s because
peer review of shared data leads to bet-
ter quality data, he says, plus the use of
the same data in multiple studies gener-
ates objective comparisons and
insights—which is added value that
wouldn’t otherwise be measured.

Indeed, many researchers cite fund-
ing for maintenance as a top challenge
facing the future of public web-based
databases. “It's easy to get funded to
build a database, but it is hard to get
funding for maintenance,” Altman
says. This is because federal research
agencies’ desire for novelty is built into
their infrastructure. As a result, he says,
it’s hard to compete with exciting new
research ideas.

In the early stages of a database, it’s
easy to show a connection with a partic-
ular research project that moves science
forward, Clemons says. “Ironically, once
something becomes more useful to more
people, it’s really harder to pin down a
particular beneficiary and show how
their grant really benefited from this

activity and how continued support
should continue to include a focus on
software development.” For example, in
its early days, ChemBank was funded by
NCI, but as the database became more
useful to more types of researchers,
showing its sponsors that it was an
appropriate investment became more
difficult; the database’s benefits were

“I think it would 

be a good idea to

centralize both the

review and the 

funding of biological 

databases,” says

Richard Roberts.  
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Ifbiologists really understood the functioning 

of the genome, they could in principle recreate

it in silico. Instead of a choreographed swirl 

of molecules inside a living cell, electrons inside a computer

would map out all those cell processes: DNA zipping and

unzipping, transporters tugging molecules across cell 

membranes, enzymes latching on and letting go. >

SIMULATED
METABOLISM
SIMULATED

METABOLISM
A First Step Toward Simulated CellsA First Step Toward Simulated Cells

By Julie J. Rehmeyer, PhD
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It’s an entrancing dream. For one
thing, the process of developing such a
simulated cell would help biologists
find processes they were missing and
show them when they finally under-
stood the microscopic universe inside
a cell. And there would be enormous
practical value. Drugs could be tested
on the model cell long before a single
capsule touched a tongue. Your doctor
could tell you which diet would be
best for you, given your own personal
genome. The full impact of genetic
diseases could be worked out down to
the cellular level.  

Bad news, though: “We’re not even
close to that,” says Joel Stiles, MD,
PhD, a computational physiologist at
Carnegie Mellon University and princi-
pal co-author of MCell, a simulator of
cell microphysiology. Still, it’s not just a
dream. Researchers have made great
progress decoding the functioning of
the genome in particular areas.
Metabolism, in particular, has proven to
be one of the simpler systems to tackle.

Multiple researchers have worked
since the 1950s to develop an increas-
ingly thorough and detailed under-
standing of metabolism in the bacteri-
um Escherichia coli (E. coli).  And over
the last fifteen years, Bernhard Palsson,
PhD, a professor of bioengineering, and
his colleagues at the University of
California, San Diego have developed
and continually improved a very suc-
cessful in silico model incorporating all
of that detail. 

In 2007, building on his success
with E. coli, Palsson released a similar
model of human metabolism called
Recon 1. “It’s a landmark study,”
says Eytan Ruppin, MD, PhD, a
professor of computer science and
medicine at Tel Aviv University
in Israel. “I’m really excited about
this, but I remind myself that we are
just at the beginning.” 

Ruppin’s laboratory is working on
projects using Palsson’s human
metabolism model. “There
are many things that are
really tempting to study,”

he says. “Degenerative disorders,
cancer, a variety of metabolic
genetic disorders. Hundreds of
them could be studied in a fairly
straightforward manner.”
Many other groups have
also launched projects
using the human model,
but it’s too soon for its
potential to be clear. 

On the other hand, the
E. coli model, developed over
many years, has matured and has
spawned whole batches of
research that are already reach-
ing fruition. In addition to showing
how the genome functions, the E.
coli model has made far more
sophisticated genetic engineer-
ing possible. Researchers are
turning E. coli into minia-
ture factories that pump
out food additives for

Modeling human metabolism revealed which aspects are well-under-
stood (blue) and which need more research (red). All of the reactions
in keratan sulfate biosynthesis (top line), for example, have direct
biochemical or genetic evidence, while those involved in n-glycan
biosynthesis (bottom line) haven’t been evaluated at all. Inositol
phosphate metabolism is in the middle, with many reactions having
direct biochemical or genetic evidence, some supported by physio-
logical data or evidence from a nonhuman mammalian cell, and a few
with only modeling evidence. Reprinted from Duarte, NC, et al.,
Global reconstruction of the human metabolic network based on
genomic and bibliomic data, Proceedings of the National Academy of
Sciences, 104: 1777 (Feb 6 2008).

