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This, the sixth issue of this magazine (and the
final issue of Volume 2), provides a good
opportunity for reflection on where we’ve

been and where we’re headed. Three years ago, the
NIH requested applications to establish National
Centers for Biomedical Computing. Each center
would be required to “disseminate software, data
and new discoveries to the national community.”
But, the NIH specified, “[journal] publications
and a good website…may not be sufficient.” 

At the time, it was striking that there existed
no major communication media—conferences,
journals or magazines—devoted to the entire
gamut of biomedical computation. To fill that
gap, we proposed launching a new magazine,
Biomedical Computation Review, which would
specifically aim to communicate ideas among a
very diverse group of researchers who share a
common interest in biomedical computing,
whether at the molecular, cellular, organism or
population scale. Opening up new channels of
communication could only lead to improving the
rate of cross-fertilization of ideas between fields.

After only six issues, we’ve covered a very
broad swath of biomedical computing. The six
tables of contents read like a veritable smorgas-
bord of scientific fields. We’ve selected a mix of
cross-cutting issues and in-depth articles that
includes 12 feature length articles, 37 news arti-
cles, seven editorials/guest editorials, three edi-
tor’s picks, six Under the Hood mini-tutorials,
one book review, five Seeing Science articles
exploring the boundaries of biomedical compu-

tation and the arts, and
three Featured Labs. In
those articles, BCR has
highlighted the work of 274 different
researchers from 109 institutions (about one in
five outside the United States).  

About 85% of the magazine content is written
by professional science writers and the other 15%
by community researchers. The editorial board
consists of 15 members and the 12 program and
science officers for Simbios provide additional
valuable input and direction. Affiliated Design of
Livingston, Montana, directs the magazine’s layout
and design, and our debut issue (June 2005)
recently won an award for Excellence in
Communication and Graphic Design from
Graphic Design USA.

About 3,000 people receive the magazine in
print and the website has had even more unique
visitors from all over the world, with the numbers
increasing every month. 

As we look forward to future issues of BCR,
we have lots of great new topics to cover.
There’s so much interesting material to cover in
a limited number of pages so please bear with us
until we get a chance to highlight the research
areas that are nearest and dearest to you.
Biomedical computing is advancing so rapidly
on so many fronts and so we look to you, our
readers, for additional input and guidance. Let
us know what we’re doing right or where we
might do better. And proposals for written con-
tributions are welcome.  ■■

A Review 
of the Review

www.biomedicalcomputationreview.org

From TheEditor
DAVID PAIK, PhD, EXECUTIVE EDITOR

f r o m  t h e  e d i t o r

Neuroscience
Organs, Organisms, and

Population Biology
Molecular Biology

Genetics, Genomics,
or Evolution

Cellular Biology

General Biocomputation 
and Bioinformatics Education, Academia, or Grant Programs

Systems Biology

Proteomics or
Protein Structure

Topics
Covered
by BCR

(Feature stories that 
significantly touched 
on more than one 
field are counted 
more than one time.)
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Neurocomputation 
of Music, Faces and 

Belly Laughs
Peek inside the skull of a couch pota-

to watching reruns on TV and you’ll see
non-stop patterns of blood flow through-
out the brain. If you learn to pick out
which activity patterns match up with,
say, a good belly laugh, then you might
be on your way to reading the viewer’s

internal experiences. Recently, experts
from a variety of fields competed to glean
subjective perceptions like humor from
functional MRIs of TV viewers. They
were surprisingly successful. 

“Our goal is to know how the brain
represents information,” says Walter
Schneider, PhD, professor of psycholo-
gy at the University of Pittsburgh and
principal investigator of the Experience
Based Cognition group, which spon-

sored the competition. “In theory, if we
can understand the information in the
activity of somebody’s brain, then we
can understand what they perceived.”

In the competition, 40 teams of
researchers from nine countries devel-
oped pattern-classification methods for
interpreting fMRI data. They used train-
ing data derived from three volunteers
watching scenes from two episodes of
“Home Improvement” 14 times each—

NewsBytes

Above: Using brain activity patterns like those shown here (derived from fMRI), the win-
ning team (Veeramachaneni’s group) had the highest weighted average correlation for
the prediction of various features of the volunteers’ subjective viewing experience. Top:
On the graph, the correlations of the team’s predictions are shown in bold black; other
teams’ scores are shown in color.

“In theory, if we
can understand 
the information 
in the activity of 

somebody’s brain,
then we can 

understand what
they perceived,”

says Walter
Schneider.
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once in an MRI scanner and 13 times
while reporting their perceptions. The
teams tested their methods on fMRI
images of the volunteers watching a third
set of scenes from the TV show. The goal
was to decipher each individual’s brain
activation patterns and then describe his
or her TV-watching experience in a way
that would closely match the volunteer’s
real-time impressions. Winners were
announced in June at the Organization
for Human Brain Mapping meeting in
Florence, Italy. 

Overall, predictions were remarkably
accurate, Schneider says. The easiest pat-
terns to pick out in the fMRI data were
those that occurred when volunteers
heard background music. The top group’s
prediction for music perception was
“almost right on top” of the volunteers’
own ratings, he says, with an average cor-
relation of 0.84. Patterns for faces, lan-
guage, and environmental sounds were
also generally easy to detect, and some
groups excelled at identifying when the
volunteers recognized specific actors in
the scenes. On the other hand, nearly all
groups stumbled at figuring out when
food was visible on the screen. Perhaps the
mere sight of food doesn’t evoke strong
signals in the brain, Schneider says,
“although one subject did skip lunch, and
we got better responses for him.”

The top group, led by Sriharsha
Veeramachaneni, PhD, a researcher at
the Center for Scientific and
Technological Research at the Istituto
Trentino Di Cultura in Italy (ITC-IRST)
with a background in computer engi-
neering, built a model with recurrent
neural networks. Despite knowing “prac-
tically nothing” about analyzing brain
images, Veeramachaneni says, the
researchers soon realized they could
treat these signals as generic data for pur-
poses of this competition. 

The second-place team, led by Denis
Chigirev, a physics doctoral student at
Princeton University, concentrated on
extensive preprocessing of the data across
space and time—an approach that reflects
the group’s perspective. “Physicists pay
careful attention to what is signal and
what is noise,” Chigirev says. “We want-
ed to let the signal tell us what to do.”

Alexis Battle, a computer science
doctoral student at Stanford University,
led the third group which explicitly mod-
eled correlations in the dataset. “We
thought about the relationships in the
data that we could exploit,” Battle says.
“We chose to encode the relationships
in a formal probabilistic framework.”

Schneider is already “playing match-
maker” to help facilitate new multidisci-
plinary collaborations next year.
According to Daphne Koller, PhD, pro-
fessor of computer science at Stanford
University and principal investigator for
Battle’s team, “The fMRI field is at the
point that genomics was 10 years ago.
There’s a tremendous opportunity now
for us to integrate computational meth-
ods with the understanding that’s being
developed by the brain scientists.” 
—Regina Nuzzo, PhD

Simulations Find Possible
HIV Achilles’ Heel 

A blindside attack on HIV-1 protease
might just combat drug-resistant strains
of HIV, according to simulations run
by researchers at the University of
California, San Diego.
When the simulations
shut down an exposed
movement on the side
of the enzyme, the
active site shut down as
well. The work was pub-
lished in Biopolymers in
June 2006.

HIV-1 protease is
an indispensable work-
horse of the HIV virus:
It cuts viral protein
chains into building
blocks ready for assem-
bly into new virus par-
ticles. Many of today’s
anti-HIV drugs target
this enzyme, generally
by plugging up its
active site and perma-
nently closing two
flaps over that area. In
HIV strains resistant to
these drugs, HIV-1 pro-
tease developed flaps

A new target for anti-HIV drugs may be the allosteric
grooves on the side of HIV-1 protease (see gaps in the mid-
dle of the right and left sides). When those are pinched
together (see green protein, right and left sides), the flaps
over the active site (top) can open. The flaps remain closed
when the groove is propped open (red and orange versions).
Courtesy of Alexander Perryman.

Perryman and 
his colleagues 

suggest designing
drugs to target 
flap movement 

on HIV-1 protease
instead of (or 
in addition to) 
the protein’s 
active site.
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that are harder to latch shut. So now
some researchers are suggesting targeting
flap movement instead of (or in addi-
tion to) the active site.

That’s why Alexander Perryman,
PhD, now a postdoctoral fellow at
California Institute of Technology,
Andrew McCammon, PhD, professor
of theoretical chemistry and pharmacolo-
gy at UCSD, and their coworkers were
very curious when they noticed an inter-
esting movement on a side surface of
HIV-1 protease in molecular dynamics
simulations performed in 2004. When
the protease closed its flaps across the
active site, a groove on the peripheral sur-
face expanded. Conversely, as the active
site flaps opened, that same groove, called
the allosteric groove, shrunk. It looked as
if the movements were directly linked. 

So the researchers hypothesized that
inhibiting the movement of the allosteric
groove would inhibit the movement of

the active site flaps as well. In simula-
tions that invoked an imaginary force or
drug acting on the allosteric groove, they
found their hypothesis was correct.
When the allosteric groove is propped
open by an imaginary drug, the flaps that
guard the active site stay closed. And
when the groove is pinched together
slightly, these flaps will open. 

It is still entirely unknown whether an
actual drug exists, or could be created,
that would apply the same force as the
imaginary drug in the UCSD simula-
tions. Celia Schiffer, PhD, associate pro-
fessor of biochemistry and molecular
pharmacology at the University of
Massachusetts Medical School, thinks the
groove movements are important for pro-
tease function, yet she is not convinced
that the allosteric groove is a viable drug
target. “I think practically that would be a
very difficult place for inhibitors to bind

in a specific and high-affinity manner.”
But Carlos Simmerling, PhD, asso-

ciate professor of chemistry at State
University of New York, Stony Brook, is
impressed by the UCSD strategy of find-
ing a new drug target by observing
enzyme movement. “The idea of target-
ing the mechanism is a lot more power-
ful than targeting the shape of the bind-
ing pocket, which is what current drugs
do,” he says. 
—Louisa Dalton

Lung Tumors Recap
Developmental Patterns

Researchers have long speculated that
many of the genetic programs responsi-
ble for rapid growth of tumors are also
important for the growth that occurs
during normal embryonic development.

Now, researchers at the Children’s
Hospital Informatics Program at Harvard

have found not only a relation-
ship between tumors and lung
development, but also a trend:
The tumors with genetic profiles
that resemble early lung develop-
ment are deadlier than those with
profiles that resemble later lung
development. Separating out the
least aggressive tumors from the
more dangerous ones might help
some lung cancer patients avoid
unnecessary toxic chemotherapy.
The work was published in PLoS
Medicine in July 2006. 

“Until now, lung cancers
were classified through cluster-
ing of gene expression data,
without seeing the trend from
the point of view of develop-
ment,” says Hongye Liu, PhD,
research fellow in the
Children’s Hospital Informatics

Program at Harvard and MIT. “But
we’ve found that the development trend
can predict which cancer is worse.”

Earlier work by Liu’s co-authors, Alvin
Kho, PhD, and Isaac Kohane, MD,
PhD, showed that the gene expression
profiles for each of several different types
of brain tumors form distinct clusters
when projected onto the gene expression
profile of mouse genomic cerebellar devel-
opment. The work by Liu and colleagues
confirms these findings in the lung cancer
context and takes them one step further
by finding a connection between tumors,
development and prognosis. 

Charles Powell, MD, professor of
clinical medicine at Columbia University
College of Physicians and Surgeons, says
Liu’s work is important in emphasizing
the link between cancer and develop-
ment, but prognostic indicators in this
paper need to be tested prospectively.
More interesting, he says, is the potential

NewsBytesNewsBytes

Principal   components of gene expression data for
mouse lung and normal human lung compared to
that of various types of human lung cancer. The
mouse lung development profile (blue dots) marches
to the right over time. The most malignant forms of
lung cancer (small cell lung cancer) more closely
resemble early lung development in the mouse,
while the least malignant forms (adenocarcinomas)
more closely resemble later lung development in the
mouse and normal human lung tissue.  Carcinoids
(purple triangles) are known to be quite different
from the other types of cancers and have a pattern of
gene expression that clusters perpendicular to and
below the others. Carcinoids can look like small cell
lung cancer under a microscope, but the two types of
cancer require different treatments. This gene
expression tool might help to distinguish them.  

Mouse Lung
Normal Human Lung

Small Cell Lung Cancer 
Squamous Cell Lung Cancer 
Carcinoid

Adenocarcinoma

Tumors with genetic profiles that 
resemble early lung development are
deadlier than those with profiles that

resemble later lung development. 
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for insight into the origins of lung cancer.
“The steps that transform a damaged cell
into lung cancer of one type or another
are likely to be similar to normal develop-
ment in the lung,” he says. “If we can fol-
low-up this paper to understand those
steps then we should be able to discover
novel insights into lung carcinogenesis.”  
—Kathy Miller

Proteins in Knots? 
NOT! 

When you accidentally twist a
shoelace, garden hose, or necklace, it
can get annoyingly tangled into
intractable knots. On the microscopic
level, biopolymers—string-like molecules
such as DNA—also form knots, with one
mysterious exception: knotted proteins
are rare. Physicists have now used com-
putational methods to quantify just how
rare in the May 2006 issue of PLoS
Computational Biology.  

“We found that the proportion of pro-
teins with knots is several orders of mag-
nitude smaller than chance would pre-
dict,” says author Alexander Grosberg,
PhD, professor of physics at the
University of Minnesota. “The degree of
it is spectacular.” 

To envision a knot in a protein,

imagine grasping the ends of an amino
acid chain (the N-terminus and C-ter-
minus), one end in each hand, and
then stretching it out. If you can’t
stretch it into a straight line, then it
contains a knot. 

Of course, finding knots in real pro-

teins requires a computer rather than a
pair of hands. Grosberg and his co-
author, postdoc Rhonald Lua, PhD,
developed a knot-detecting algorithm
that they used to scan 4716 proteins with
known shapes from the Protein Data
Bank. They found only 19 proteins (0.4
percent) with knots. Bolstering their
findings, two other groups (from MIT
and Italy) independently arrived at
almost the same list of knotted proteins
(they missed two of Grosberg’s). 

Grosberg and Lua next set out to quan-
tify how often proteins would be expected
to form knots if only chance was at work.
They simulated the shapes of random
polymers with chains of equal length, den-
sity, and flexibility as proteins using a sta-
tistical technique—random walk on a lat-
tice. Starting at a single point, this algo-
rithm draws a path in three dimensions by
randomly moving one unit at a time in
one of six possible directions: up, down,

forward, backward, right, or left.
The end result is a randomly
crinkled chain that may or may
not contain knots. The propor-
tion of these random polymers
with knots trounced that found
in real proteins: Simulated poly-
mers at lengths of a typical pro-
tein (200-500 amino acids)
formed knots 15-60 percent of
the time.

Marc Mansfield, PhD, a pro-
fessor of chemistry and chemical
biology at the Stevens Institute of
Technology, did pioneering work
on knotted proteins in the early

1990s. He says the researchers’ method of
generating random polymers produces
some bias, but the bias did not significant-
ly affect the result and had no impact on
the study’s overall conclusions. 

As to the mystery of why proteins
avoid knots, Grosberg says “it has to be a

product of evolution.” Mansfield agrees:
“My money is still on the explanation
that a knotted protein just would not
fold well, so nature doesn’t use them.”
—Kristin Cobb, PhD

Simulating 
Wheelchair Posture 

Implanting electrodes into paralyzed
torso muscles can help individuals with
spinal cord injury balance in their seats. So
say researchers at Case Western Reserve
University, who have built a three-dimen-
sional biomechanical model that predicts
how effectively functional electrical stimu-
lation (FES) stabilizes seated postures.

In 2003, the late actor Christopher
Reeve received implanted electrodes for
FES to help him breathe, and various other

Chain “A” of the protein Ubiquitin
Hydrolase, which contains the
most complicated knot that
Grosberg and Lua found in a
protein. It has a knot with at
least five crossings in it when
viewed as a flat object. Courtesy
of Rhonald Lua.

For those with spinal cord injury, hooking
one arm over an armrest for stability is a
common strategy to maintain balance when
reaching. Courtesy of Cleveland FES Center.

“We found that the
proportion of proteins
with knots is several
orders of magnitude
smaller than chance
would predict,” says
Alexander Grosberg.

Stanford_p4-8:D 2-6 Newsbytes  10/2/06  2:26 PM  Page 5



6 BIOMEDICAL COMPUTATION REVIEW Fall 2006 www.biomedicalcomputationreview.org

types of FES are under investigation for
help in bowel and bladder control, cough-
ing, walking, and standing. However, rela-
tively little attention has been paid the sub-
tle muscle movements of torso stabiliza-
tion required for balanced, steady sitting,
says Ari Wilkenfeld, MD, PhD, first
author of the study that appeared in the
March/April issue of the Journal of
Rehabilitation Research & Development. 

A stable seated position means being
able to reach with one or both hands
and not fall over, Wilkenfeld says. A
healthy posture also prevents skeletal
deformities, pressure wounds, and too
much pressure on internal organs.

The Cleveland group’s model of the
human torso simulates how three mus-
cle groups work in synergy to rotate the
spine and bend it forward and sideways.
Knowing from previous research that a
paralyzed muscle stimulated by FES pro-
duces, at most, about 50 percent of the
force of a non-paralyzed muscle,
Wilkenfeld, along with investigators
Ronald Triolo, PhD, and Musa Audu,
PhD, at the Cleveland FES Center, used
the model to calculate the largest range
of stable movement that a paralyzed
torso could attain under ideal FES. 

They found that with the help of
FES, paralyzed individuals can hold the
weight of one or two bricks at arm’s
length, bend forward enough to extend
their reach by almost a foot, and bend to
the side a bit more.

In addition to creating the model,
the Cleveland researchers compared its
predictions to the actual sitting of a test
volunteer with one pair of implanted
spine electrodes. They found that one
pair is not ideal because it does not fully
activate even one of the sets of muscles.
Yet they found that the model describes
seated postures well.

“It is a promising start,” says Jason
Gillette, PhD, an assistant professor who
specializes in biomechanics and motor
control at Iowa State University. He sug-
gests testing more individuals and
expanding the tests to include active
reaching, not just still postures.

Additionally, says Wilkenfeld, they’ll
need a more sophisticated system of FES
implanted electrodes to get the kind of

results predicted by the model. Yet, now
that they have a model that shows two-
handed reach and the stable sitting pos-
tures theoretically possible, they can work
on the practical details for attaining them. 
—Louisa Dalton

Brain Chips 
Neurons are tough cells to study.

There are a staggering number of them in
most animals, and they are constantly
talking with one another. One way to
look at groups of neurons in real-time is
to take a slice of brain, stimulate it elec-
trically, and measure responses across the
slice. Now a new tool may give researchers
more neuronal data in the span of a few
milliseconds than ever before. 

A team headed by Peter Fromherz,
PhD, a director at Max Planck Institute
for Biochemistry in Munich, has devel-
oped a computer chip that can measure
the activity of thousands of neurons at a
time. “We can get a movie of a complete
electroactivity map in space and time,
with a resolution of eight micrometers,”
Fromherz says. The work was published
in the September 2006 issue of the
Journal of Neurophysiology.