A fully simulated cell hasn’t happened yet, 

but one system—metabolism—has proven 

to be one of the simpler systems to tackle. 
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manufacturing, precursors of pharma-
ceuticals, and even ethanol or butanol.
The development of the model has
also acted as a spotlight into metabo-
lism itself, guiding lab research.

FINDING MISSING 
PATHWAYS 

To assemble the networks for both
human and E. coli metabolism,
Palsson’s group began by exhaustively
combing through the existing litera-
ture, gathering a list of all known
metabolic reactions and their corre-
sponding genes. The reactions form an
enormous network, with 2207 reac-
tions in E. coli accounting for 1260 of

its 4453 genes. The human model cur-
rently contains approximately 3300
reactions, accounting for about 1500
genes, but will undoubtedly grow sig-
nificantly over time. 

The metabolic networks are set up
like a map, with reactions forming roads
connecting the metabolites. Energy
flows through this network like cars do
through a city. To verify this map of the
“metabolic city,” the researchers began

a torture test. Side by side, they
immersed real E. coli and their virtual
E. coli in all kinds of different media.
The virtual bacterium “died” if no
metabolic pathway connected the
medium to all the compounds the bac-
terium needs to live—essentially telling
the researchers “you can’t get there
from here” on the map. If the virtual E.
coli died when the real one survived, the
researchers knew some pathways were
missing in their model. Apparently, E.
coli was capable of performing previous-
ly unknown tricks.  

The researchers then evaluated the
network to identify reactions that
probably needed to be added to com-

plete their map, and which genes most
plausibly could make those reactions
possible. Armed with these hunches,
they went back to the wet lab to per-
form further experiments. Using this
method, various teams have identified
the roles of eight genes whose func-
tions were previously unknown. They
identified the gene for one reaction
that had been an “orphan” for 25 years:
Although researchers had known that

E. coli could convert succinate semi-
aldehyde to succinate, they hadn’t
been able to find the gene that made it
possible. After adding newly identified
reactions to the in silico model, the
researchers then repeated the testing
of the virtual bacterium in an effort to
find more missing links. 

This same iterative process was
used in creating Recon 1, the human
model. Because the human model is

so much newer and because human
metabolism is much more complex,
researchers haven’t yet pursued all
the hints the model has provided
about unknown reactions or gene
functions. But the group created a
“knowledge map,” showing which
metabolic functions are well under-
stood and which ones clearly have
lots missing. For example, cholesterol
biosynthesis occurs in the endoplas-

Each dot in this graphic is a metabolite. In the online
version of this graphic (http://biocyc.org/ECOLI/new-
image), clicking on a dot identifies the metabolite
and the pathways it’s involved in.  Courtesy of Peter
Karp and Suzanne Paley.

Using a combination of literature search, lab work, and iterative 

computational modeling, researchers have filled in missing links 

in models of metabolism for both E. coli and humans. 
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the resources to grow in the most effi-
cient way,” Palsson says. “Most of the
time, that’s what it does.” So his model
calculates the pathways that most effi-
ciently turn a particular compound
into all the different compounds need-
ed for growth. Palsson reasons that
those are the ones the bacterium would
most likely use.

Experimental evidence supports this
approach when the cell’s circumstances
aren’t changing, but researchers have
developed other optimization methods
that the bacterium may use under dif-

mic reticulum, but the transport
mechanism of its precursor from the
peroxisome is still unclear, according
to the reactions currently known.
That’s a clear indication that a trans-
porter is missing. 

The researchers also developed
tools to automate some of the testing
process in E. coli. “Can we use these
systematic procedures to improve
Recon 1? That is something the whole
community is very interested in
doing,” Palsson says.