Fromherz’s group worked with
Infineon Technologies in Munich to create
a special 1-square-millimeter silicon chip
containing more than 16,000 transistors.
To prepare the device for data collection,
the researchers first culture a thin slice of
rat hippocampus onto the chip for a few
days. Then they stimulate the slice with
microelectrodes and take an electrical snap-

shot every half-millisecond. “Transistors in
the chip measure the voltages that arise in
the slice, so we can see how electrical activ-
ity propagates in the tissue,” Fromherz says.

Although the chips themselves are
relatively simple, Fromherz says, the
computer technology behind it is rather
complicated. His team is retooling the
apparatus so that it can run off a PC
rather than the specialized computers
used now. After that, they’ll work to
make the entire system commercially
available for other scientists. 

Fromherz’s long-term goal is neuro-
computing, a coupling of both brain and
silicon. He hopes that semiconductor
technology can eventually benefit from
the brain’s powerful ability to store mem-
ories. “Right now, that is a little bit sci-
ence fictiony, I know,” Fromherz says. But
Fromherz has less lofty goals for the near
future. He’d like to see the brain chip
help pharmaceutical researchers expand
their study of drug effects on the brain by
providing data on thousands of neurons
at a time. And he hopes that the technol-
ogy will prove useful to neuroscientists
who are open to new technology. “Now
the neuroscientists have a new tool, and
they will need to think about completely
new questions,” Fromzherz says.

Indeed, it remains to be seen how use-
ful this chip will turn out to be for brain
researchers, says Arthur Toga, PhD, pro-
fessor of neurology at the University of
California, Los Angeles. “But I’m a
firm believer that almost every leap forward
in neuroscience has been preceded by a
technological innovation, one that
allows us to pose questions that couldn’t be
posed before,” he says. “That’s been true all
the way from the microscope to the MRI.”
—Regina Nuzzo, PhD ■■

Fromherz and his colleagues used more
than 16,000 transistors on a 1-square-mil-
limeter silicon chip to measure field
potentials from a slice of rat brain every
half-millisecond after stimulation with
electrodes. This image shows those
potentials after 5 milliseconds have
elapsed. Red regions indicate positive
voltage; negative signals are in blue. The
gray curve traces the structure of the
cornu ammonis in the hippocampus.

NewsBytes

Stanford_p4-8:D 2-6 Newsbytes  10/2/06  2:26 PM  Page 6



Fall 2006 BIOMEDICAL COMPUTATION REVIEW 7www.biomedicalcomputationreview.org

BringingSUPERCOMPUTERS
to LIFE (Sciences)

BY HANNAH HICKEY
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heir very names sound like dinosaurs.
Teracomputers. Petacomputers. These are, in fact, the dinosaurs of the digital
world—monstrous, hungry and powerful. But unlike the extinct Tyrannosaurus
Rex, these silicon beasts are state of the art. Housed in cavernous rooms that
require their own electrical and ventilation systems, row upon row of humming
boxes solve trillions of calculations every second. 

In the late 20th century, such silicon giants revolutionized engineering and sci-
entific research from aerospace to weather prediction. Now, supercomputing is
extending its reach into the life sciences. Super-sized brains are necessary to inter-
pret the new flood of data from high-throughput machines. Supercomputers have
also made possible entirely new fields of study, such as whole-genome compar-
isons, protein folding, and protein-protein interactions inside the cell.  

Their promise is undeniable. Vast computing power allows modelers to zoom
in and simulate the behavior of individual proteins, and perhaps soon entire
cells, at the atomic scale. Researchers can study sub-cellular interaction, watch it
in slow motion, or blow it up to fill a dual-screen monitor. Soon, high-resolution
flow models will help build medical implants and direct surgical operations. Big
silicon machines might even design drugs to cure humanity’s worst diseases. 

T
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Supercomputing in Science: A Timeline

1955

Physicists 
devise computer
code for a global
circulation model,
and by the mid-
1960s are using
the largest 
available 
computers to 
run global-scale
climate 
simulations. 

1960s

The term 
“supercomputer”
enters the 
lexicon as 
IBM rolls out 
the 7030 (aka
“Stretch”) and
Control Data
Corporation
releases its 
CDC 6600.

1976

The legendary
Cray-1 
supercomputer 
is installed at 
Los Alamos
National
Laboratory 
where it 
is used to 
simulate 
nuclear 
explosions.

1977

National Center
for Atmospheric
Research 
purchases 
a Cray-1 
supercomputer
which operates
for the next 12
years running 
climate 
simulations.

Early 1980s

Astrophysicists
use 
supercomputers
to simulate
galaxy formation.

1980s

Large-scale 
computing 
provides an 
alternative to
wind tunnels 
in aeronautics
research. By the
1990s, computers
have virtually
replaced wind
tunnels.

1950s to 1960s
The roots of 

supercomputing 

1970s to 1980s
Supercomputers integrated into climatology, 

astrophysics, and aeronautics
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While ordinary computers have already
changed the study of life, supercomputers
open up new horizons, offering the possi-
bility of discovering new ways to under-
stand life’s complexity. 

FROM BIG IRON
TO ARMIES OF ANTS

To solve mammoth calculations, sci-
entists have traditionally booked time on
“Big Iron” custom machines housed at
national supercomputing centers or uni-
versities. Today the landscape is shifting.
These mammoth machines, though not

extinct, are facing tough competition. 
“It used to be that the power of those

machines [at supercomputing centers]
was many orders of magnitude more
than what anybody had access to,” says
Philip Bourne, PhD, professor of phar-
macology at the University of California
in San Diego and editor-in-chief of PLoS
Computational Biology. “Now that’s not
true anymore—computing is really
cheap.” Alternatives exist in a thriving
range of home-built, borrowed or net-
worked systems. Many researchers
choose to buy a cluster of off-the-shelf
processors rather than wait for time on a
“Big Iron” machine.

In 2003, students at Virginia
Polytechnic Institute in Blacksburg,
Virginia, helped build one of the world’s
fastest machines by assembling 1,100
PowerMac G5 processors. At the time it
was the third-fastest computer in the
world, and the $7 million price was a bar-
gain compared to a retail price of more
than $200 million for an equivalent big
iron computer. Similar clusters continue
to sprout up every year. The most recent
Top500 list, a biannual tally of the
world’s 500 fastest computers, shows that
networked, off-the-shelf processors now

claim 72 percent of the positions. 
Driving this trend is the frustrating evo-

lution of supercomputers. Since the
1990s, spurred by economics, supercom-
puters themselves became vast assemblages
of small processors. “What we [scientists]
wanted was one computer that was much
faster. What we got was a lot of comput-
ers,” comments Vijay Pande, PhD, asso-
ciate professor of chemistry and of struc-
tural biology at Stanford University. The
world’s fastest machine, IBM’s Blue Gene,
now incorporates a whopping 131,072
individual processors. Each one is relative-
ly slow, even compared to what’s offered in
new laptops, but it’s energy-efficient,

which allows them to be packed into a
small space without overheating. 

Massively parallel machines have
many downsides. For one thing, the total
speed of a single processor is sometimes
less important than how quickly individ-
ual processors can communicate. This
shuffling back and forth of information
becomes a bottleneck for the speed of
the system. It also means that the entire
system runs only as quickly as the slowest
processor on the machine—a weakest-link
rule known as Amdahl’s Law.

Supercomputers today are like “armies

of ants,” says Allan Snavely, PhD, direc-
tor of the Performance, Modeling and
Characterization Laboratory at the San
Diego Supercomputing Center. To enlist
these ants, computer code will first have
to be parallelized—split up into instruc-
tions that multiple processors can handle
simultaneously. The difficulty of dividing
up the problem means a supercomputer
with 100 processors won’t be able to solve
a problem 100 times as fast. And today’s
“massively parallel” supercomputers
don’t just incorporate 100 processors, but
thousands of processors. Running on
these machines often means tweaking the
code yet again, says Mark Miller, PhD, a

Fall 2006 BIOMEDICAL COMPUTATION REVIEW 9www.biomedicalcomputationreview.org

1985

The U.S. National Science Foundation
establishes five national supercomputing
centers: The Cornell Theory Center at
Cornell University; The National Center for
Supercomputing Applications at the
University of Illinois at Urbana-Champaign;
The Pittsburgh Supercomputing Center at
Carnegie Mellon University and the
University of Pittsburgh; The San Diego
Supercomputer Center at the University of
California, San Diego; The John von
Neumann Center at Princeton University. 

1996

Research
Collaboratory for
Structural
Bioinformatics
sets up shop in
the UCSD
Supercomputer
Center. 

2000

Folding@Home
project launched
to investigate
protein folding
mechanisms. It’s
now the world’s
most powerful
grid computing
endeavor, solving
up to 200 trillion
calculations per
second.

2004

Blue Gene, IBM’s
flagship machine,
outranks Japan’s
Earth Simulator
computer as the
world’s fastest
computer. It 
can sustain 
36 trillion 
calculations 
per second.

2005

IBM and the
Ecole
Polytechnique
Fédérale de
Lausanne launch
“Blue Brain,”
which aims to
model the human
neocortex on one
of the
BlueGene/L
machines.

2010

National Science
Foundation’s 
targeted date 
to roll out a
petaflop 
computer for 
science and 
engineering. 
The machine will
solve a quadrillion
(1015) calculations
per second.

1996 to 2006 and beyond
Supercomputers extend their 

reach to biology

“What we [scientists] wanted was one computer that was much faster.
What we got was a lot of computers,” comments Vijay Pande.
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hard problem. Such problems become
exponentially more difficult with every
extra piece of data and so approximate
solutions are typically sought.