BRINGING THE 
NETWORK TO LIFE

Having mapped the network, the
next step was to build lots of computa-
tional tools to bring the map to life.
With a street map, you can figure out
how to get from one spot to another,
but often there are lots of different
routes you might take. The same thing
is true for metabolism in E. coli. “These
models can tell you what the organism
can do but not what it will do,” says
Costas Maranas, PhD, a professor of
chemical engineering at Pennsylvania
State University. 

So the researchers looked for ways
to deduce the pathways the bacterium
is most likely to use, and to narrow the
possible paths it might be taking. But
they ran up against a big problem:
while the reactions are known pretty
well, the particular rates of the reac-
tions aren’t. Small differences in reac-
tion rates could have a big impact on
which reactions actually happen. So
their map was like one that showed the
layout of a city without indicating
whether any particular street was a
mega-highway or a dirt alley.

Masaru Tomita, PhD, a professor of
bioinformatics and head of the E-Cell
project at Keio University in Japan, is
using high-throughput methods to
identify these reaction rates and how
they change in response to perturba-
tions. This requires quantifying the
rates of every different reaction in each
possible circumstance—a monstrous
task. Many labs have joined forces to
make Tomita’s project possible, and the
group’s work toward simulating a whole
cell is ongoing.

In the meantime, and looking to
simplify matters, Palsson took a differ-
ent route. He created a model of how
the cell functions when in a steady
state. Evolution provides a big clue.
“You assume E. coli will evolve to use

To create the human metabolic reconstruction, the researchers first assembled a list of the
components and preliminary network from the annotated human genome. They then
manually reviewed more than 1500 papers to ensure that the network components and
their interactions were based on direct physical evidence and reflected current knowl-
edge. Next, they used 288 known functions of human metabolism to test the model and
find missing or incorrect links. After making improvements, they repeated the tests four
additional times. Reprinted from Mo, ML; Jamshidi, N and Palsson, BØ. A genome-scale,
constraint-based approach to systems biology of human metabolism. Molecular
BioSystems 3: 598 (2007). Reproduced by permission of The Royal Society of Chemistry.

“These models can 

tell you what the 

organism can do but

not what it will do,”

says Costas Maranas.
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ferent conditions. For example, George
Church, PhD, a professor of genetics at
Harvard Medical School, proposed that
after a knockout, cells choose the meta-
bolic pathways that will most quickly
return the cell to a steady state. 

Unfortunately, Palsson’s observa-
tion doesn’t apply so neatly to human
cells, since they don’t normally grow
boundlessly. Nevertheless, the team
developed a description of 288 known
metabolic functions in humans—such
as the production of the hormone
melatonin—to establish restrictions
for how metabolites are likely to be
processed through the map.  Because
those restrictions only narrow the pos-
sibilities, rather than providing a
unique pathway for the metabolism of
a particular compound, more work
remains to be done. 

THE MODEL APPLIED:
FROM BIOFUELS 

TO DISEASE
Palsson’s group has made their mod-

els freely available, and the E. coli

model alone has been used in more
than 100 research papers by groups
around the world. The most obvious
way to understand the functioning of
the genome is to perturb it and see
what happens. This has been done sys-
tematically in the lab, but with
Palsson’s model, researchers can knock
out a gene with a keystroke, rather
than spending hours or days or weeks
creating a genetically modified bacteri-
um. The model also makes it possible
to systematically study E. coli with
multiple gene deletions, or to predict
the impact of adding a gene. 

“So far, the effect of the model on
other peoples' research has been sub-
tle,” says Adam Feist, a graduate stu-
dent in Palsson’s lab, “but going for-
ward, it’s going to be huge. People have
emailed me from around the world.
They are really starting to catch on.”

A big reason for the excitement is
that these capabilities have made
genetic engineering of E. coli dramati-
cally more efficient. Stephen Fong,
PhD, an assistant professor of chemical

A map of E. coli metabolism, based on Palsson’s models.
Metabolites marked in red or green are essential, those in green
constitute biomass, and those in blue aren’t essential. Reprinted

from Kim, PJ, et al., Metabolite essentiality elucidates robustness
of Escherichia coli metabolism. Proceedings of the National
Academy of Sciences 104: 13638-13642 (Aug 21 2007).