Some enterprising protein-folding
projects recruit volunteers’ unused PC

biology researcher at the San Diego
Supercomputing Center.

Large-scale supercomputing centers’
importance will shift from renting time
on computers to offering technical
expertise, Bourne predicts, helping sci-
entists run code on a parallel machine.
Also, as journals increasingly require
placing data in a public database, super-
computing centers can fill that void.
“The ability to store large amounts of
data, that value has increased dramati-
cally,” Bourne says.

SPREADING THE LOAD TO
VOLUNTEER COMPUTERS
Today, many of the most crushingly

difficult scientific computing problems
aren’t being solved in supercomputing
centers or on university clusters. They’re
as likely to be solved in your living room.
Take, for example, the quest to unlock the
mysteries of protein folding: Predicting
how a string of amino acids will curl up
into the same structure every time is one
of biology’s holy grails. If we could do this,
we might design drugs to fit particular tar-
gets, understand diseases of protein mis-
folding, and be able to visualize unknown
proteins from their amino acid sequence.

To run models of
protein folding at an
atomic scale requires
making calculations
every femtosecond—one
billionth of a microsec-
ond—in order to capture
atomic vibrations. But
the folding process, like
many things in biology,
happens much more
slowly—on the order of
microseconds or mil-
liseconds. This means
an atomic model of pro-
tein folding from start
to finish requires a bil-
lion to a trillion steps.
Also, the typical protein
comprises hundreds of
amino acids, each of
which exerts a force on
every other amino acid.
Finding the lowest ener-
gy configuration for all
of these amino acids is
what’s called an NP-

processing time—an idea pioneered by
the SETI@home project and now
referred to as “grid computing.” 

“It’s probably best thought of as a
supercomputer but with radically differ-
ent architecture,” says Vijay Pande, who
leads the Folding@Home project, now
the largest grid computing venture in the
world. With more than 180,000 member
CPUs, Folding@Home commands more
raw FLOPS (floating point operations
per second, a measure of computer
power) than all the supercomputing cen-
ters combined—up to 200 trillion calcula-
tions per second—and transfers 50 giga-
bytes of data every day. Pande wants to
understand the nature of protein folding
to better understand why proteins some-
times misfold, causing diseases like
Alzheimer’s and cystic fibrosis. 

Other protein-prediction codes run-
ning in a home office near you include
Rosetta@home, based at the University
of Washington in Seattle, which pre-
dicts structures for proteins of
unknown function; Predictor@home,
based at the Scripps Research Institute
in San Diego, which compares different
structure-prediction algorithms; and
the Human Proteome Project, out of

The Human
Proteome Project
recently finished

rough predictions 
for all the proteins in
the human genome

in a single year—a 
job that would have

taken a century
on the available 

laboratory cluster.

With collaborators at Fujitsu, Folding@Home published results showing the initial modeled structure of a pro-
tein that is the target of immunosuppressive drugs (FKBP) in complex with a small molecule ligand (left); and
the final structure after a 20 nanosecond simulation (right). In this and other work, Folding@Home has demon-
strated that atomistic models of biologically relevant systems can be calculated with a useful level of precision
and accuracy by bringing several orders of magnitude more computational power to the problem. This work is
allowing important advances in rigorous physical drug-binding prediction. Courtesy of  Hideaki Fujitani, Fujitsu.
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What’s a supercomputer?
The definition of “supercomputer” is fluid—it just means a machine

that’s among the world’s fastest. Not only is the world’s fastest
machine always changing, but so is the architecture for creating

a supersized computer.

� “BIG IRON” supercomputers are the traditional super-
computers: custom-built machines housed in refrigerator-
like boxes. They first emerged in the 1980s, produced by
Cray, Inc. These custom supercomputers still lead the Top500
list of the world’s fastest machines. Because they share infor-
mation and data quickly between processors, they can tack-
le the most complex problems. IMAGE:

The “Q” supercomputer, used by
researchers at Los Alamos National

Laboratory to simulate a ribosome
manufacturing a protein. Courtesy of

Los Alamos National Laboratory.

� CLUSTERS connect tens, hundreds, and in some cases
thousands of off-the-shelf PCs. Software codes, typically
written in LINUX, provide communication. These are
sometimes called “PC farms,” or “Beowulf clusters,” after
the first systems of this type. Clusters are a much cheaper
way to boost computing power. IMAGE: Photos of a team
assembling the 1,100-processor cluster at Virginia
Polytechnic Institute in 2003. Courtesy of Ken Wieringo, VPI.

AN IN-HOUSE NETWORK (not pictured) is created when an
organization connects its computers together, letting users bor-
row each others’ computing power. Such a system is a type of in-
house “grid” in analogy with the electrical grid, which shares a resource between many
intermittent users. Many businesses, including pharmaceutical companies, digital ani-
mation studios and financial-investment firms, have networked employees’ desktop

machines to create an in-house
supercomputer, essentially for free. 

� GRID COMPUTING uses unrelat-
ed computers to solve pieces of a
giant calculation. Volunteers sign
up over the Internet to donate
their unused processing cycles.
SETI@Home, the pioneer, is still
scanning radio waves for signs of
intelligent life. Other projects pre-
dict the effects of global warming
(Climateprediction.net), look for
prime numbers (Great Internet
Mersenne Prime Search) or detect

gravitational waves from spinning neutron stars (Einstein@Home), to name a few.
Biology projects include Folding@Home, fightAIDS@Home, and the United Devices
Cancer Research Project. CERN plans to use this architecture to store and analyze data
from the Large Hadron Collider beginning in 2007. IMAGE:  Computers all over the
world are working on the protein-folding problem. This map shows the distribution
of IP addresses as of November, 2004. Courtesy of Vijay Pande, Folding@Home.  
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the Institute for Systems
Biology in Seattle, which pre-
dicts structures for human pro-
teins. In summer 2006 CERN,
in Geneva, announced a proj-
ect to study malaria on the
grid, and Israeli scientists hope
to map genetic diseases.

The benefits of such a scheme
are obvious. The Human
Proteome Project recently fin-
ished rough predictions for all
the proteins in the human
genome in a single year—a job
that would have taken a century
on the available laboratory clus-
ter. Buying equivalent comput-
ing time for Folding@Home
from a company like Sun
Microsystems would cost $1.5 bil-
lion a year, Pande says. 

But it’s an open question
how many codes will work on a
motley collection of home com-
puters, accommodate unpre-
dictable run times, and tolerate
infrequent communication.
Problems that work best on the
grid are the ones that don’t
require a lot of back-and-forth
communication. SETI@home is
a classic example; each user runs
the same pattern-recognition
algorithm on a different chunk
of radio-wave output. In geek
speak, this is an “embarrassingly
parallel problem”—one that can
easily be split into independent
tasks on many processors.

Embarrassing or not, many
biological computing problems

may eventually become parallelized. “In
biology you’re looking at a very large num-
ber of small bits of data,” Bourne says.
And clever algorithms may succeed in run-
ning even complex problems on the grid.
“Protein folding was not something that I
think people would have thought could be
broken up,” Pande says. “My gut feeling is
that there will be many things that could
be suited to this type of technology.” 

It’s a question of being on the “leading
edge” of science versus the “bleeding
edge,” he admits. “A lot of people don’t
want to get cut by the bleeding edge.”
Many scientists are wary of investing time
in a technology that’s in its infancy. To
ease the transition, the Berkeley Open
Infrastructure for Network Computing
(BOINC), which is funded by the NSF,
offers free CPU-scavenging code to inter-
ested researchers. The Open Grid Form,
launched in June 2006, aims to establish
standards and promote grid computing in
the research community. And the World
Community Grid provides free coordina-
tion for distributed computing projects
that have a humanitarian bent. Since its
launch in 2004 the World Community
Grid has hosted fightAIDS@home and
the Human Proteome Folding Project. 

BIOLOGICAL SIMULATIONS
Enthusiasm for grid computing must

be tempered by realism. Some problems
will never run on the grid. In particular,
some large-scale simulations and visual-
izations are just too convoluted to split
up. Every component is constantly inter-
acting with every other part. In a recent
simulation of the human heart at the San
Diego Supercomputing Center, the flag-

Top of the FLOPS
The widely quoted Moore’s Law pre-

dicts that processing power will double
every 18 months. So far the trend, attrib-
uted to Intel cofounder Gordon Moore,
has held true. Processors continually speed
up and supercomputers combine them in
ever larger numbers. Today’s fastest com-
puters, including the Blue Gene machines,
are at the teraflop scale—one trillion cal-
culations every second. 

But engineers already have their
sights set on the next benchmark: petas-
cale computers, which would be a thou-
sand times faster, performing one
quadrillion calculations per second. The
National Science Foundation announced
it would enable petascale computing for
science and engineering by the year
2010. Many scientists say they could
occupy a machine of that size with exist-
ing calculations.

Some question whether Moore’s Law
will eventually reach a limit. At some
point, computers can’t pack more pro-
cessing power into a small space without
overheating the components. On the
other hand, machines can’t be so widely
dispersed that information, which is lim-
ited by the speed of light, takes too long
to travel from one processor to another. 

Quantum computers and DNA comput-
ers may someday introduce new tech-
nologies, even as today’s machines reach
their physical limits. “Most likely while
we’re sitting around debating how much
further we can go with silicon comput-
ing, some genius is on the verge of a rad-
ical new invention,” says Allan Snavely. 

Graphs of the top 500
computers in the world
showing that cluster
architectures are becom-
ing more common (left)
and that they are made
up of an increasing num-
ber of individual proces-
sors (right). Courtesy of
Top500.org.  
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York City. A recent detailed simulation of
the membrane protein rhodopsin, which
used about a third of their machine’s
mammoth computation power, suggested
that water molecules may play an active
role in its function.

“I think we will model larger and larg-
er biological systems,” Germain predicts.
He also sees the models them-
selves improving. While simulat-
ing a living thing is not inher-
ently different from recreating a
physical event—exploding galax-
ies, say, or air flowing over an
airplane wing—biology has more
complex structure. Kevin
Sanbonmatsu, PhD, the Los
Alamos researcher who ran the
ribosome simulation, began his
career in physics, but appreci-
ates biology’s challenges. When
writing the code to model a
ribosome, Sanbonmatsu says, he
had many more types of atoms that had
to be placed in specific locations than if
he were modeling a semiconductor. 

The toughest demands for a combi-
nation of size and speed may come from

clinical practice. “We have an insatiable
appetite for high-performance comput-
ing,” says Charles Taylor, PhD , associ-
ate professor of bioengineering and sur-
gery at Stanford University. His group
solves fluid-dynamics equations that
model blood flow through arteries.
Beginning with a 3D image from a

patient, Taylor recreates the inner work-
ings of large arteries at millimeter-scale
resolution, problems which incorporate
5 million to 10 million variables, each
depending on all the others. Someday he
hopes a surgeon could compare different
options in the computer to decide on the
best procedure for a particular patient.

Unfortunately, today even Taylor’s ded-
icated, 64-processor SGI supercomputer
struggles when confronting a scenario with
medical complications. An aortic arch
with turbulent flow downstream requires
calculating every 10 microseconds, mean-
ing it takes 10 thousand or 100 thousand
steps to complete a single cardiac cycle. 

“You want to be able to turn these
around really quickly,” he says. Today’s
computers take days to run the model;
doctors would like to compare multiple

ship machine spent 99 percent of its time
twiddling its thumbs (at a billion cycles
per second) waiting to receive its neigh-
bor’s results. Running this problem on a
grid, where communication takes sec-
onds rather than nanoseconds, would be
an exercise in frustration.

In 1995, fewer than one in 20
researchers using the San Diego
Supercomputing Center was a biologist.
By 2005, that number had quadrupled to
almost one in five, and government labs
are seeing a similar trend. Last October,
researchers at Los Alamos National
Laboratory in New Mexico completed the
first biological simulation to incorporate
more than a million atoms: They used
Newton’s laws of motion to watch the
2.64 million atoms of the ribosome man-
ufacturing a protein. Such atomic-scale
simulations allow researchers to mimic
experiments in silico, observing processes
at slower speeds or at a magnified scale.
Biologists at IBM Research now use their
Blue Gene machine largely for molecular
dynamics applications, says Robert
Germain, PhD, a staff researcher at IBM
TJ Watson Research Center near New

In 1995, fewer than 
one in 20 researchers using the

San Diego Supercomputing
Center was a biologist. 

By 2005, that number had
quadrupled to almost one in five.

IBM researchers ran molecular dynamics sim-
ulations on Blue Gene that show the protein
rhodopsin (silver ribbon) interacting with
specific omega-3 fatty acids in the surround-
ing membrane. The work suggests that fatty
acids play a role in rhodopsin’s function as
the protein receptor primarily responsible
for sensing light. This simulation ran for two
million timesteps of one femtosecond (one
quadrillionth of a second) each. Membrane-
protein research commands one third of the
Blue Gene supercomputer’s nodes. Courtesy
of Michael Pitman, IBM Research.
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treatment options in just a few hours. The
computing power necessary to do that is
likely on the horizon, he says. Taylor
serves on a government panel looking to
integrate supercomputers in the medical
device industry, the way aerospace and car
manufacturers did in the past. He says, “I
feel pretty confident that ten years from
now, we’ll look back on this time and we’ll
find it hard to imagine that these tools
were not used in clinical practice.”

GENETICS’ 
INFORMATION OVERLOAD
Biology is seeing its databases explode.

Nowhere is this more dramatic than in
genetics. The vast amount of data provid-
ed by sequencing the human genome in
2003 was a turning point for biology’s use
of computers. Bioinformatics researchers
can now comb through the sequences
looking for patterns and similarities. One
of the most promising techniques is
whole-genome comparisons where
researchers search for portions of the
genome that are conserved across species,

suggesting they may be important.
Again, this turns out to be an NP-hard
problem, demanding enormous comput-
ing power for genomes that may include
billions of base pairs. 

And this is only the beginning.
Every year it gets cheaper to sequence
more genomes. 

“The amount of biological data avail-
able is increasing much faster than the
increase of single processor speeds. It’s
going much faster than Moore’s Law,”
says Serafim Batzoglou, PhD, assistant
professor of computer science at
Stanford University. Supercomputers
will be needed to store, access and ana-
lyze this data. The first human genome
took years to sequence, and cost millions
of dollars. Today every few months a
new genome appears. As sequencing
technologies get cheaper, it’s likely that
within a few years we’ll have hundreds of
human genomes and thousands of dif-
ferent species, Batzoglou predicts.

“The situation has been like quicksand
ever since I arrived,” laments Robert
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Above: In this fluid dynamics model of blood
flow, the colors display variations in the peak
systolic blood pressure from the aorta to the
lower extremities. Abrupt pressure changes
show regions of relative inefficiency in the cir-
culation. This type of simulation means simul-
taneously solving millions of nonlinear equa-
tions and, for the finest resolution, requires
days of computation time on a 64-processor SGI
supercomputer. Courtesy of Charles Taylor,
Stanford University.

Christoph Sensen, PhD, professor of bioin-
formatics and director of the Centre for
Advanced Technologies at the University of
Calgary, looks down on a larger-than-life
image of muscle structures. He is standing
inside the CAVE, a 4D virtual environment in the
Sun Center of Excellence for Visual Genomics.
CAVE computers running JAVA code project high-
resolution images at 112 times per second, envelop-
ing visitors in visions of DNA, cells, or--in this case--
the human body. Courtesy of Christoph Sensen.
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Petryszak, a technician who for the past
three years has managed incoming
sequences for the InterPro database at the
European Bioinformatics Institute in
Cambridge, England. “The horizons have
been changing almost monthly.” Petryszak
adds incoming protein sequences to the
database and then annotates the
sequences periodically using both an in-
home cluster and an external supercom-
puter. When biologist Craig Venter,

PhD, publishes results from his shotgun
sequencing project and the sequences go
public, Petryszak says, it could triple the
Interpro database from its current 600
gigabytes to 1.8 terabytes by the end of
2007. Storage is not a problem, but index-
ing the sequences and accessing the data

quickly to send to users is difficult.
“The amount of data is just going to

be enormous,” Petryszak says. “That’s
going to cause a headache, even for the
supposedly heavyweight databases.”

BIOMEDICAL COMPUTING
FOR THE 21ST CENTURY

In biology today, supercomputing is the
exception. Even computational biologists
tend to solve problems using the comput-

ers they have on hand. Few dream up ques-
tions that would require more resources.

“We have a need for high-performance
computing in biology, but there’s no
demand,” says Nathan Goodman, PhD,
senior research scientist at the Institute for
Systems Biology in Seattle, WA. “If you go

to a field like physics,
people are always think-
ing ‘What could I do if I
had more computing
power.’ They under-
stand that their ability to
analyze data is limited by
their computational
power.” It’s a Catch-
22, he says. Biologists
don’t have access to
large computers and so
they don’t propose prob-
lems that would require
them. Because they
don’t propose the prob-
lems, they don’t
acquire the resources.
Whether it’s a question
of training or simply the
culture of the discipline,
biologists are not yet
making the most of
large-scale computing.

“Why daydream
about something you
don’t have?” Pande says.
“But if you give [biolo-
gists] the resource, and
especially give the stu-
dents access to it, then
they will come up with
new algorithms and
new uses.”

A case in point is geneticist Batzoglou,
a convert to large-scale computing.
Although his own background is in com-
puter science, he initially shrugged off
news that his department had acquired a
600-processor supercomputer for the bio-
sciences. But after the machine arrived, he
and his graduate students became some of
the biggest users. Last summer, Batzoglou
invested $55,000 in grant money to buy
his own 100-processor cluster.

“Before we started using it, we didn’t
realize how useful it is to have such huge
computing capabilities,” recalls Batzoglou,
who writes algorithms to analyze genetic
sequences. “If there’s anything we’ve
learned it’s that the more computing
power we have, the more we are going to
find ways to use it.” 

Some fields angle to capitalize on
the growth in computing power. The
Petascale Collaboratory for the
Geosciences, an ad hoc group of scien-
tists established in 2004, draws up
questions for the upcoming generation
of supercomputers. “I would love to see
an analogous effort with biologists,”
says Snavely, a member of the task
force. “To my knowledge there hasn’t
been this meeting of the minds that
says, ‘OK, if this is where the technolo-
gy is going, what important biology
problems do we think we could solve?’”

“Biology is probably going to be the
largest user of high-performance comput-
ing in the 21st century,” Germain pre-
dicts. Sure, this might sound like old
news to long-time observers of the bio-
logical sciences. But hype in the early
1990s was premature—biological models
were still too rough and the computing
power was insufficient, says Michael
Pitman, PhD, who leads the membrane
protein group at the IBM TJ Watson
Research Center in Yorktown Heights,
New York. Finally, he says, we’re nearing
the point where supercomputers can live
up to the hype. “I’ve been very encour-
aged by the kinds of questions we can ask
and the quality of answers we’re getting,”
he says. “I do feel that we’re in a new era
for supercomputers in biology.” ■■

As part of the Blue Brain project, high-performance computers
are being used to model the human brain. In preliminary wet-
lab research shown here, researchers stained columns of neu-
rons in the neocortex to design a detailed model of its circuitry.
Each column contains 10,000 individual neurons; thousands of
columns together make up the neocortex. Blue Brain
researchers hope to simulate the entire neocortex. In January
2005, the team announced they had simulated 10,000 neurons
on the Blue Gene/L machine, a model 10 million times more
complex than any previous neural simulation. The project is a
collaboration between IBM and the Ecole Polytechnique
Federale de Lausanne in Switzerland. Courtesy of IBM Research.