...With Palsson’s model,

researchers can knock 

out a gene with a 

keystroke, rather 

than spending hours 

or days or weeks 

creating a genetically 

modified bacterium. 
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Now, he and many other groups are
after a more exciting quarry than lactic
acid. They want to revolutionize the
creation of biofuels using the same
process. E. coli has been engineered to
produce ethanol, as well as fuels like
butanol or alkanes that are better sub-
stitutes for gasoline. 

Church is associated with four dif-
ferent companies that are using these
approaches to develop biofuels, and he
says the only challenge is to scale up
the manufacturing process to create the
fuels inexpensively enough. “Inevitably
as it scales up, it’ll be able to beat petro-
leum out of the ground,” he says.

Church’s dreams extend beyond bio-

and life science engineering at Virginia
Commonwealth University, says that
before these models existed, his bio-
engineering work was vastly more time-
consuming. He would make one modi-
fication based on his best guess of what
would work, and then test the result.
Based on what he found out, he’d make
another, and another and another.
“Each cycle takes several months,” he
says. “Simulations literally take less
than a second to do.” That has revolu-
tionized the process, he says. “You have
a way of screening through all the
things that seem like they have the
highest probability for success before
you do any experiments at all.”

In 2005, Fong pioneered the use of
Palsson’s model in genetic engineering,
creating E. coli that produce lactic acid,
which is used as a food additive and to
create scaffolding for tissue implants.
His strategy was to essentially cripple
the bacterium by eliminating genes so
that its metabolism would be less effi-
cient at turning its food into the com-
pounds it needs to grow. Instead, the
bacterium would convert some of its
food into a waste product—lactic acid.
Fong used Palsson’s model to identify
the most promising genes to knock out
to achieve this, and then he experi-
mentally modified the bacterium to
confirm the model’s predictions.

Barabasi and his colleagues analyzed a Medicare dataset to cre-
ate this map showing the relationship between diseases.
Diseases in the network are connected if mutated genes associat-
ed with them catalyze metabolic reactions that are closely relat-
ed. Diseases that occur more frequently are depicted with larger

dots, and two diseases that tend to occur in the same person are
connected with a heavier line. Reprinted with modifications from
Less, DS, et al., The implications of human metabolic network
topology for disease comorbidity. Proceedings of the National
Academy of Sciences 105: 9880-9885 (July 22 2008). 

“Simulations literally take less than a second to do.” That has revolutionized 

the process, Fong says. “You have a way of screening through all the 

things that seem like they have the highest probability for success before 

you do any experiments at all.”
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fuel as well. “This kind of biochemical
engineering is pleasantly easy these
days,” he says, because of the rise of
these computational methods. “It’s real-
ly interesting and fun to use these cellu-
lar models to think of all the different
products you can make that are current-
ly fairly expensive.” 

One of his ideas is to create E. coli
that he can feed off agricultural waste
to produce non-biodegradable precur-
sors for plastics. “If you pull carbon
dioxide out of the air and make a wax
or a plastic, and don’t burn it and don’t
let it degrade, then you’ve had a net
loss of carbon dioxide from the atmos-
phere. Rather than sequestering carbon
at the bottom of the ocean, why not
sequester it into roads and schools?”

Palsson’s lab is working on biofuels
as well, but they’re also pushing to
make further improvements in the E.
coli and human models. They’re inch-
ing the E. coli model closer to the
vision of a fully functioning cell inside
a computer by integrating the metabo-
lism model with models of gene regula-
tion and transcription. At the same
time, they’re applying the knowledge
they’ve gained from E. coli to human

pathogens like salmonella.
The human cell model is developing

quickly, both because of Palsson’s work
and that of others. Currently, the
model includes all metabolic reactions
known to happen in any human cell.
But only a portion of those reactions
occurs in a specific cell type, say, a liver
cell or a brain cell or a heart cell. A
model identifying which reactions
occur in which types of cell will allow

for the study of specific cell types, and
that is expected to come out soon.

Then there are applications of
Recon 1. “There are so many different
ones that it’s hard to choose,” Palsson
says. “It’s become clear in recent years
that metabolism is involved in all of
the major human diseases, either as a
consequence or a cause.”   

Already, the model is beginning to
be used. A team led by Albert-László
Barabási, PhD, of University of Notre
Dame, USA and Zoltán Oltvai, MD, of
the University of Pittsburgh School of
Medicine, used the Recon 1 metabolic
network to discover relationships
among various metabolic diseases in a
Medicare dataset of 13 million patients
and 30 million hospital visits. They
found that if two genetic diseases were
caused by mutated genes whose associ-
ated enzymes were close to one anoth-
er in Palsson’s network, then odds were
increased that someone with one of the
diseases would have the other as well.

“My expectation is that the human
applications will develop much faster
than in E. coli because of the inter-
est,” Palsson says. “The momentum is
enormous.”  ■■

E. coli has been 

engineered to produce
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If a picture’s worth a thousand words,
then a motion picture, such as that
provided by molecular dynamics

(MD) simulations, must contain a
wealth of information.  It’s this potential
payoff that has Simbios investing in the
infrastructure to speed up these simula-
tions (see last issue’s article on
OpenMM) and to store and share the
trajectories that are generated.  

Research, such as that of Dariya
Glazer, a graduate student in genetics at
Stanford University whose work is par-
tially supported by Simbios, illustrates
the insights that MD simulations can
provide.  In recent work, she demon-
strated that simulating how a molecule
moves over time can lead to more accu-
rate predictions of molecular functional
sites, such as active enzymatic or drug-
binding sites.  Her poster based on this
work received an Outstanding Poster
Award at the Intelligent Systems for
Molecular Biology (ISMB) conference
in Toronto in July 2008.

“Dariya has shown that simulating
the motion of these proteins using
molecular dynamics can markedly
improve the ability to detect function
and should probably be routinely
employed by these algorithms,” says
Russ Altman, MD, PhD, Glazer’s advi-
sor who is also a professor of bioengi-
neering at Stanford University and a
principal investigator for Simbios.    

Most function prediction algorithms
use data from experimental techniques,
such as X-ray crystallography, which

show a molecule’s structure at
one particular moment in
time.  But the molecule may
not be in a functional configu-
ration at that instant, resulting
in incorrect predictions.  

“Unfortunately, most pre-
diction methods forget that
the beautiful crystal structure
of a protein is nothing but a
snapshot of what the actual
protein looks like in vivo,”
says Marco Punta, PhD, a
research scientist in biochem-
istry and molecular biophysics
at Columbia University and
the posters committee chair at
ISMB this year.

To increase her odds of mak-
ing accurate predictions, Glazer
used MD simulations to model
molecular motion. From the
resulting molecular trajectories,
she extracted hundreds of
frames and then applied traditional
function prediction methods to each of
those frames to identify potential bind-
ing sites for calcium.  

For one protein she examined, the
static structure offered no hints of a
binding site. “It was only during the sim-
ulations that the binding site adopted an
appropriate conformation so that the
algorithm could identify it,” she says.    

After running the MD simulations,
Glazer faced a new problem:  how to
combine the information from the tens
to hundreds of structures that presented

with potential binding sites.  “It wasn’t
always obvious to us whether the data
represented a single binding site or sever-
al.” So she came up with a multi-tiered
clustering scheme to identify the inde-
pendent sites.  

With the MD simulations and her new
clustering scheme, Glazer was able to
identify upwards of 60 percent more true
calcium binding sites.  In fact, one of the
prediction methods could not identify any
binding sites at all without the MD.

Glazer is looking forward to experi-
menting with MD simulations on graph-
ics processing units (GPUs), something
that Simbios is making possible.  “I’ll be
able to investigate more complicated
functions in larger systems,” she says.
“The possibilities are exciting.” ■■

SimbiosNews
s i m b i o s  n e w s

BY JOY KU, PhD

Simbios (http://simbios.stanford.edu) 
is a National Center for Biomedical Computing
located at Stanford University.

DETAILS

Glazer tested her approach using two different prediction algorithms:  
FEATURE (http://simtk.org/ home/feature), which looks at about 80 different
properties to make its prediction; and a valence method, which uses a 
molecule’s local charge to determine where it might bind.