“Biology is probably going to be the largest user of high-performance
computing in the 21st century,” Germain predicts.
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hen DNA microarray technology emerged

more than a decade ago, it was met with unbri-

dled enthusiasm. By allowing scientists to look at

the expression of enormous numbers of genes in

the genome at once, microarrays promised to revolu-

tionize our understanding of complex diseases and

usher in an era of personalized medicine. Advocates

vowed that, someday, with just a finger prick, doctors

would instantly know whether patients were having

a heart attack, rejecting a transplant, or in the early

stages of cancer based on their mRNA patterns, and

would tailor treatment accordingly.  

In the decade since their introduction, microar-

rays have permeated virtually all corners of bio-

medical research; have yielded some useful insights

into basic biology and cancer; and are being used,

in a preliminary way, to diagnose disease, guide

treatment, and streamline drug discovery. But

early enthusiasm has been tempered with a dose

of reality. Progress has been slower than predicted.

And some splashy results in high-profile journals

have proven difficult to reproduce, casting a shad-

ow over the real successes. 

The shift in perception is palpable in the literature:

a 1999 Nature Genetics article was entitled “Array of

hope,” but a 2005 Nature Reviews article was entitled

“An array of problems.”1,2 One recent paper called

microarray studies a “methodological wasteland.”3

W
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All new technologies have growing
pains, and early glitches with the technol-
ogy itself are partly to blame. But the big-
ger problem is more fundamental. The
huge promise of microarrays is that they
give information about every gene, but
this is also their huge curse—a crushing
onslaught of data. A decade ago, these
data were a mismatch with existing statis-
tical tools. Today, there is still no consen-
sus on how to analyze and interpret
them. A 2005 survey of microarray users
concluded that, “Data interpretation and
bioinformatics remain the major hurdles
in microarray technology.” 4

EXPONENTIAL ADVANCE
Microarrays capture a snapshot of

which genes are turned on—or
expressed—in a given cell at a given time.
Before 1995, scientists could
only explore the activity of a few
genes at a time. Then two groups
of researchers—at Stanford
University (led by Patrick
Brown, MD, PhD) and at
Affymetrix—scaled this up thou-
sands-fold with the invention of
the microarray. The Stanford
microarray is a glass slide coated
with a grid of thousands of
microscopic spots—each corre-
sponding to a gene—that light up
to show which genes are on,
which are off, and to what
degree they are being expressed.

“At the time it just blew away
the next best thing that you
could do. It was really a quan-
tum leap ahead,” says Todd
Golub, MD, director of the
Cancer Program at the Broad
Institute of Harvard and MIT.

Besides expression microar-
rays, genotyping microarrays
are becoming increasingly pop-
ular—these reveal variation in
the DNA code rather than in
gene activity. Scientists are also
working on microarrays that
use antibodies to detect pro-
teins, but these have even more
technical challenges.

ARRAY OF HOPE
Microarrays are ideally suit-

ed to study cancer, a disease of

multiple genetic mishaps. They may
also yield improved tests for diagnosis
and prognosis.

In a 1999 paper in Science, Golub
automatically and accurately classified
leukemia patients into the two main sub-
types of the disease using only gene
expression patterns.5 Though these two
forms of leukemia were already well rec-
ognized and characterized, in principle
this strategy could uncover previously
unknown subtypes of cancer.

Indeed, in a 2001 Proceedings of the
National Academy of Sciences (PNAS)
paper, researchers identified five
unique gene expression patterns in
breast cancer and showed that these
subtypes were five distinct diseases with
different risks of progression.6

“This surprised the lab scientists.

They said, ‘Wow, look at this—breast
cancer isn’t really breast cancer, it’s
many types of breast cancer,’” says
Gilbert Chu, MD, PhD, professor of
medicine and biochemistry at Stanford.
“But if you talk to anyone who’s been a
clinician for many years, they already
knew this. They’ve seen breast cancers
that looked the same but in some cases
vanished with chemotherapy and in oth-
ers did not. So it’s not a surprise that the
gene expression profiles are proving that
these cancers are different.”

A natural extension of this work is to
isolate the particular genes and expres-
sion patterns that are linked to progno-
sis. For example, Golub derived a 13-
gene expression signature that correlated
with survival in lymphoma patients; sev-
eral other groups have isolated gene sig-

Above: This schematic portrays an experiment using a spotted or cDNA microarray, which consists
of a grid of thousands of microscopic spots on a glass slide; each spot contains cDNA probes for
a gene. Here, researchers extract mRNA (made when genes are active) from two types of cells—
e.g., tumor cells and control cells—and then label the samples with different fluorescent dyes.
When washed over the microarray, these colored transcripts bind to their complementary probes,
leaving a trail of informative spots: red for genes turned on in cancer cells, green for genes turned
on in normal cells, yellow for genes turned on in both types of cells—with more intense color indi-
cating higher gene activity. Courtesy of The Science Creative Quarterly, artist: Jiang Long. 
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gene codes for a protein that prevents
tumor cell death; blocking this protein
might boost chemotherapy response.

Microarrays may also help tailor a
treatment to the person, not just the dis-
ease, Chu says. He has identified pre-

liminary gene signatures in the healthy
cells of cancer patients that predict
which patients will suffer serious side
effects from radiation therapy.

In addition to oncology, microarrays
are also being widely applied in heart
disease and transplant research. Daniel
R. Salomon, MD, associate professor

natures for breast cancer prognosis.
These signatures can be used in prog-
nostic tests that gauge if a tumor should
be treated aggressively.

Prognostic genes may also point to
novel drug targets. For example, in a

recent paper in the Journal of Clinical
Oncology, Elaina Collie-Duguid, PhD,
research fellow at the University of
Aberdeen in Scotland, identified one
gene that had a 50-fold higher expres-
sion in lung cancers that were not
responsive to chemotherapy compared
with those that were responsive.7 The

of molecular and experimental medi-
cine at the Scripps Institute in San
Diego is working on developing a
microarray-based test to quickly tell him
if a kidney transplant patient is in acute
rejection, chronic rejection, or good

condition. And he envisions an even
more sophisticated personalized medi-
cine scenario: “What we ultimately
want is where the doctor says to these
patients, ‘I saw you on Thursday and
you’re doing well but your gene expres-
sion analysis tells me you need more
immunosuppression, so I’m increasing
your dose. Come back and see me in
four weeks and we’ll draw blood and
check your immunosuppression again.’” 

Microarrays are also critical in basic
biological research that may ultimately
have a clinical payoff. For example, by
mapping the precise genetic program of
embryonic development, Wing Hung
Wong, PhD, professor of statistics and

Left: The oligonucleotide array (such as the GeneChip from Affymetrix) uses probes that are short strands of DNA synthesized directly on
the chip, and a single type of cell is examined at a time. Courtesy of The Science Creative Quarterly, artist: Jiang Long. Right: InkJet Array.
Agilent Technologies, Inc. uses inkjet printing technology to synthesize oligonucleotide probes on a chip. Courtesy of Agilent.

The huge promise of microarrays is that they give information about 
every gene, but this is also their huge curse—a crushing onslaught of data.
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built to analyze data on a few variables
measured on many samples. In microar-
rays, the situation is reversed: tens of
thousands of genes are measured on just
a few samples—a phenomenon statisti-
cians are dubbing “p bigger than N” (p
features on N samples). 

To illustrate the difficulty, imagine
that you randomly divide 50 people
into two groups and start endlessly

measuring their characteristics:
age, hair color, favorite food,
height, weight, and so forth.
Eventually, you will find char-
acteristics that are slightly
imbalanced between the two
groups just by chance. And the
more variables you consider,
the more differences you will

find. But the pattern of characteristics
that separates the two groups is an idio-
syncrasy of the sample and has no larger
meaning. The same thing happens
when you compare 36,000 genes
between two sets of 25 cellular samples—
some differences in expression may

of health research and policy at
Stanford, may be drawing a blueprint for
where and when to deliver genes for
gene therapy. 

ARRAY OF PROBLEMS
The initial successes in microarrays

and their exhilarating promise set off a
dizzying flood of microarray studies:
fewer than 100 publications in 1999

grew to more than 6000 in 2004.
Suddenly investigators were identifying a
molecular signature for every disease. 

But many publications have since
been discredited or have simply fizzled
out. Scientists say it’s hard to find stud-
ies that have led to anything concrete.  

“The thing that’s surprising to me is
that it’s taking so long to figure out
whether and when the technologies
work, and it’s taking so long in the face of
such enormous enthusiasm,” says David
Ransohoff, MD, professor of medicine
and epidemiology at the University of
North Carolina, Chapel Hill.

Of the many factors at work—includ-
ing initial snags with the technology—
scientists consistently point to data
analysis and interpretation as the critical
stumbling block.  

“For the part of running the experi-
ment, microarrays seem to be working
pretty well,” says Stanford cardiologist
and medical fellow Greg Engel, MD.
“The informatics part is a whole other
area. The statistics and how you analyze
the data are still a quagmire.” 

“I think the greatest challenge at this
time remains data interpretation,”
Golub agrees.