Her test cases consisted of both a calcium-bound and a non-calcium-bound 
version of five different proteins.  The simulation trajectories generated for
these molecules will be made available at http://simtk.org/home/mdfxnpredict. 

Glazer's study showed that molecular dynamics sim-
ulations can increase the accuracy of predictions
about a molecule's functional sites, as compared with
a static image. Shown above are two frames from a
simulation. (top) A molecular configuration with a
likely calcium-binding site, shown by the green star.
(bottom) The same molecule from a different time
point in the simulation that is unlikely to have any
calcium-binding sites.  A static image would show
the molecule in only one of the configurations.

Enhanced Function 
Recognition in Protein 

Trajectories over Space and Time
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Before categorizing things, you have to decide on
the categories.  For material “things” (e.g., mole-
cules, organs, etc.) or entities, the task is rela-

tively straightforward. But often in biomedicine, you
need to also categorize abstract aspects of these materi-
al entities, such as their function or role.  To tackle that
task, ontologists create what are called “upper level”
ontologies. Such ontologies (e.g., DOLCE, BFO) pro-
vide a basic classification of reality without addressing
domain-specific entities (such as heart, platelet, or
patient). Upper ontologies support the process of ontol-
ogy development by providing a first framework.
Furthermore, they foster harmonization among ontolo-
gies by representing the root classes.  

One upper level task that has been neglected to date
by the most widely used terminology resources is the
coherent representation of terms like function, role, dis-

position and tendency.  These abstract aspects of mate-
rial entities may encode more knowledge than the enti-
ties themselves.  For example, the function of red blood
cells to transport oxygen, the function of the heart to
pump blood, and the function of sexual reproduction to
generate genetic variability, are supremely important
concepts in biomedicine, and understanding them can
help us determine how to fight disease.  Yet they are not
easily described using today’s biomedical ontologies. 

As another example, people and other entities can act
in specific ways, what we can think of as roles—the role
of my mother as a patient, the role of an electrode array
as a prosthesis, the role of belladonna as a drug, or the

role of a bacterium as an infec-
tious agent. There are also disposi-
tions and tendencies—for example the tendency of
smokers to develop a cancer, and the disposition of a
zygote to develop into a morula. These, too, are entities
that do not exist independently of their bearers. And all
of these are critical to understanding biological processes.

So, how should functions, roles, tendencies and dis-
positions be represented in biomedical ontologies?
They are what we can call realizable entities. They are
marked by their realizations: functions are realized by
their bearers being active in a specific process, roles are
realized by the processes being performed in the corre-
sponding contexts (examples: the student role is real-
ized when a person studies; the pathogen role is realized
when a bacteria infects).  

Ontologies need to represent realizable entities cor-

rectly for several reasons.  First, they really are different
in nature from the material entities with which they are
associated.  For example, a bacterium is not the same
thing as its role as an “infectious agent.”  Second, an
object might have multiple functions, such as a chemical
substance that could be used as either a drug or a poison.
Likewise, a function may apply to several things. Think
about the function to pump blood.  It might be carried
out by either a heart or a machine. 

From a theoretical point of view, scientists’ neglect of
functions in ontologies and terminologies might reflect
an aversion to introducing an unwelcome teleological
element into the domain of biological reality. We scien-

tists exploring functions talk as if bio-
logical systems worked towards aims in
contradiction to commonly accepted
interpretations of Darwinian biology. I
am strongly convinced, however, that
we should not shy away from talking
about functional aspects of organisms
and their behaviour. This should not
arouse objections from true Darwinians
since it is functionality, after all, that
explains why organisms can be viewed
as survival machines. It is functionali-
ty, too, which offers our most coherent
understanding of what clinical medi-
cine is all about. ■■

DETAILS

Mathias Brochhausen, PhD, is a researcher at the Institute of Formal
Ontology and Medical Information Science (IFOMIS), Saarbrücken,
Germany and Executive Director of the European Consortium of
Ontological Research. 

For further information, see Realizable entities in Basic Formal
Ontology (BFO) http://www.ifomis.org/bfo, & Robert Arp and Barry
Smith: Function, Role; and Disposition in Basic Formal Ontology, in
Proceedings of Bio-Ontologies Workshop (ISMB 2008), Toronto, 45-
48, http://bio-ontologies.org.uk/download/Bio-Ontologies2008.pdf 

Under TheHood
BY MATHIAS BROCHHAUSEN, PhD

How Upper Level Ontologies Deal With 
Functions and Other Realizable Entities

u n d e r  t h e  h o o d

Function, role, disposition and tendency:  These abstract aspects of material 

entities may encode more knowledge than the entities themselves.
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W hat’s it like to be immersed in a dataset of
millions of DNA sequences? Audiences of
ATLAS in silico—a new media artwork

that explores novel ways to represent and intuitively
understand nature in the metagenomic era—are
about to find out. The installation, which is a hybrid
of art, science, and technology, was displayed in
Cleveland in July 2008 and will be displayed in Los
Angeles in November. It is expected to reach more
than 100,000 people.

ATLAS in silico transforms raw metagenomics data—
predicted protein sequences derived from millions of
ocean-dwelling microbes collected by the Global Ocean
Survey—into haunting digital sounds and luminous 3D
geometric forms that appear in a virtual world. Head-
and hand-tracking systems allow users to “push and
pull” on objects in 3D to see more detail. “The experi-
ence is one of being immersed in something that is flow-
ing, as if you’re in a kind of fluid,” says Ruth West, who
leads the collaborative project. West is director of inter-
active technologies at the University of California, Los
Angeles, Center for Embedded Networked Sensing, and
artist-research associate with the University of
California, San Diego, Center for Research in
Computing and the Arts. 

“The whole idea is you are able to get some sense of
the internal structure or patterns within the highly
abstract data that you can viscerally relate to,” West says.
More information is at: http://www.atlasinsilico.net/. ■■

Sensational Sequences

ATLAS in silico uses a custom algorithm to translate genomic data, as well
as social and environmental data from regions where the biological sam-
ples were collected, into unique 3D shapes, which are displayed on a room-
sized, 100-million pixel semi-circular tiled display. The installation is
equipped with computer vision, which allows users to interact with the
data through simple hand and head movements. 

s e e i n g  s c i e n c e
SeeingScience
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To Fund or Not To Fund: Should grant applications
for the development and maintenance of software and
infrastructure compete against basic research applica-
tions or should there be a separate mechanism?

To Mine or Not To Mine: Are clinical data reposito-
ries useful sources of untapped discoveries awaiting data-
mining algorithms or are they too noisy and messy?

Too many tools in the toolbox?: Is the massive
proliferation of analytical tools for biomedical infor-
matics diluting the best ones and limiting their visibil-
ity and usage?

Open source vs. proprietary research: Is open
source unfair to scientists whose primary work product is
computer software? Do other engineers just give away
their inventions?  

Technology Transfer: Is technology transfer in 
biomedical computing occurring sufficiently?

GPUs vs. ASICs: Will GPU computing dominate
high performance computing in the next decade? Are
ASICs (application-specific integrated circuits) the
next big thing? 

Dry vs. Wet: Should the computational tool develop-
ers of tomorrow be spending significant time doing wet
lab work for exposure?

Cloud Computing—
Here to Stay or Gone Tomorrow?: Is cloud
computing a great, relatively untapped resource for
the scientific community or is it over-hyped?

Journal Requirements or Individual Choice?:
Should journals require that software and data be made
available in public repositories before a related publica-
tion is accepted?

XXX vs. XXX: What do YOU think is the hottest
topic in biomedical computing? ■■

Controversy in Biomedical Computing

w h a t  w e  t h i n k
What YOUThink—

you

In our next issue, we’ll introduce a column featuring topical debates between leaders in the field of biomedical
computing.  You’ll read what prominent researchers think about controversial topics facing biomedical comput-
ing—and have the chance to share your own opinions.  

BUT FIRST: 
Go to our Web site (http://biomedicalcomputationreview.org) to vote on which of the following topics you’re

most interested in, take our survey, and enter your name as a possible debater. You could even win an iPod.

TOPICS:  