When the data amounted to whether
a single gene was on or off, biologists
had little need for statisticians. But find-
ing patterns in the activity of 36,000
genes is fundamentally a statistical prob-
lem. When microarrays were intro-
duced, even the statisticians were
stumped. Existing statistical tools were

reflect real biological changes, but many
more will be false positives. 

“The problem here is a deeply pro-
found statistical one,” Chu says. “The
very nature of microarrays is that they
give you tons of data, and very unusu-
al patterns can emerge that are not
anything more than noise and statisti-
cal fluctuation.”

As Engel describes it, “What we’re all
doing is we’re taking a statistical
approach and we’re all trying it every
which way. And you’ll even get a pattern.
But is that pattern real? That’s the major
issue for gene chips—is it real?” 

Subtle statistical mistakes lead you to
find patterns and get published in high-
profile journals, Chu says. And it may
take years and several expensive follow-
up studies for anyone to realize that the
finding is not reproducible, unless some-
one spots the error sooner. 

Unfortunately, such sleuthing isn’t a job
for the casual scientific reader, Chu says. As
a perspective in Nature Genetics quips, this
task requires “forensic statisticians.”8

Grid of Lights. Picture of an expression microarray. Courtesy of: Colin Smith, Functional
Genomics Laboratory, University of Surrey.

“The statistics and how you 
analyze the data are still a 

quagmire,” says Greg Engel.
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FORENSIC STATISTICIANS
At the request of a colleague, Robert

Tibshirani, PhD, professor of statistics
and health research and policy at
Stanford, set out to evaluate a 2004
paper in the New England Journal of
Medicine that reported a novel gene sig-
nature for predicting survival in follicu-
lar lymphoma.9

Using the data the authors provided
online, Tibshirani spent two grueling
weeks reconstructing the steps of their
analysis and writing a computer program
that reproduced their results. Then he
put their approach to the test.

To help determine whether a pattern
is real or just random noise, statisticians
use a trick called split-sample validation:
they fit a model only on a portion of the
dataset (called the training set) and then
test its discriminatory ability on the
untouched data (called the validation or
test set). If the model only fits noise in
the training set, it will usually fall apart
when applied to the test set. But even
this isn’t perfect, because bias can be
introduced in choosing the training set
and specifying the model.

The authors of the lymphoma study
had fit a model (a gene signature) using
half the data and found that the model
performed well when tested on the
remaining half. But when Tibshirani
simply swapped these training and test
sets and applied the model-fitting pro-
gram to the new training set, unexpect-
edly the model did not pop out. In fact,
no models popped out, suggesting that
their whole finding was spurious. 

He also re-ran the computer program
on the original training data with tiny
changes in the choice of parameters.

“Again, the whole thing fell apart like a
house of cards,” he says. “I also had
other colleagues look over my analysis,
and they all agree with me: these data
look like noise.”

“On the broader issue, I think proba-
bly a good portion of microarray analy-
ses are wrong,” he says. 

A 2005 Lancet paper confirms his sus-
picions.10 Stefan Michiels, PhD, and
colleagues at the Institute Gustave-
Roussy in France re-analyzed data from
the seven largest published studies to
report gene expression signatures for can-
cer prognosis. The papers were published
in top peer-reviewed journals, including:
Nature, PNAS, the Lancet, and the New
England Journal of Medicine. 

For each of the seven datasets,
Michiels’ team randomly selected 500
training sets of different sizes; then they
built and tested 500 models. What they
found: The results were highly depend-
ent on the choice of training set. Every
different training set led to a different
molecular signature. Moreover, in the
majority of trials the signatures selected
in the training set had poor or no dis-
criminatory ability in the validation set.
Their conclusions: five of the seven stud-
ies did not classify patients better than
chance, and the remaining two did only
slightly better than chance.

“The original investigators may have
consciously or unconsciously reported
the best performing pair of training-vali-
dation data,” explains John P. A.
Ioannidis, MD, PhD, professor and
chair of the department of hygiene and
epidemiology at the University of
Ioannina in Greece, who wrote a com-
mentary for the Lancet paper. “I suspect
that they probably had some source of
selection bias somewhere in the
process,” he says. 

To guard against bias, he recom-
mends using a repeated sampling
scheme like that in the Lancet paper or
having independent groups do the train-
ing and validating steps.

RE-INVENTING STATISTICS
The field of statistics moves more

slowly than biology, Tibshirani says.
So, as the microarray technology
raced ahead of the analysis tools, non-
statisticians made up their own statis-

“On the broader
issue, I think probably

a good portion of
microarray analyses

are wrong,” says
Robert Tibshirani.

Making of a microarray: A robot spots a glass slide. Courtesy of NIAID Microarray
Research Facility.
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biologists wouldn’t even want to talk to
you if you were a statistician. But now
the biologists all realize that statistics
has something to offer. It’s really raised
the profile of our field.”  

BACK TO BASICS
Even if the statistical analyses are per-

fect, however, this does not guarantee a
reproducible finding, Ransohoff cau-
tions. Too often biologists and computa-
tional biologists overlook an even more

basic problem: “Fancy math can’t undo
biases that have been hard-wired into
the data from fundamental errors in
clinical study design,” he says.

“This is not fancy molecular stuff,
its basic study design that goes back to
the 19th century. If case and control
samples are not maintained the same
way, then we might develop molecular
signatures that simply tell us what
refrigerator the samples were stored
in,” Ioannidis adds.

tics to fill in the gaps—which explains
a lot of the statistical f laws.

“You don’t see people without train-
ing going into labs and doing test-tube
experiments. Yet, anybody who has a PC
with Excel thinks they can invent statis-
tical methods,” he quips. 

Fortunately, statistics is beginning to
catch up to the technology. A whole new
branch of statistics, “p bigger than N,” has
opened up to address the challenges of
analyzing microarray data. The resulting
innovations will likely be applica-
ble across the burgeoning 
“-omics” fields. 

At the same time, journal edi-
tors are tightening standards and
requiring authors to follow the
MIAME (Minimum Information
About a Microarray Experiment)
guidelines and to make data
available online. They should
also encourage authors to pro-
vide a script of their analysis, like
a statistician’s lab book,
Tibshirani says. 

“There’s implicit pressure
to find positive results. And
that’s not a good way to oper-
ate,” he says. “A script keeps
you honest. It forces you to
remember exactly what you
did, maybe six months ago.
Maybe you’ve forgotten that
you’ve actually tried 25 models
since last July.” A script also
makes it easier for others to
evaluate the approach.

Another solution is canned
software—such as the packages
that he’s developed and made
freely available online, SAM
and PAM (Significance Analysis
of Microarrays and Prediction
Analysis of Microarrays). These
programs constrain people
from simply making the choices
that make their data look best.
“You need a little bit of a
straight-jacket almost,” he says. 

Biologists are also realizing
the importance of having statis-
ticians on their microarray
teams, Wong says.

“I can clearly detect a
changed perception about stat-
isticians,” he says.  “Before, the

Commercial microarray products such as the Mammaprint and Oncotype DX (not shown) gene
expression tests determine whether breast cancer is likely to recur and thus should be treated
aggressively. Courtesy of Agendia, Inc. 
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For example, a 2002 Lancet paper
(by Lance Liotta and Emanuel
Petricoin) announced the develop-
ment of a highly accurate blood test for
early stage ovarian cancer.11 Ovarian
cancer is usually fatal because it is diag-
nosed too late, so accurate early detec-
tion would be a huge leap forward—
exactly the incredible payoff that the 
“-omics” technologies have long prom-
ised to deliver. The test was based on
proteomics—patterns from mass spec-
trometry, rather than microarrays—but

the study design issue is the same.
The finding launched a commercial

test (OvaCheck, Correlogic Systems,
Inc.); prompted an unprecedented con-
gressional resolution granting more
funding; and was deemed one of the top
ten medical breakthroughs of 2002 by
Health magazine. 

But soon after the initial paper, other
scientists began questioning the results.
Many now believe that Liotta and
Petricoin’s findings were actually an
unintentional artifact of differences in
the way the cancer and non-cancer sam-
ples were processed. The authors had
found a real statistical pattern that sepa-
rated the groups, but it wasn’t a signa-
ture of the ovarian cancer.

To avoid such errors, Chu always
processes a patient sample at the same
time as its control. Some people might
consider his attention to detail obsessive-
compulsive, he says. “But actually you
almost have to be more obsessive with
microarray data than with almost any
conventional biological experiment.” 

Microarray teams should also
include clinical epidemiologists to
address these basic study design issues,
Ransohoff concludes. 

A MORE MATURE FIELD
The result of high-profile failures has

been an unwarranted backlash against
microarray technology, reflects Steve
Horvath, PhD, ScD, associate professor

of biostatistics and human genetics at the
University of California, Los Angeles.

“Five years ago there was wide
enthusiasm about microarrays, so peo-
ple were probably a little bit too naive
about the challenges that lay ahead,”
he says. “Now the pendulum appears
to have swung back in the opposite
direction, where people are much too
negative about the promise of
microarray data.” 

Indeed, the backlash has overshad-
owed some exciting successes. In 2005,

the FDA approved the first microarray-
based clinical test, AmpliChip (from
Roche and Affymetrix). The test identi-
fies genetic variations in the gene for
cytochrome P450—an enzyme that
metabolizes common drugs—and allows
doctors to personalize drug choice and
dosing accordingly. 

A 21-gene expression test for breast
cancer, Oncotype DX (Genomic
Health), has been validated in large,
independent studies. By distinguishing
lower and higher risk tumors, Oncotype
DX may spare up to half of women with
a common type of early-stage breast can-
cer from unnecessary chemotherapy. A
2005 analysis showed the $3000 test to
be cost-effective because of the averted
chemotherapy.12 Oncotype DX is now
being tested in a major prospective clini-
cal trial sponsored by the National
Cancer Institute.

A 70-gene breast cancer test devel-
oped in the Netherlands, MammaPrint
(Agendia), is undergoing a second
round of validation studies. The jury is
still out, but it is already being used in
some clinical settings. A recent study in
the New England Journal of Medicine
found that though MammaPrint and
Oncotype DX only overlap in one gene,
they give similar results—they agreed
about whether tumors were “high” or
“low” risk in 81% of cases.13

While these examples fall far short of
a finger-prick test that instantly sizes up

your current and future health, they
show that microarray data are not an
empty wasteland. Dismissing microarray
technology now would be like stopping
flight travel because the first few planes
crashed, Horvath says. These early
crashes led to strict and effective safety
procedures for flight, and, similarly,
early failures in the microarray field
have led to stricter standards to ensure
reproducibility, he says.

As a more mature field faces its sec-
ond decade, it is also adopting a more

realistic outlook. Microarray users
acknowledge that an all-inclusive fin-
ger-prick test is unlikely to materialize
anytime soon, but they have a more
modest goal for their next decade: to
streamline their search for meaning in
a vast sea of data. 
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Dismissing microarray technology now would be like stopping 
flight travel because the first few planes crashed, Horvath says.
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BY LOUISA DALTON

In the summer, it can be hard to find a place to sit at
the Santa Fe Institute. Much of the year, only about a
dozen researchers make their home at the multidisci-

plinary research organization. But in the summer, they
double-up in work spaces with many of the roughly 70
external faculty who have primary appointments else-
where. Add to that flocks of scientists
and students moving in and out for work-
shops and summer school, and it’s easy
to see how all the chairs get filled in the
one-story, pueblo-style research institute.

The visitors and faculty come with
widely diverse backgrounds—from the
hard physical sciences to the natural sci-
ences, biomedical sciences and social
sciences, “sort of ending up somewhere
in the fringes of archaeology,” says SFI
president Geoffrey West, PhD. Since
SFI’s founding more than 20 years ago,
the stand-alone organization, funded
primarily by private money, has been an
evangelist of multidisciplinary research.
The institute is a safe haven for such
research, West says, a place where inves-
tigators can ask fundamental, wide-
ranging questions, even if they are not
sure the questions will bear fruit. 

The types of questions SFI researchers
ask—big picture questions midway
between multiple fields—tend to fall into a bucket now
referred to as complexity science. Answering these questions
frequently uncovers commonalities (often mathematics-
based) between vastly different systems, whether they are
social, natural, or artificial systems. West is now helping to
organize a workshop centered on the question, “How are
huge databases going to change the way we do science?”
Although an astronomer posed the question, huge datasets
are also a challenge in high-energy physics, biology, even the
social sciences. The workshop will bring together 30 to 40
scientists from informatics, computational biology, astrono-
my, population dynamics, genomics, high-energy physics,
and more. West hopes that some disciplinary cross-fertiliza-
tion will occur, and new ideas will emerge.

Biocomputation is one of the well-fertilized fields pur-
sued by SFI researchers. For example, Tanmoy
Bhattacharya, PhD, one of SFI’s relatively permanent
researchers, was trained as a physicist but has branched out

into computational biology. He studies how the rapid evo-
lution of HIV makes it difficult to fight. So many strains
now exist; he tries to take a step back and understand the
virus from a global evolutionary perspective. His research
will likely help others choose the best strains to use for HIV
vaccine development.  

Another faculty member David Krakauer, PhD, studies
the stability and evolution of biological organizations with
the help of computational principles. He believes that the
science of adaptive systems could have an important impact
on the design of robust, distributed computing systems.

For the most part, research done at SFI isn’t driven by
the promise of immediate applications. “That’s what
makes this place different,” Bhattacharya says. “Here you
can really ask important, long-term questions, ones that
don't have immediate relevance … Here you can actually
understand things. And history tells us that understand-
ing never goes to waste.”  ■■

Santa Fe 
Institute:

Addressing
Complexity

f e a t u r e d  l a b
FeaturedLab
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The Fall 2005 “Under the Hood”
column discussed the curse of
dimensionality—too many numeri-

cal components for each data point—and
the curse of dataset sparsity—too few data
points. One way to treat these problems in
concert is to examine the geometric rela-
tionships between the data points, and
represent the data with fewer descriptors
that retain the salient structure.

This illustration demonstrates data in
three dimensions that has such structure.

Though each point is described with
an (x,y,z) triplet, a single number—the
parametric position along the spiral—may
be sufficient to characterize that point for
many applications. In technical terms,
the points lie along a one-dimensional
manifold (plus noise) that has been
embedded in a three-dimensional space.
Methods typically referred to as manifold
learning or relating to embeddings seek to
find such simpler parameterizations.

The simplest methods assume that the
manifold is linear. Vast decreases in the
dimensionality of the data points can be

obtained by simply noting that n data
points cannot span a linear space of

dimension greater than n–1. For
example, three points form no
more than a two-dimensional
plane, regardless of whether the

points are vectors in ten or ten
thousand dimensions. Thus, the two
curses of biomedical data can be
turned against one another.

Principal component analysis
(PCA), for example, finds the sub-
space spanned by the data by identi-
fying the data set’s principal compo-

nents: The first such component is the
direction along which the data has the

most variance; the sec-
ond component lies
orthogonal to the first
and best accounts for
the remaining varia-
tion; and so on. The
data in the illustration
have three principal
components: first, the
central axis of the spi-
ral; then, the long axis
of the ellipse that
remains when the spi-
ral axis has been pro-
jected away; and finally
the ellipse’s short axis.
In many cases even
highly nonlinear data
can be described well

with a small subset of the leading princi-
pal components. For example, if the illus-
trated data were ten-dimensional but had
the same spiral structure, three principal
components would describe the data
exactly. Alternatively, if the data were
described only with the first one or two
principal components, much meaningful
structure would still be retained.

A related technique called multi-dimen-
sional scaling (MDS) operates over the dis-

tances between data points. MDS finds
positions for the points in low dimensions
such that the inter-point distances are
changed as little as possible. If the
Euclidian distances are provided, MDS
and PCA are identical. However, other dis-
tance measures can also be constructed.
The Isomap method finds the distance
between points by measuring the length of
a path that is constrained to “hop” from
point to point along the data cloud. This
distance approximates the geodesic distance
(e.g., distance along the spiral). Application
of MDS to these distances can easily recov-
er many nonlinear structures.

In contrast to MDS and Isomap, which
consider the distances from every point to
every other, several methods, such as
Laplacian eigenmaps and locally linear
embedding (LLE), deal only with distances
between points and their close neighbors. 

It is my hope that this extremely brief
column has interested you in this fertile
field of research. For a full-fledged intro-
duction, refer to Christopher Burge’s
excellent tutorial.1 ■■

DETAILS

Zach Pincus is a PhD Candidate in the Biomedical
Informatics program at Stanford University. He works 
in the lab of Julie A. Theriot, developing methods for
automatic and quantitative interpretation of images 
from microscopy, and cellular structures therein.

FOOTNOTE
1 Christopher Burge. “Geometric Methods for Feature
Extraction and Dimensional Reduction: A Guided Tour,”
in Data Mining and Knowledge Discovery Handbook: A
Complete Guide for Practitioners and Researchers, Eds.
L. Rokach and O. Maimon, Kluwer Academic Publishers.

ACKNOWLEDGEMENT: Thanks to Brian Naughton 
for many discussions of manifold learning.

Under TheHood
BY ZACHARY PINCUS

Dimension Reduction and
Manifold Learning

When Less Is More

u n d e r  t h e  h o o d

The two curses of 
biomedical data can

be turned against 
one another.

Data points that 
lie close to a one-
dimensional manifold (green line).
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Here we see the MEART brain (neurons cultured on a multi-elec-
trode array), the artist’s body at work (moving robotic arms),
and one of the artist’s drawings. Courtesy of Symbiotica
Research Group at the University of Western Australia in collab-
oration with Steve Potter’s Lab. Photos by Philip Gambien
(robotic arm; drawing) and Steve Potter (multi-electrode array).

MEART’s creators link the basic components of the brain
(isolated neurons) to a mechanical body (robotic arms)
through the mediation of a digital processing engine

across the Internet. The goal: to create a semi-living entity that will
seemingly learn, evolve, and become conditioned to
express itself through art. The project was originally created
in 2001, but has changed and evolved in seven art galleries
since then, most recently in Shanghai, China this year.

How it works: Neuroscientist Steve Potter, PhD, who
runs the Laboratory for Neuroengineering at Georgia
Institute of Technology cultures neurons from the cortex
of embryonic rats in a Petri dish with 60 microelectrodes
(a multi-electrode array or MEA) embedded in it. Through
these electrodes, the researchers/artists can send sensory
inputs (electrical stimuli) to generate responses (action potentials) that can be
converted into movement (drawing) by robotic arms located remotely (over
the Internet). For each artwork, a single camera shot of a viewer in the art
gallery is converted into a 60 pixel image (corresponding to the 60 micro-
electrodes) and is sent to the neurons as an electrical stimulus. Computer
software processes the resulting neural signals to create a vector that repre-
sents the relationship between the current position of the drawing arm and
the position on the culture plate of the highest neural activity. This vector is
then used to move the robotic arms holding colored pens. 

By closing the loop from neural activity to behavior, sensing, and stim-
ulation, the researchers hope that the semi-living artist will learn some-
thing about itself and its environment. At the same time, MEART pro-
vokes humans to explore questions such as: “What is creativity?” and “How
does the evolution of biotechnology alter our definition of creativity?” 

MEART: 
The Semi-Living Artist

s e e i n g  s c i e n c e
SeeingScience
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